
OPERATING SYSTEMS

THREE EASY PIECES

REMZI H. ARPACI-DUSSEAU
ANDREA C. ARPACI-DUSSEAU
UNIVERSITY OF WISCONSIN–MADISON

. .

c© 2014 by Arpaci-Dusseau Books, Inc.

All rights reserved

i

To Vedat S. Arpaci, a lifelong inspiration

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Preface

To Everyone

Welcome to this book! We hope you’ll enjoy reading it as much as we enjoyed
writing it. The book is called Operating Systems: Three Easy Pieces, and the title
is obviously an homage to one of the greatest sets of lecture notes ever created, by
one Richard Feynman on the topic of Physics [F96]. While this book will undoubt-
edly fall short of the high standard set by that famous physicist, perhaps it will be
good enough for you in your quest to understand what operating systems (and
more generally, systems) are all about.

The three easy pieces refer to the three major thematic elements the book is
organized around: virtualization, concurrency, and persistence. In discussing
these concepts, we’ll end up discussing most of the important things an operating
system does; hopefully, you’ll also have some fun along the way. Learning new
things is fun, right? At least, it should be.

Each major concept is divided into a set of chapters, most of which present a
particular problem and then show how to solve it. The chapters are short, and try
(as best as possible) to reference the source material where the ideas really came
from. One of our goals in writing this book is to make the paths of history as clear
as possible, as we think that helps a student understand what is, what was, and
what will be more clearly. In this case, seeing how the sausage was made is nearly
as important as understanding what the sausage is good for1 .

There are a couple devices we use throughout the book which are probably
worth introducing here. The first is the crux of the problem. Anytime we are
trying to solve a problem, we first try to state what the most important issue is;
such a crux of the problem is explicitly called out in the text, and hopefully solved
via the techniques, algorithms, and ideas presented in the rest of the text.

There are also numerous asides and tips throughout the text, adding a little
color to the mainline presentation. Asides tend to discuss something relevant (but
perhaps not essential) to the main text; tips tend to be general lessons that can be
applied to systems you build. An index at the end of the book lists all of these tips
and asides (as well as cruces, the odd plural of crux) for your convenience.

We use one of the oldest didactic methods, the dialogue, throughout the book,
as a way of presenting some of the material in a different light. These are used to
introduce the major thematic concepts (in a peachy way, as we will see), as well as
to review material every now and then. They are also a chance to write in a more

1Hint: eating! Or if you’re a vegetarian, running away from.

iii

iv

humorous style. Whether you find them useful, or humorous, well, that’s another
matter entirely.

At the beginning of each major section, we’ll first present an abstraction that an
operating system provides, and then work in subsequent chapters on the mecha-
nisms, policies, and other support needed to provide the abstraction. Abstractions
are fundamental to all aspects of Computer Science, so it is perhaps no surprise
that they are also essential in operating systems.

Throughout the chapters, we try to use real code (not pseudocode) where pos-
sible, so for virtually all examples, you should be able to type them up yourself
and run them. Running real code on real systems is the best way to learn about
operating systems, so we encourage you to do so when you can.

In various parts of the text, we have sprinkled in a few homeworks to ensure
that you are understanding what is going on. Many of these homeworks are little
simulations of pieces of the operating system; you should download the home-
works, and run them to quiz yourself. The homework simulators have the follow-
ing feature: by giving them a different random seed, you can generate a virtually
infinite set of problems; the simulators can also be told to solve the problems for
you. Thus, you can test and re-test yourself until you have achieved a good level
of understanding.

The most important addendum to this book is a set of projects in which you
learn about how real systems work by designing, implementing, and testing your
own code. All projects (as well as the code examples, mentioned above) are in
the C programming language [KR88]; C is a simple and powerful language that
underlies most operating systems, and thus worth adding to your tool-chest of
languages. Two types of projects are available (see the online appendix for ideas).
The first are systems programming projects; these projects are great for those who
are new to C and UNIX and want to learn how to do low-level C programming.
The second type are based on a real operating system kernel developed at MIT
called xv6 [CK+08]; these projects are great for students that already have some C
and want to get their hands dirty inside the OS. At Wisconsin, we’ve run the course
in three different ways: either all systems programming, all xv6 programming, or
a mix of both.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

v

To Educators

If you are an instructor or professor who wishes to use this book, please feel
free to do so. As you may have noticed, they are free and available on-line from
the following web page:

http://www.ostep.org

You can also purchase a printed copy from lulu.com. Look for it on the web
page above.

The (current) proper citation for the book is as follows:

Operating Systems: Three Easy Pieces
Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau
Arpaci-Dusseau Books, Inc.
May, 2014 (Version 0.8)
http://www.ostep.org

The course divides fairly well across a 15-week semester, in which you can
cover most of the topics within at a reasonable level of depth. Cramming the
course into a 10-week quarter probably requires dropping some detail from each
of the pieces. There are also a few chapters on virtual machine monitors, which we
usually squeeze in sometime during the semester, either right at end of the large
section on virtualization, or near the end as an aside.

One slightly unusual aspect of the book is that concurrency, a topic at the front
of many OS books, is pushed off herein until the student has built an understand-
ing of virtualization of the CPU and of memory. In our experience in teaching
this course for nearly 15 years, students have a hard time understanding how the
concurrency problem arises, or why they are trying to solve it, if they don’t yet un-
derstand what an address space is, what a process is, or why context switches can
occur at arbitrary points in time. Once they do understand these concepts, how-
ever, introducing the notion of threads and the problems that arise due to them
becomes rather easy, or at least, easier.

You may have noticed there are no slides that go hand-in-hand with the book.
The major reason for this omission is that we believe in the most old-fashioned
of teaching methods: chalk and a blackboard. Thus, when we teach the course,
we come to class with a few major ideas and examples in mind and use the board
to present them; handouts and live code demos sprinkled are also useful. In our
experience, using too many slides encourages students to “check out” of lecture
(and log into facebook.com), as they know the material is there for them to digest
later; using the blackboard makes lecture a “live” viewing experience and thus
(hopefully) more interactive, dynamic, and enjoyable for the students in your class.

If you’d like a copy of the notes we use in preparation for class, please drop us
an email. We have already shared them with many others around the world.

One last request: if you use the free online chapters, please just link to them,
instead of making a local copy. This helps us track usage (over 1 million chapters
downloaded in the past few years!) and also ensures students get the latest and
greatest version.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

vi

To Students

If you are a student reading this book, thank you! It is an honor for us to
provide some material to help you in your pursuit of knowledge about operating
systems. We both think back fondly towards some textbooks of our undergraduate
days (e.g., Hennessy and Patterson [HP90], the classic book on computer architec-
ture) and hope this book will become one of those positive memories for you.

