
 Git without a forge

 	Veröffentlicht von

 	

 	Veröffentlicht am

 	Unbekannt

 	Geschätzte Lesezeit

 	6 min

 	Hinzugefügt am

 	2025-03-05

 	Adresse

 	
 https://www.chiark.greenend.org.uk/~sgtatham/quasiblog/git-no-forge/

Git without a forge
[Simon Tatham, 2025-03-05]

	Introduction	Purposes of this article

	How to interact with a bare git repo	What do I prefer in particular?	BEST: URL of a git repository + branch name
	An incremental git bundle
	A set of patch files from git format-patch
	A bare diff file generated by git diff
	WORST: A series of separate emails generated by git send-email

	Why don’t I use a git forge?	Trust
	Heavyweight
	Account management
	You get a workflow imposed on you
	Plain old inertia
	Special mention: especially not Github

	Should I start using a git forge instead?

I’ve written quite a lot of free software in my life. Most of it was from scratch: projects I started myself. So I get to choose where to host them – or rather, I have to choose where to host them.

These days, all my projects are held in Git. And mostly, I put them in ‘bare’ git repositories on my personal website.

I don’t use any git ‘forge’ system layered on top of Git, like Gitlab or Github, which automatically makes a bug tracking database for each project, and provides a convenient button for a user to open a merge request / pull request. I just use plain Git. People can ‘git clone’ my code, and there’s a web-based browsing interface (the basic gitweb) for looking around without having to clone it at all. But that’s all the automated facilities you get.

Occasionally this confuses people, so I thought I should write something about it.

Purposes of this article

Sometimes people just can’t work out how to send me patches at all. Or they can think of several ways, and aren’t sure which is best. So one purpose of this article is to be a public statement of my own preferences, which I can link to when people ask that question.

But it’s also a bit of a musing about why I don’t use a ‘forge’ style system like Gitlab or Github. People sometimes ask me that too – “why don’t you do what everyone else does?” or words to that effect.

How to interact with a bare git repo

People who are used to git forges look for a ‘pull request’ button. When they don’t find it, they sometimes get confused.

If you can’t find a button on a website to submit a patch, how do you send your patch to the maintainer?

You send the author an email. And in the email, you put one of these things:

	A URL to your own clone of the repository, containing your patches on top of the ‘upstream’ code.
	The actual patches, in some form of email attachment.

Either of these works. For option 2 there are multiple ways to do it in detail, and all of those work too.

It doesn’t have to be by email, either. Any method of sending this data to the maintainer is fine. For example, I’m on Mastodon – so you could send me a repository URL via Mastodon if you really wanted to (provided you didn’t mind my responses being very short). Or you could send patches via any other communications medium that you and the maintainer are both on, if it lets you attach files to messages.

What do I prefer in particular?

But some people don’t just want to know any way to send patches. They want to know which is the best way, or at least the way I prefer.

So here’s my own list, in descending order: most preferred at the top, least at the bottom.

BEST: URL of a git repository + branch name

This is my absolute favourite way to receive patches. If there’s anywhere on the Internet you can put a clone of my git repository with some extra patches, then the best thing is to do that, and send me an email saying something like

I have some patches to [project] to [make some change]. You can find them in the branch called [whatever] here: [URL]

The URL can be anything that’s convenient, as long as it’s either something I can give to git clone, or a human-readable web page containing something I can give to git clone. It can be anything from a git forge page (just because I don’t host my code on Github doesn’t mean you can’t put your patched version there for me to look at) to a static site where you’ve uploaded a repository and run git update-server-info.

When you get right down to it, this is exactly what the formalised ‘pull request’ or ‘merge request’ in a git forge system is. That’s why you start by forking (i.e. cloning) the target repository and put your changes in a branch of your fork. A PR communicates to the maintainer: “Hey, see this repo over here, this branch in particular? It has changes I’d like you to take.” The formal PR button in a forge is a way to do that with one click, but a short email with all the same information is just as good.

Why I like it: This is my favourite way to receive patches because the patches themselves don’t go through my email. This saves space for me in the long term (I keep all my email), and it saves me messing about with moving attachments around (I read email on a different machine from the one I develop on). All I need is to paste the URL from the email into my git command line, and bing, I’ve got the patches in a form I can look at, review, and maybe merge.