You may have noticed this book is free and available online. There is one major
reason for this: textbooks are generally too expensive. This book, we hope, is
the first of a new wave of free materials to help those in pursuit of their education,
regardless of which part of the world they come from or how much they are willing
to spend for a book. Failing that, it is one free book, which is better than none.

We also hope, where possible, to point you to the original sources of much
of the material in the book: the great papers and persons who have shaped the
field of operating systems over the years. Ideas are not pulled out of the air; they
come from smart and hard-working people (including numerous Turing-award
winners2), and thus we should strive to celebrate those ideas and people where
possible. In doing so, we hopefully can better understand the revolutions that
have taken place, instead of writing texts as if those thoughts have always been
present [K62]. Further, perhaps such references will encourage you to dig deeper
on your own; reading the famous papers of our field is certainly one of the best
ways to learn.

2The Turing Award is the highest award in Computer Science; it is like the Nobel Prize,
except that you have never heard of it.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

vii

Acknowledgments

This section will contain thanks to those who helped us put the book together.
The important thing for now: your name could go here! But, you have to help. So
send us some feedback and help debug this book. And you could be famous! Or,
at least, have your name in some book.

The people who have helped so far include: Abhirami Senthilkumaran*, Adam
Drescher, Adam Eggum, Ahmed Fikri*, Ajaykrishna Raghavan, Alex Wyler, Anand
Mundada, B. Brahmananda Reddy (Minnesota), Bala Subrahmanyam Kambala,
Benita Bose, Biswajit Mazumder (Clemson), Bobby Jack, Björn Lindberg, Bren-
nan Payne, Brian Kroth, Cara Lauritzen, Charlotte Kissinger, Chien-Chung Shen
(Delaware)*, Cody Hanson, Dan Soendergaard (U. Aarhus), David Hanle (Grin-
nell), Deepika Muthukumar, Dorian Arnold (New Mexico), Dustin Metzler, Dustin
Passofaro, Emily Jacobson, Emmett Witchel (Texas), Ernst Biersack (France), Finn
Kuusisto*, Guilherme Baptista, Hamid Reza Ghasemi, Henry Abbey, Hrishikesh
Amur, Huanchen Zhang*, Jake Gillberg, James Perry (U. Michigan-Dearborn)*, Jay
Lim, Jerod Weinman (Grinnell), Joel Sommers (Colgate), Jonathan Perry (MIT), Jun
He, Karl Wallinger, Kaushik Kannan, Kevin Liu*, Lei Tian (U. Nebraska-Lincoln),
Leslie Schultz, Lihao Wang, Martha Ferris, Masashi Kishikawa (Sony), Matt Rei-
choff, Matty Williams, Meng Huang, Mike Griepentrog, Ming Chen (Stonybrook),
Mohammed Alali (Delaware), Murugan Kandaswamy, Natasha Eilbert, Nathan
Dipiazza, Nathan Sullivan, Neeraj Badlani (N.C. State), Nelson Gomez, Nghia
Huynh (Texas), Patricio Jara, Radford Smith, Ripudaman Singh, Ross Aiken, Rus-
lan Kiselev, Ryland Herrick, Samer Al-Kiswany, Sandeep Ummadi (Minnesota),
Satish Chebrolu (NetApp), Satyanarayana Shanmugam*, Seth Pollen, Sharad Punuganti,
Shreevatsa R., Sivaraman Sivaraman*, Srinivasan Thirunarayanan*, Suriyhaprakhas
Balaram Sankari, Sy Jin Cheah, Thomas Griebel, Tongxin Zheng, Tony Adkins,
Torin Rudeen (Princeton), Tuo Wang, Varun Vats, Xiang Peng, Xu Di, Yue Zhuo
(Texas A&M), Yufui Ren, Zef RosnBrick, Zuyu Zhang. Special thanks to those
marked with an asterisk above, who have gone above and beyond in their sugges-
tions for improvement.

Special thanks to Professor Joe Meehean (Lynchburg) for his detailed notes on
each chapter, to Professor Jerod Weinman (Grinnell) and his entire class for their
incredible booklets, and to Professor Chien-Chung Shen (Delaware) for his invalu-
able and detailed reading and comments about the book. All three have helped
these authors immeasurably in the refinement of the materials herein.

Also, many thanks to the hundreds of students who have taken 537 over the
years. In particular, the Fall ’08 class who encouraged the first written form of
these notes (they were sick of not having any kind of textbook to read – pushy
students!), and then praised them enough for us to keep going (including one hi-
larious “ZOMG! You should totally write a textbook!” comment in our course
evaluations that year).

A great debt of thanks is also owed to the brave few who took the xv6 project
lab course, much of which is now incorporated into the main 537 course. From
Spring ’09: Justin Cherniak, Patrick Deline, Matt Czech, Tony Gregerson, Michael
Griepentrog, Tyler Harter, Ryan Kroiss, Eric Radzikowski, Wesley Reardan, Rajiv
Vaidyanathan, and Christopher Waclawik. From Fall ’09: Nick Bearson, Aaron
Brown, Alex Bird, David Capel, Keith Gould, Tom Grim, Jeffrey Hugo, Brandon
Johnson, John Kjell, Boyan Li, James Loethen, Will McCardell, Ryan Szaroletta, Si-

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

viii

mon Tso, and Ben Yule. From Spring ’10: Patrick Blesi, Aidan Dennis-Oehling,
Paras Doshi, Jake Friedman, Benjamin Frisch, Evan Hanson, Pikkili Hemanth,
Michael Jeung, Alex Langenfeld, Scott Rick, Mike Treffert, Garret Staus, Brennan
Wall, Hans Werner, Soo-Young Yang, and Carlos Griffin (almost).

Although they do not directly help with the book, our graduate students have
taught us much of what we know about systems. We talk with them regularly
while they are at Wisconsin, but they do all the real work – and by telling us about
what they are doing, we learn new things every week. This list includes the fol-
lowing collection of current and former students with whom we published pa-
pers; an asterisk marks those who received a Ph.D. under our guidance: Abhishek
Rajimwale, Ao Ma, Brian Forney, Chris Dragga, Deepak Ramamurthi, Florentina
Popovici*, Haryadi S. Gunawi*, James Nugent, John Bent*, Lanyue Lu, Lakshmi
Bairavasundaram*, Laxman Visampalli, Leo Arulraj, Meenali Rungta, Muthian Si-
vathanu*, Nathan Burnett*, Nitin Agrawal*, Sriram Subramanian*, Stephen Todd
Jones*, Swaminathan Sundararaman*, Swetha Krishnan, Thanh Do, Thanumalayan
S. Pillai, Timothy Denehy*, Tyler Harter, Venkat Venkataramani, Vijay Chidambaram,
Vijayan Prabhakaran*, Yiying Zhang*, Yupu Zhang*, Zev Weiss.

A final debt of gratitude is also owed to Aaron Brown, who first took this course
many years ago (Spring ’09), then took the xv6 lab course (Fall ’09), and finally was
a graduate teaching assistant for the course for two years or so (Fall ’10 through
Spring ’12). His tireless work has vastly improved the state of the projects (par-
ticularly those in xv6 land) and thus has helped better the learning experience for
countless undergraduates and graduates here at Wisconsin. As Aaron would say
(in his usual succinct manner): “Thx.”

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

ix

Final Words

Yeats famously said “Education is not the filling of a pail but the lighting of a
fire.” He was right but wrong at the same time3. You do have to “fill the pail” a bit,
and these notes are certainly here to help with that part of your education; after all,
when you go to interview at Google, and they ask you a trick question about how
to use semaphores, it might be good to actually know what a semaphore is, right?

But Yeats’s larger point is obviously on the mark: the real point of education
is to get you interested in something, to learn something more about the subject
matter on your own and not just what you have to digest to get a good grade in
some class. As one of our fathers (Remzi’s dad, Vedat Arpaci) used to say, “Learn
beyond the classroom”.

We created these notes to spark your interest in operating systems, to read more
about the topic on your own, to talk to your professor about all the exciting re-
search that is going on in the field, and even to get involved with that research. It
is a great field(!), full of exciting and wonderful ideas that have shaped computing
history in profound and important ways. And while we understand this fire won’t
light for all of you, we hope it does for many, or even a few. Because once that fire
is lit, well, that is when you truly become capable of doing something great. And
thus the real point of the educational process: to go forth, to study many new and
fascinating topics, to learn, to mature, and most importantly, to find something
that lights a fire for you.

Andrea and Remzi
Married couple
Professors of Computer Science at the University of Wisconsin
Chief Lighters of Fires, hopefully4

3If he actually said this; as with many famous quotes, the history of this gem is murky.
4If this sounds like we are admitting some past history as arsonists, you are probably

missing the point. Probably. If this sounds cheesy, well, that’s because it is, but you’ll just have
to forgive us for that.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

x

References

[CK+08] “The xv6 Operating System”
Russ Cox, Frans Kaashoek, Robert Morris, Nickolai Zeldovich
From: http://pdos.csail.mit.edu/6.828/2008/index.html
xv6 was developed as a port of the original UNIX version 6 and represents a beautiful, clean, and simple
way to understand a modern operating system.

[F96] “Six Easy Pieces: Essentials Of Physics Explained By Its Most Brilliant Teacher”
Richard P. Feynman
Basic Books, 1996
This book reprints the six easiest chapters of Feynman’s Lectures on Physics, from 1963. If you like
Physics, it is a fantastic read.

[HP90] “Computer Architecture a Quantitative Approach” (1st ed.)
David A. Patterson and John L. Hennessy
Morgan-Kaufman, 1990
A book that encouraged each of us at our undergraduate institutions to pursue graduate studies; we later
both had the pleasure of working with Patterson, who greatly shaped the foundations of our research
careers.

[KR88] “The C Programming Language”
Brian Kernighan and Dennis Ritchie
Prentice-Hall, April 1988
The C programming reference that everyone should have, by the people who invented the language.

[K62] “The Structure of Scientific Revolutions”
Thomas S. Kuhn
University of Chicago Press, 1962
A great and famous read about the fundamentals of the scientific process. Mop-up work, anomaly, crisis,
and revolution. We are mostly destined to do mop-up work, alas.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

Contents

To Everyone . iii
To Educators . v
To Students . vi
Acknowledgments . vii
Final Words . ix
References . x

1 A Dialogue on the Book 1

2 Introduction to Operating Systems 3
2.1 Virtualizing the CPU . 5
2.2 Virtualizing Memory . 7
2.3 Concurrency . 8
2.4 Persistence . 11
2.5 Design Goals . 13
2.6 Some History . 14
2.7 Summary . 18
References . 19

I Virtualization 21

3 A Dialogue on Virtualization 23

4 The Abstraction: The Process 25
4.1 The Abstraction: A Process 26
4.2 Process API . 27
4.3 Process Creation: A Little More Detail 28
4.4 Process States . 29
4.5 Data Structures . 30
4.6 Summary . 32
References . 33

xi

xii CONTENTS

5 Interlude: Process API 35
5.1 The fork() System Call . 35
5.2 Adding wait() System Call 37
5.3 Finally, the exec() System Call 38
5.4 Why? Motivating the API 39
5.5 Other Parts of the API . 42
5.6 Summary . 42
References . 43

6 Mechanism: Limited Direct Execution 45
6.1 Basic Technique: Limited Direct Execution 45
6.2 Problem #1: Restricted Operations 46
6.3 Problem #2: Switching Between Processes 50
6.4 Worried About Concurrency? 54
6.5 Summary . 55
References . 57
Homework (Measurement) . 58

7 Scheduling: Introduction 59
7.1 Workload Assumptions . 59
7.2 Scheduling Metrics . 60
7.3 First In, First Out (FIFO) . 60
7.4 Shortest Job First (SJF) . 62
7.5 Shortest Time-to-Completion First (STCF) 63
7.6 Round Robin . 65
7.7 Incorporating I/O . 66
7.8 No More Oracle . 68
7.9 Summary . 68
References . 69
Homework . 70

8 Scheduling:The Multi-Level Feedback Queue 71
8.1 MLFQ: Basic Rules . 72
8.2 Attempt #1: How to Change Priority 73
8.3 Attempt #2: The Priority Boost 76
8.4 Attempt #3: Better Accounting 77
8.5 Tuning MLFQ And Other Issues 78
8.6 MLFQ: Summary . 79
References . 81
Homework . 82

9 Scheduling: Proportional Share 83
9.1 Basic Concept: Tickets Represent Your Share 83
9.2 Ticket Mechanisms . 85
9.3 Implementation . 86
9.4 An Example . 87
9.5 How To Assign Tickets? . 88

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

CONTENTS xiii

9.6 Why Not Deterministic? . 88
9.7 Summary . 89
References . 91
Homework . 92

10 Multiprocessor Scheduling (Advanced) 93
10.1 Background: Multiprocessor Architecture 94
10.2 Don’t Forget Synchronization 96
10.3 One Final Issue: Cache Affinity 97
10.4 Single-Queue Scheduling . 97
10.5 Multi-Queue Scheduling . 99
10.6 Linux Multiprocessor Schedulers 102
10.7 Summary . 102
References . 103

11 Summary Dialogue on CPU Virtualization 105

12 A Dialogue on Memory Virtualization 107

13 The Abstraction: Address Spaces 109
13.1 Early Systems . 109
13.2 Multiprogramming and Time Sharing 110
13.3 The Address Space . 111
13.4 Goals . 113
13.5 Summary . 115
References . 116