Also, if I make review comments and you want to update the patches, it saves space again if you don’t have to send a full set of updated patch files, but instead, push a modified version of your branch and just send another email saying

OK, I’ve addressed those review comments. New patches are in the same place as before.

An incremental git bundle

Git bundles don’t seem to be very widely known. I think that’s a shame, because they’re awesome.

The simplest kind of git bundle – a full bundle – is a whole git repository, wrapped up into a single file. It contains a collection of git objects, plus a collection of references (typically branch heads). You can access it by any of the same methods you’d use to access an actual git remote, by passing its filename to git fetch or git pull, or maybe start with git ls-remote to see what branches are in the bundle file and decide which one to fetch. The only thing you can’t usefully do is modify it. If you want a git bundle to contain something different, you just make a fresh one from scratch.

But a bundle can also be incremental, which means that some objects are missing, because it expects the bundle recipient to have those objects already. This is just what you want when you’re sending patches against an existing repository: you know the recipient has all the objects you got from the original repo, and you only have to send the new objects.

So, suppose you’ve prepared a series of commits (or just one commit) against the main branch of one of my repositories. Then you can do something like this:

git bundle create fix-weasel-rotator.bundle origin/main..HEAD

That will create a file called ‘fix-weasel-rotator.bundle’ (example name only!) which contains all the extra commits you’ve made on top of origin/main (my upstream branch). Now you can send that file as an attachment.

Why I like it: If I’m going to receive patches as email attachments at all, this is my favourite way to do it, for lots of reasons.

Firstly, it’s one file, no matter how many patches you put in it. That means I can download it in one go to my development machine and not have to herd a whole collection of smaller files.

Secondly, git bundles are small: significantly smaller than the corresponding textual patch files. (They use the same compression as git’s packed object format.)

Thirdly, git bundles are binary: the compression turns them into completely impenetrable binary nonsense. That doesn’t sound like a good thing, but it does give email clients the best chance of transferring them completely unchanged, without trying to be clever (character set conversion, ‘helpfully’ rewrapping long lines).

Perhaps most importantly, the commits in a git bundle are described in full detail: I can see what base commit you prepared them against, because they come with their parent links. So if I need to reapply the patches against a different parent, I know what parent I’m starting from, and what’s changed since then. This helps me to rebase the patches correctly. So does the fact that with the patches already in the form of git commits, I can use git rebase in the first place, and get its really nice conflict handling (better than git am).

A set of patch files from git format-patch

This is the most popular option people actually seem to choose: run ‘git format-patch’ to produce a sequence of textual patch files, one per commit, with names starting with 0001, 0002, 0003, … so that the recipient can see what order they go in. Then send that lot as a pile of separate email attachments, or (rarely) in some single container like a zip file.

I don’t think this is quite as nice as a git bundle, for a couple of reasons:

Multiple files to herd. When I get an email with five patch attachments, I have five files to copy around instead of one, with long awkward names.

Text is vulnerable. Because the patches are text files, there’s at least some chance that an MUA did something ‘helpful’ (not actually helpful) to them in transit.

Harder to handle conflicts. The git am command, which applies patches in this format, doesn’t handle conflicts in the way I most prefer, by applying the parts of the patch that worked and leaving in-file conflict markers at the places where something went wrong. Also, because git format-patch doesn’t mention what commit the patches do apply against, I’m more likely to encounter a conflict in the first place when trying to apply them.

So, for all those reasons, I prefer a single binary git bundle citing its parent commit to a handful of text patch files. But these disadvantages don’t normally cause problems: the format-patch approach normally works well enough, and if it’s what a sender is happy with, I won’t spend any time trying to persuade them to do things differently.

A bare diff file generated by git diff

Plain git diff has all the same disadvantages of git format-patch, plus one extra downside: it doesn’t include the commit metadata: authorship and commit message.

If you send me a plain git diff, I have to write the commit message myself. That either means understanding your patch well enough to know what your intentions were (maybe not the same as what you actually did!), or copying text out of the email you sent along with the patch.