14 Interlude: Memory API 119
14.1 Types of Memory . 119
14.2 The malloc() Call . 120
14.3 The free() Call . 122
14.4 Common Errors . 122
14.5 Underlying OS Support . 125
14.6 Other Calls . 125
14.7 Summary . 126
References . 127

15 Mechanism: Address Translation 129
15.1 Assumptions . 130
15.2 An Example . 130
15.3 Dynamic (Hardware-based) Relocation 133
15.4 OS Issues . 136
15.5 Summary . 137
References . 139
Homework . 140

16 Segmentation 141

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

xiv CONTENTS

16.1 Segmentation: Generalized Base/Bounds 141
16.2 Which Segment Are We Referring To? 144
16.3 What About The Stack? . 145
16.4 Support for Sharing . 146
16.5 Fine-grained vs. Coarse-grained Segmentation 147
16.6 OS Support . 147
16.7 Summary . 149
References . 150
Homework . 152

17 Free-Space Management 153
17.1 Assumptions . 154
17.2 Low-level Mechanisms . 155
17.3 Basic Strategies . 163
17.4 Other Approaches . 165
17.5 Summary . 167
References . 168

18 Paging: Introduction 169
18.1 Where Are Page Tables Stored? 172
18.2 What’s Actually In The Page Table? 173
18.3 Paging: Also Too Slow . 174
18.4 A Memory Trace . 176
18.5 Summary . 179
References . 180
Homework . 181

19 Paging: Faster Translations (TLBs) 183
19.1 TLB Basic Algorithm . 183
19.2 Example: Accessing An Array 185
19.3 Who Handles The TLB Miss? 187
19.4 TLB Contents: What’s In There? 189
19.5 TLB Issue: Context Switches 190
19.6 Issue: Replacement Policy 192
19.7 A Real TLB Entry . 193
19.8 Summary . 194
References . 195
Homework (Measurement) . 197

20 Paging: Smaller Tables 201
20.1 Simple Solution: Bigger Pages 201
20.2 Hybrid Approach: Paging and Segments 202
20.3 Multi-level Page Tables . 205
20.4 Inverted Page Tables . 212
20.5 Swapping the Page Tables to Disk 213
20.6 Summary . 213
References . 214

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

CONTENTS xv

Homework . 215

21 Beyond Physical Memory: Mechanisms 217
21.1 Swap Space . 218
21.2 The Present Bit . 219
21.3 The Page Fault . 220
21.4 What If Memory Is Full? . 221
21.5 Page Fault Control Flow . 222
21.6 When Replacements Really Occur 223
21.7 Summary . 224
References . 225

22 Beyond Physical Memory: Policies 227
22.1 Cache Management . 227
22.2 The Optimal Replacement Policy 228
22.3 A Simple Policy: FIFO . 230
22.4 Another Simple Policy: Random 232
22.5 Using History: LRU . 233
22.6 Workload Examples . 234
22.7 Implementing Historical Algorithms 237
22.8 Approximating LRU . 238
22.9 Considering Dirty Pages . 239
22.10 Other VM Policies . 240
22.11 Thrashing . 240
22.12 Summary . 241
References . 242
Homework . 244

23 The VAX/VMS Virtual Memory System 245
23.1 Background . 245
23.2 Memory Management Hardware 246
23.3 A Real Address Space . 247
23.4 Page Replacement . 249
23.5 Other Neat VM Tricks . 250
23.6 Summary . 252
References . 253

24 Summary Dialogue on Memory Virtualization 255

II Concurrency 259

25 A Dialogue on Concurrency 261

26 Concurrency: An Introduction 263
26.1 An Example: Thread Creation 264
26.2 Why It Gets Worse: Shared Data 267

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

xvi CONTENTS

26.3 The Heart of the Problem: Uncontrolled Scheduling 269
26.4 The Wish For Atomicity . 271
26.5 One More Problem: Waiting For Another 273
26.6 Summary: Why in OS Class? 273
References . 275
Homework . 276

27 Interlude: Thread API 279
27.1 Thread Creation . 279
27.2 Thread Completion . 280
27.3 Locks . 283
27.4 Condition Variables . 285
27.5 Compiling and Running . 287
27.6 Summary . 287
References . 289

28 Locks 291
28.1 Locks: The Basic Idea . 291
28.2 Pthread Locks . 292
28.3 Building A Lock . 293
28.4 Evaluating Locks . 293
28.5 Controlling Interrupts . 294
28.6 Test And Set (Atomic Exchange) 295
28.7 Building A Working Spin Lock 297
28.8 Evaluating Spin Locks . 299
28.9 Compare-And-Swap . 299
28.10 Load-Linked and Store-Conditional 300
28.11 Fetch-And-Add . 302
28.12 Summary: So Much Spinning 303
28.13 A Simple Approach: Just Yield, Baby 304
28.14 Using Queues: Sleeping Instead Of Spinning 305
28.15 Different OS, Different Support 307
28.16 Two-Phase Locks . 307
28.17 Summary . 308
References . 309

29 Lock-based Concurrent Data Structures 311
29.1 Concurrent Counters . 311
29.2 Concurrent Linked Lists . 316
29.3 Concurrent Queues . 319
29.4 Concurrent Hash Table . 320
29.5 Summary . 322
References . 323

30 Condition Variables 325
30.1 Definition and Routines . 326
30.2 The Producer/Consumer (Bound Buffer) Problem 329

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

CONTENTS xvii

30.3 Covering Conditions . 337
30.4 Summary . 338
References . 339

31 Semaphores 341
31.1 Semaphores: A Definition 341
31.2 Binary Semaphores (Locks) 343
31.3 Semaphores As Condition Variables 344
31.4 The Producer/Consumer (Bounded-Buffer) Problem 346
31.5 Reader-Writer Locks . 350
31.6 The Dining Philosophers . 352
31.7 How To Implement Semaphores 355
31.8 Summary . 356
References . 357

32 Common Concurrency Problems 359
32.1 What Types Of Bugs Exist? 359
32.2 Non-Deadlock Bugs . 360
32.3 Deadlock Bugs . 363
32.4 Summary . 370
References . 371

33 Event-based Concurrency (Advanced) 373
33.1 The Basic Idea: An Event Loop 373
33.2 An Important API: select() (or poll()) 374
33.3 Using select() . 375
33.4 Why Simpler? No Locks Needed 376
33.5 A Problem: Blocking System Calls 377
33.6 A Solution: Asynchronous I/O 377
33.7 Another Problem: State Management 380
33.8 What Is Still Difficult With Events 381
33.9 Summary . 381
References . 382

34 Summary Dialogue on Concurrency 383

III Persistence 385

35 A Dialogue on Persistence 387

36 I/O Devices 389
36.1 System Architecture . 389
36.2 A Canonical Device . 390
36.3 The Canonical Protocol . 391
36.4 Lowering CPU Overhead With Interrupts 392
36.5 More Efficient Data Movement With DMA 393

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

xviii CONTENTS

36.6 Methods Of Device Interaction 394
36.7 Fitting Into The OS: The Device Driver 395
36.8 Case Study: A Simple IDE Disk Driver 396
36.9 Historical Notes . 399
36.10 Summary . 399
References . 400

37 Hard Disk Drives 403
37.1 The Interface . 403
37.2 Basic Geometry . 404
37.3 A Simple Disk Drive . 404
37.4 I/O Time: Doing The Math 408
37.5 Disk Scheduling . 412
37.6 Summary . 416
References . 417
Homework . 418

38 Redundant Arrays of Inexpensive Disks (RAIDs) 421
38.1 Interface And RAID Internals 422
38.2 Fault Model . 423
38.3 How To Evaluate A RAID 423
38.4 RAID Level 0: Striping . 424
38.5 RAID Level 1: Mirroring . 427
38.6 RAID Level 4: Saving Space With Parity 430
38.7 RAID Level 5: Rotating Parity 434
38.8 RAID Comparison: A Summary 435
38.9 Other Interesting RAID Issues 436
38.10 Summary . 436
References . 437
Homework . 439

39 Interlude: File and Directories 441
39.1 Files and Directories . 441
39.2 The File System Interface . 443
39.3 Creating Files . 443
39.4 Reading and Writing Files 444
39.5 Reading And Writing, But Not Sequentially 446
39.6 Writing Immediately with fsync() 447
39.7 Renaming Files . 448
39.8 Getting Information About Files 449
39.9 Removing Files . 450
39.10 Making Directories . 450
39.11 Reading Directories . 451
39.12 Deleting Directories . 452
39.13 Hard Links . 452
39.14 Symbolic Links . 454
39.15 Making and Mounting a File System 456

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

CONTENTS xix

39.16 Summary . 457
References . 458
Homework . 459

40 File System Implementation 461
40.1 The Way To Think . 461
40.2 Overall Organization . 462
40.3 File Organization: The Inode 464
40.4 Directory Organization . 469
40.5 Free Space Management . 469
40.6 Access Paths: Reading and Writing 470
40.7 Caching and Buffering . 474
40.8 Summary . 475
References . 476
Homework . 477

41 Locality and The Fast File System 479
41.1 The Problem: Poor Performance 479
41.2 FFS: Disk Awareness Is The Solution 481
41.3 Organizing Structure: The Cylinder Group 481
41.4 Policies: How To Allocate Files and Directories 482
41.5 Measuring File Locality . 483
41.6 The Large-File Exception . 484
41.7 A Few Other Things About FFS 486
41.8 Summary . 488
References . 489

42 Crash Consistency: FSCK and Journaling 491
42.1 A Detailed Example . 492
42.2 Solution #1: The File System Checker 495
42.3 Solution #2: Journaling (or Write-Ahead Logging) 497
42.4 Solution #3: Other Approaches 507
42.5 Summary . 508
References . 509

43 Log-structured File Systems 511
43.1 Writing To Disk Sequentially 512
43.2 Writing Sequentially And Effectively 513
43.3 How Much To Buffer? . 514
43.4 Problem: Finding Inodes . 515
43.5 Solution Through Indirection: The Inode Map 515
43.6 The Checkpoint Region . 516
43.7 Reading A File From Disk: A Recap 517
43.8 What About Directories? . 517
43.9 A New Problem: Garbage Collection 518
43.10 Determining Block Liveness 520
43.11 A Policy Question: Which Blocks To Clean, And When? . . 521

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

xx CONTENTS

43.12 Crash Recovery And The Log 521
43.13 Summary . 522
References . 524

44 Data Integrity and Protection 527
44.1 Disk Failure Modes . 527
44.2 Handling Latent Sector Errors 529
44.3 Detecting Corruption: The Checksum 530
44.4 Using Checksums . 533
44.5 A New Problem: Misdirected Writes 534
44.6 One Last Problem: Lost Writes 535
44.7 Scrubbing . 535
44.8 Overheads Of Checksumming 536
44.9 Summary . 536
References . 537

45 Summary Dialogue on Persistence 539

46 A Dialogue on Distribution 541

47 Distributed Systems 543
47.1 Communication Basics . 544
47.2 Unreliable Communication Layers 545
47.3 Reliable Communication Layers 547
47.4 Communication Abstractions 549
47.5 Remote Procedure Call (RPC) 551
47.6 Summary . 556
References . 557

48 Sun’s Network File System (NFS) 559
48.1 A Basic Distributed File System 560
48.2 On To NFS . 561
48.3 Focus: Simple and Fast Server Crash Recovery 561
48.4 Key To Fast Crash Recovery: Statelessness 562
48.5 The NFSv2 Protocol . 563
48.6 From Protocol to Distributed File System 565
48.7 Handling Server Failure with Idempotent Operations 567
48.8 Improving Performance: Client-side Caching 569
48.9 The Cache Consistency Problem 569
48.10 Assessing NFS Cache Consistency 571
48.11 Implications on Server-Side Write Buffering 571
48.12 Summary . 573
References . 574

49 The Andrew File System (AFS) 575
49.1 AFS Version 1 . 575
49.2 Problems with Version 1 . 576

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

CONTENTS xxi

49.3 Improving the Protocol . 578
49.4 AFS Version 2 . 578
49.5 Cache Consistency . 580
49.6 Crash Recovery . 582
49.7 Scale And Performance Of AFSv2 582
49.8 AFS: Other Improvements 584
49.9 Summary . 585
References . 587

50 Summary Dialogue on Distribution 589

General Index 591

Asides 601

Tips 603

Cruces 605

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

List of Figures

2.1 Simple Example: Code That Loops and Prints 5
2.2 Running Many Programs At Once 6
2.3 A Program that Accesses Memory 7
2.4 Running The Memory Program Multiple Times 8
2.5 A Multi-threaded Program . 9
2.6 A Program That Does I/O . 11

4.1 Loading: From Program To Process 28
4.2 Process: State Transitions . 30
4.3 The xv6 Proc Structure . 31

5.1 p1.c: Calling fork() . 36
5.2 p2.c: Calling fork() And wait() 37
5.3 p3.c: Calling fork(), wait(), And exec() 39
5.4 p4.c: All Of The Above With Redirection 41

6.1 The xv6 Context Switch Code 54

7.1 FIFO Simple Example . 61
7.2 Why FIFO Is Not That Great 61
7.3 SJF Simple Example . 62
7.4 SJF With Late Arrivals From B and C 63
7.5 STCF Simple Example . 64
7.6 SJF Again (Bad for Response Time) 65
7.7 Round Robin (Good for Response Time) 65
7.8 Poor Use of Resources . 67
7.9 Overlap Allows Better Use of Resources 67