My general advice when submitting patches by email is that if you have an explanation of why the patch is desirable, or safe, or both, it’s better to put it in the commit message, so that it’s preserved for later people reading the git history. So you might as well put it there in the first place, and then I don’t have to move it!

WORST: A series of separate emails generated by git send-email

Ugh, please, no. I really dislike receiving git send-email output. If you can possibly do it any other way, please do.

Why I don’t like it: because the patch series is split into multiple emails, they arrive in my inbox in a random order, and then I have to save them one by one to files, and manually sort those files back into the right order by their subject lines.

With git format-patch, the files arrive as attachments to the same email, so I can save them all in one go, and then their names make it easy to sort them. git send-email has neither advantage.

Why don’t I use a git forge?

I promised I’d also talk about why I make this choice. Most people these days like git forges: why don’t I?

Trust

For me, the first question in deciding where to host my code is not what facilities it provides, but who runs it. I want my code not to be at the mercy of people I don’t trust.

I don’t mean that I have any especial distrust of the organisations in charge of major Git forge websites. But I don’t know them personally, and I prefer to put my trust in people I do. So my git hosting arrangements live on a server run by a friend, instead of a server run by a company.

Is that excessive paranoia on my part? I don’t think so.

Perhaps it would be, if all my projects were low-stakes – not handling important secrets, and with very few users, so that they weren’t an attractive target for anyone to attack. But I maintain a security project, and also some of my stuff has become pretty popular. Even something completely frivolous like a videogame can be an attractive target if it’s installed on a lot of machines.

Admittedly, this was a more serious concern before Git: the nature of Git’s commit hashing system is that it’s very difficult to quietly change the content of a repository to something malicious, without everyone who already had a clone of it noticing. In the Subversion days it was much easier to quietly hack a repository’s contents if you had admin access.

But ‘difficult’ isn’t impossible, so it still seems worth taking some care.

Trusting a company is also dangerous because management changes: even if you trust the people in charge now, they may not be in charge next year, and the people who are may be completely different. The same facilities that attract users to Github now would have attracted people to Sourceforge a couple of decades ago – and Sourceforge now has a pretty bad reputation.

Heavyweight

Of course, using a well-known forge website and using forge software aren’t the same thing. If I don’t want to host my code on gitlab.com, I could still arrange to run my own instance of the Gitlab software somewhere under my own control, and use that.

From everything I’ve heard, that’s a lot more effort than hosting a plain git repository. I don’t think the overall convenience gain is worth the large amount of effort it would cost me to run a thing like that. It would take away from time I’d rather be spending on the actual code.

Account management

A particular thing I don’t like about git forge websites is the way they make you create an account.

Even to report a bug against someone else’s project – let alone send a patch – if it’s hosted in some Gitlab instance I haven’t used before, I have to make an account on that instance, because until I do that, I can’t interact with the system at all. And it’s not just instances I haven’t used before: at least some Gitlab instances will delete old accounts, so that even if have interacted with a project before, when I find another bug in the same software years later I might still have to make a fresh account.

Making accounts is a bad thing. Every one of them is an extra thing to track in your password manager; some kind of 2FA setup if the site insists on it; periodic need to spend effort on it (like if the site notifies you that they’ve had a compromise and you need to reconfirm something); an outright risk (like if a scammer pretending to be the site sends you a fraudulent notification of that kind); an extra facet of your online identity to keep track of. Each one is individually small, but they add up, and managing a ton of accounts is annoying. I don’t enjoy having to do that myself, and I don’t want to inflict it on other people!

You get a workflow imposed on you

Git forge websites come with a bunch of stuff beyond the plain git repository. That’s their whole point.

In particular, your project automatically gets a bug tracker – and you don’t get a choice about what bug tracker to use, or what it looks like. If you use Gitlab, you’re using the Gitlab bug tracker. The same goes for the pull request / merge request system.

When I started using Git, PuTTY already had a bug tracker. A pretty simple one – not much more than a set of text files and a script that turns them into a set of web pages – but it’s there, and it integrates with our source control and releases and website in ways we’re familiar with. Throw it away in favour of a thing tied to the hosting system which doesn’t behave the way we carefully chose? No thanks.

More generally, I don’t want that kind of decision about my development workflows to be a consequence of some unrelated thing like what version control I’m using. I want to decide first how to handle patches and bug reports, and then decide what software will best serve those needs – not the other way round.