8.1 MLFQ Example . 73
8.2 Long-running Job Over Time 74
8.3 Along Came An Interactive Job 74
8.4 A Mixed I/O-intensive and CPU-intensive Workload 75
8.5 Without (Left) and With (Right) Priority Boost 76

xxiii

xxiv LIST OF FIGURES

8.6 Without (Left) and With (Right) Gaming Tolerance 77
8.7 Lower Priority, Longer Quanta 78

9.1 Lottery Scheduling Decision Code 86
9.2 Lottery Fairness Study . 87

10.1 Single CPU With Cache . 94
10.2 Two CPUs With Caches Sharing Memory 95
10.3 Simple List Delete Code . 97

13.1 Operating Systems: The Early Days 109
13.2 Three Processes: Sharing Memory 110
13.3 An Example Address Space . 111

15.1 A Process And Its Address Space 132
15.2 Physical Memory with a Single Relocated Process 133

16.1 An Address Space (Again) . 142
16.2 Placing Segments In Physical Memory 143
16.3 Non-compacted and Compacted Memory 148

17.1 An Allocated Region Plus Header 157
17.2 Specific Contents Of The Header 157
17.3 A Heap With One Free Chunk 159
17.4 A Heap: After One Allocation 159
17.5 Free Space With Three Chunks Allocated 160
17.6 Free Space With Two Chunks Allocated 161
17.7 A Non-Coalesced Free List . 162

18.1 A Simple 64-byte Address Space 169
18.2 64-Byte Address Space Placed In Physical Memory 170
18.3 The Address Translation Process 172
18.4 Example: Page Table in Kernel Physical Memory 173
18.5 An x86 Page Table Entry (PTE) 174
18.6 Accessing Memory With Paging 175
18.7 A Virtual (And Physical) Memory Trace 178

19.1 TLB Control Flow Algorithm 184
19.2 Example: An Array In A Tiny Address Space 185
19.3 TLB Control Flow Algorithm (OS Handled) 188
19.4 A MIPS TLB Entry . 193
19.5 Discovering TLB Sizes and Miss Costs 198

20.1 A 16-KB Address Space With 1-KB Pages 203
20.2 Linear (Left) And Multi-Level (Right) Page Tables 206
20.3 A 16-KB Address Space With 64-byte Pages 207
20.4 Multi-level Page Table Control Flow 212

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LIST OF FIGURES xxv

21.1 Physical Memory and Swap Space 219
21.2 Page-Fault Control Flow Algorithm (Hardware) 222
21.3 Page-Fault Control Flow Algorithm (Software) 223

22.1 Random Performance over 10,000 Trials 232
22.2 The No-Locality Workload . 235
22.3 The 80-20 Workload . 236
22.4 The Looping Workload . 237
22.5 The 80-20 Workload With Clock 239

23.1 The VAX/VMS Address Space 247

26.1 A Single-Threaded Address Space 264
26.2 Simple Thread Creation Code (t0.c) 265
26.3 Sharing Data: Oh Oh (t2) . 267

27.1 Creating a Thread . 281
27.2 Waiting for Thread Completion 282
27.3 Simpler Argument Passing to a Thread 283
27.4 An Example Wrapper . 285

28.1 First Attempt: A Simple Flag 296
28.2 A Simple Spin Lock Using Test-and-set 298
28.3 Compare-and-swap . 299
28.4 Load-linked And Store-conditional 301
28.5 Using LL/SC To Build A Lock 301
28.6 Ticket Locks . 303
28.7 Lock With Test-and-set And Yield 304
28.8 Lock With Queues, Test-and-set, Yield, And Wakeup 306
28.9 Linux-based Futex Locks . 308

29.1 A Counter Without Locks . 312
29.2 A Counter With Locks . 312
29.3 Performance of Traditional vs. Sloppy Counters 313
29.4 Sloppy Counter Implementation 315
29.5 Scaling Sloppy Counters . 316
29.6 Concurrent Linked List . 317
29.7 Concurrent Linked List: Rewritten 318
29.8 Michael and Scott Concurrent Queue 320
29.9 A Concurrent Hash Table . 321
29.10Scaling Hash Tables . 321

30.1 A Parent Waiting For Its Child 325
30.2 Parent Waiting For Child: Spin-based Approach 326
30.3 Parent Waiting For Child: Use A Condition Variable 327
30.4 The Put and Get Routines (Version 1) 330
30.5 Producer/Consumer Threads (Version 1) 330

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

xxvi LIST OF FIGURES

30.6 Producer/Consumer: Single CV and If Statement 331
30.7 Producer/Consumer: Single CV and While 333
30.8 Producer/Consumer: Two CVs and While 335
30.9 The Final Put and Get Routines 336
30.10 The Final Working Solution . 336
30.11 Covering Conditions: An Example 338

31.1 Initializing A Semaphore . 342
31.2 Semaphore: Definitions of Wait and Post 342
31.3 A Binary Semaphore, a.k.a. a Lock 343
31.4 A Parent Waiting For Its Child 345
31.5 The Put and Get Routines . 347
31.6 Adding the Full and Empty Conditions 347
31.7 Adding Mutual Exclusion (Incorrectly) 349
31.8 Adding Mutual Exclusion (Correctly) 350
31.9 A Simple Reader-Writer Lock 351
31.10 The Dining Philosophers . 353
31.11 The getforks() and putforks() Routines 354
31.12 Implementing Zemaphores with Locks and CVs 355

32.1 The Deadlock Dependency Graph 364

33.1 Simple Code using select() 376

36.1 Prototypical System Architecture 390
36.2 A Canonical Device . 391
36.3 The File System Stack . 396
36.4 The IDE Interface . 397
36.5 The xv6 IDE Disk Driver (Simplified) 398

37.1 A Disk With Just A Single Track 404
37.2 A Single Track Plus A Head . 405
37.3 Three Tracks Plus A Head (Right: With Seek) 406
37.4 Three Tracks: Track Skew Of 2 407
37.5 SSTF: Scheduling Requests 21 And 2 412
37.6 SSTF: Sometimes Not Good Enough 414

39.1 An Example Directory Tree . 442

41.1 FFS Locality For SEER Traces 483
41.2 Amortization: How Big Do Chunks Have To Be? 486
41.3 FFS: Standard Versus Parameterized Placement 487

47.1 Example UDP/IP Client/Server Code 545
47.2 A Simple UDP Library . 546
47.3 Message Plus Acknowledgment 547
47.4 Message Plus Acknowledgment: Dropped Request 548

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LIST OF FIGURES xxvii

47.5 Message Plus Acknowledgment: Dropped Reply 549

48.1 A Generic Client/Server System 559
48.2 Distributed File System Architecture 560
48.3 Client Code: Reading From A File 562
48.4 The NFS Protocol: Examples 564
48.5 The Three Types of Loss . 568
48.6 The Cache Consistency Problem 570

49.1 AFSv1 Protocol Highlights . 576

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

List of Tables

6.1 Direction Execution Protocol (Without Limits) 46
6.2 Limited Direction Execution Protocol 49
6.3 Limited Direction Execution Protocol (Timer Interrupt) 53

9.1 Stride Scheduling: A Trace . 89

16.1 Segment Register Values . 143
16.2 Segment Registers (With Negative-Growth Support) 146
16.3 Segment Register Values (with Protection) 147

20.1 A Page Table For 16-KB Address Space 203
20.2 A Page Directory, And Pieces Of Page Table 209

22.1 Tracing the Optimal Policy . 229
22.2 Tracing the FIFO Policy . 231
22.3 Tracing the Random Policy . 232
22.4 Tracing the LRU Policy . 233

26.1 Thread Trace (1) . 266
26.2 Thread Trace (2) . 266
26.3 Thread Trace (3) . 266
26.4 The Problem: Up Close and Personal 270

28.1 Trace: No Mutual Exclusion . 296

29.1 Tracing the Sloppy Counters 314

30.1 Thread Trace: Broken Solution (Version 1) 332
30.2 Thread Trace: Broken Solution (Version 2) 334

31.1 Thread Trace: Single Thread Using A Semaphore 343
31.2 Thread Trace: Two Threads Using A Semaphore 344
31.3 Thread Trace: Parent Waiting For Child (Case 1) 346

xxix

xxx LIST OF TABLES

31.4 Thread Trace: Parent Waiting For Child (Case 2) 346

32.1 Bugs In Modern Applications 360

37.1 Disk Drive Specs: SCSI Versus SATA 409
37.2 Disk Drive Performance: SCSI Versus SATA 410

38.1 RAID-0: Simple Striping . 424
38.2 Striping with a Bigger Chunk Size 424
38.3 Simple RAID-1: Mirroring . 428
38.4 Full-stripe Writes In RAID-4 432
38.5 Example: Writes To 4, 13, And Respective Parity Blocks 433
38.6 RAID-5 With Rotated Parity . 434
38.7 RAID Capacity, Reliability, and Performance 435

40.1 The ext2 inode . 466
40.2 File System Measurement Summary 468
40.3 File Read Timeline (Time Increasing Downward) 471
40.4 File Creation Timeline (Time Increasing Downward) 473

42.1 Data Journaling Timeline . 506
42.2 Metadata Journaling Timeline 507

44.1 Frequency of LSEs and Block Corruption 528

48.1 Reading A File: Client-side And File Server Actions 566

49.1 Reading A File: Client-side And File Server Actions 579
49.2 Cache Consistency Timeline 581
49.3 Comparison: AFS vs. NFS . 583

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

1

A Dialogue on the Book

Professor: Welcome to this book! It’s called Operating Systems in Three Easy
Pieces, and I am here to teach you the things you need to know about operating
systems. I am called “Professor”; who are you?

Student: Hi Professor! I am called “Student”, as you might have guessed. And
I am here and ready to learn!

Professor: Sounds good. Any questions?

Student: Sure! Why is it called “Three Easy Pieces”?

Professor: That’s an easy one. Well, you see, there are these great lectures on
Physics by Richard Feynman...

Student: Oh! The guy who wrote “Surely You’re Joking, Mr. Feynman”, right?
Great book! Is this going to be hilarious like that book was?

Professor: Um... well, no. That book was great, and I’m glad you’ve read it.
Hopefully this book is more like his notes on Physics. Some of the basics were
summed up in a book called “Six Easy Pieces”. He was talking about Physics;
we’re going to do Three Easy Pieces on the fine topic of Operating Systems. This
is appropriate, as Operating Systems are about half as hard as Physics.

Student: Well, I liked physics, so that is probably good. What are those pieces?

Professor: They are the three key ideas we’re going to learn about: virtualiza-
tion, concurrency, and persistence. In learning about these ideas, we’ll learn
all about how an operating system works, including how it decides what program
to run next on a CPU, how it handles memory overload in a virtual memory sys-
tem, how virtual machine monitors work, how to manage information on disks,
and even a little about how to build a distributed system that works when parts
have failed. That sort of stuff.

Student: I have no idea what you’re talking about, really.

Professor: Good! That means you are in the right class.

Student: I have another question: what’s the best way to learn this stuff?

Professor: Excellent query! Well, each person needs to figure this out on their

1

2 A DIALOGUE ON THE BOOK

own, of course, but here is what I would do: go to class, to hear the professor
introduce the material. Then, say at the end of every week, read these notes,
to help the ideas sink into your head a bit better. Of course, some time later
(hint: before the exam!), read the notes again to firm up your knowledge. Of
course, your professor will no doubt assign some homeworks and projects, so you
should do those; in particular, doing projects where you write real code to solve
real problems is the best way to put the ideas within these notes into action. As
Confucius said...

Student: Oh, I know! ’I hear and I forget. I see and I remember. I do and I
understand.’ Or something like that.

Professor: (surprised) How did you know what I was going to say?!

Student: It seemed to follow. Also, I am a big fan of Confucius.

Professor: Well, I think we are going to get along just fine! Just fine indeed.

Student: Professor – just one more question, if I may. What are these dialogues
for? I mean, isn’t this just supposed to be a book? Why not present the material
directly?

Professor: Ah, good question, good question! Well, I think it is sometimes
useful to pull yourself outside of a narrative and think a bit; these dialogues are
those times. So you and I are going to work together to make sense of all of these
pretty complex ideas. Are you up for it?

Student: So we have to think? Well, I’m up for that. I mean, what else do I have
to do anyhow? It’s not like I have much of a life outside of this book.

Professor: Me neither, sadly. So let’s get to work!

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

2

Introduction to Operating Systems

If you are taking an undergraduate operating systems course, you should
already have some idea of what a computer program does when it runs.
If not, this book (and the corresponding course) is going to be difficult
– so you should probably stop reading this book, or run to the nearest
bookstore and quickly consume the necessary background material be-
fore continuing (both Patt/Patel [PP03] and particularly Bryant/O’Hallaron
[BOH10] are pretty great books).