Plain old inertia

I wouldn’t want anyone to think I was concealing this reason, or deluding myself that it wasn’t part of my motivations, so I should make sure to say it out loud.

One reason I don’t use a forge is simply because I didn’t start out using a forge, and moving all my stuff into one would be effort. I’ve been providing public source repositories since before Git was a thing, and before forges themselves were a thing. (OK, not quite before the pre-Git Sourceforge was actually founded, but before it was well known.) Before Git, my stuff was hosted in SVN on a particular Linux box; when I moved my stuff from SVN to Git, the path of changing as little as possible was to host it in Git on the same Linux box.

Of course, that’s not a good reason by itself. And that’s all right – it’s not my only reason. But I can’t deny that it’s one of my reasons. Change is effort, and ought to give enough benefit to be worth the effort.

Special mention: especially not Github

For all these reasons, I don’t really want to use any git forge. But I particularly don’t want to use Github.

The biggest reason is that it’s not itself free software. If you want to take back control of your project by moving it to another instance of the same system (perhaps even setting up your own), you can do that with Gitlab – migrating all your bug records along with the git repository – but not with Github. You’re locked in.

Also, I might as well come out and say this: one reason I don’t want to use Github is because it’s the most popular place to host your code. It’s almost never healthy to have a monoculture of anything, and a monoculture controlled by a single company is particularly dangerous. I’d rather contribute to the Internet being distributed than contribute to it being centralised.

(I get particularly annoyed when people demand I move to Github for this reason. “Everyone is on Github, get with the programme! Conform!” I’m actually less likely to do it because you said that. Ugh.)

Of course, these days Github is owned by Microsoft, and there are plenty of people who don’t 100% trust Microsoft. I can’t claim to be completely immune to that, but I already didn’t want to use Github before it was bought, so that’s not my only reason. Not even my main reason.

Should I start using a git forge instead?

Sometimes I get email from people who would prefer me to start doing things the ‘normal’ way. It’s not always just because my way isn’t what they’re already used to. Some of them have more interesting and thoughtful reasons.

The most interesting comment I’ve had along these lines is that a forge puts all your interactions with contributors out in the open. If someone is considering contributing to your code base, they can look at past MRs / PRs and see what happened: whether there seems to be an active community at all, whether the developer(s) respond to contributions in good time, whether the reviews seem constructive, whether there’s any obnoxious or toxic behaviour going on. And then maybe decide not to waste their time on that project at all, if it doesn’t look welcoming or helpful.

With my approach, where each discussion of a contribution happens in private email, it is true that the process of making a contribution is a lot less public. I could be amazingly rude to one contributor, and none of the others would necessarily find out about it (unless the hypothetical victim ranted about it on their blog, or something). I could take ages to get round to doing anything (for any reason – laziness or overloading or anything in between). I could lie to each contributor about what other contributors were doing (although I can’t think of any reason it would even be in my own interest to!)

So I accept that there are downsides of doing it my way, as well as upsides. Forges aren’t a complete waste of time. I just haven’t yet been convinced that the advantages of a forge outweigh the disadvantages.

But I’d be more interested in thoughts about how to get the best of both worlds. If there were a system for allowing contributions and their review and discussion to happen in public, using software much more lightweight and easier to run than Gitlab, which allowed contribution without requiring anyone to create and manage yet another account, with an extremely configurable form of workflow management (if any), and having a hard separation between the discussion-forum layer and the actual git repository so that a compromise wouldn’t allow injecting malware into the target project, I’d be interested in giving it a look!

(Of course, just occasionally a contribution does have to happen via private communication, e.g. because it’s a fix for a not-yet-public security issue. I certainly wouldn’t want to stop people from contributing privately, if it was necessary, or just if that was what they preferred.)

Generiert von wallabag mit Hilfe von PHPePub
Bitte öffne ein Ticket wenn du ein Problem mit der Darstellung von diesem E-Book auf deinem Gerät hast.

OEBPS/epub3toc.xhtml

		
			Table of Contents

		
		
			
						
					Entry 1 of 1
				

						
					Git without a forge
				

						
					Notices
				

			

		
	