So what happens when a program runs?
Well, a running program does one very simple thing: it executes in-

structions. Many millions (and these days, even billions) of times ev-
ery second, the processor fetches an instruction from memory, decodes
it (i.e., figures out which instruction this is), and executes it (i.e., it does
the thing that it is supposed to do, like add two numbers together, access
memory, check a condition, jump to a function, and so forth). After it is
done with this instruction, the processor moves on to the next instruction,

and so on, and so on, until the program finally completes1.
Thus, we have just described the basics of the Von Neumann model of

computing2. Sounds simple, right? But in this class, we will be learning
that while a program runs, a lot of other wild things are going on with
the primary goal of making the system easy to use.

There is a body of software, in fact, that is responsible for making it
easy to run programs (even allowing you to seemingly run many at the
same time), allowing programs to share memory, enabling programs to
interact with devices, and other fun stuff like that. That body of software

1Of course, modern processors do many bizarre and frightening things underneath the
hood to make programs run faster, e.g., executing multiple instructions at once, and even issu-
ing and completing them out of order! But that is not our concern here; we are just concerned
with the simple model most programs assume: that instructions seemingly execute one at a
time, in an orderly and sequential fashion.

2Von Neumann was one of the early pioneers of computing systems. He also did pioneer-
ing work on game theory and atomic bombs, and played in the NBA for six years. OK, one of
those things isn’t true.

3

4 INTRODUCTION TO OPERATING SYSTEMS

THE CRUX OF THE PROBLEM:
HOW TO VIRTUALIZE RESOURCES

One central question we will answer in this book is quite simple: how
does the operating system virtualize resources? This is the crux of our
problem. Why the OS does this is not the main question, as the answer
should be obvious: it makes the system easier to use. Thus, we focus on
the how: what mechanisms and policies are implemented by the OS to
attain virtualization? How does the OS do so efficiently? What hardware
support is needed?

We will use the “crux of the problem”, in shaded boxes such as this one,
as a way to call out specific problems we are trying to solve in building
an operating system. Thus, within a note on a particular topic, you may
find one or more cruces (yes, this is the proper plural) which highlight the
problem. The details within the chapter, of course, present the solution,
or at least the basic parameters of a solution.

is called the operating system (OS)3, as it is in charge of making sure the
system operates correctly and efficiently in an easy-to-use manner.

The primary way the OS does this is through a general technique that
we call virtualization. That is, the OS takes a physical resource (such as
the processor, or memory, or a disk) and transforms it into a more gen-
eral, powerful, and easy-to-use virtual form of itself. Thus, we sometimes
refer to the operating system as a virtual machine.

Of course, in order to allow users to tell the OS what to do and thus
make use of the features of the virtual machine (such as running a pro-
gram, or allocating memory, or accessing a file), the OS also provides
some interfaces (APIs) that you can call. A typical OS, in fact, exports
a few hundred system calls that are available to applications. Because
the OS provides these calls to run programs, access memory and devices,
and other related actions, we also sometimes say that the OS provides a
standard library to applications.

Finally, because virtualization allows many programs to run (thus shar-
ing the CPU), and many programs to concurrently access their own in-
structions and data (thus sharing memory), and many programs to access
devices (thus sharing disks and so forth), the OS is sometimes known as
a resource manager. Each of the CPU, memory, and disk is a resource
of the system; it is thus the operating system’s role to manage those re-
sources, doing so efficiently or fairly or indeed with many other possible
goals in mind. To understand the role of the OS a little bit better, let’s take
a look at some examples.

3Another early name for the OS was the supervisor or even the master control program.
Apparently, the latter sounded a little overzealous (see the movie Tron for details) and thus,
thankfully, “operating system” caught on instead.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTRODUCTION TO OPERATING SYSTEMS 5

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <sys/time.h>

4 #include <assert.h>

5 #include "common.h"

6

7 int

8 main(int argc, char *argv[])

9 {

10 if (argc != 2) {

11 fprintf(stderr, "usage: cpu <string>\n");

12 exit(1);

13 }

14 char *str = argv[1];

15 while (1) {

16 Spin(1);

17 printf("%s\n", str);

18 }

19 return 0;

20 }

Figure 2.1: Simple Example: Code That Loops and Prints

2.1 Virtualizing the CPU

Figure 2.1 depicts our first program. It doesn’t do much. In fact, all
it does is call Spin(), a function that repeatedly checks the time and
returns once it has run for a second. Then, it prints out the string that the
user passed in on the command line, and repeats, forever.

Let’s say we save this file as cpu.c and decide to compile and run it
on a system with a single processor (or CPU as we will sometimes call it).
Here is what we will see:

prompt> gcc -o cpu cpu.c -Wall

prompt> ./cpu "A"

A

A

A

A

ˆC

prompt>

Not too interesting of a run – the system begins running the program,
which repeatedly checks the time until a second has elapsed. Once a sec-
ond has passed, the code prints the input string passed in by the user
(in this example, the letter “A”), and continues. Note the program will
run forever; only by pressing “Control-c” (which on UNIX-based systems
will terminate the program running in the foreground) can we halt the
program.

Now, let’s do the same thing, but this time, let’s run many different in-
stances of this same program. Figure 2.2 shows the results of this slightly
more complicated example.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

6 INTRODUCTION TO OPERATING SYSTEMS

prompt> ./cpu A & ; ./cpu B & ; ./cpu C & ; ./cpu D &

[1] 7353

[2] 7354

[3] 7355

[4] 7356

A

B

D

C

A

B

D

C

A

C

B

D

...

Figure 2.2: Running Many Programs At Once

Well, now things are getting a little more interesting. Even though we
have only one processor, somehow all four of these programs seem to be

running at the same time! How does this magic happen?4

It turns out that the operating system, with some help from the hard-
ware, is in charge of this illusion, i.e., the illusion that the system has a
very large number of virtual CPUs. Turning a single CPU (or small set of
them) into a seemingly infinite number of CPUs and thus allowing many
programs to seemingly run at once is what we call virtualizing the CPU,
the focus of the first major part of this book.

Of course, to run programs, and stop them, and otherwise tell the OS
which programs to run, there need to be some interfaces (APIs) that you
can use to communicate your desires to the OS. We’ll talk about these
APIs throughout this book; indeed, they are the major way in which most
users interact with operating systems.

You might also notice that the ability to run multiple programs at once
raises all sorts of new questions. For example, if two programs want to
run at a particular time, which should run? This question is answered by
a policy of the OS; policies are used in many different places within an
OS to answer these types of questions, and thus we will study them as
we learn about the basic mechanisms that operating systems implement
(such as the ability to run multiple programs at once). Hence the role of
the OS as a resource manager.

4Note how we ran four processes at the same time, by using the & symbol. Doing so runs a
job in the background in the tcsh shell, which means that the user is able to immediately issue
their next command, which in this case is another program to run. The semi-colon between
commands allows us to run multiple programs at the same time in tcsh. If you’re using a
different shell (e.g., bash), it works slightly differently; read documentation online for details.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTRODUCTION TO OPERATING SYSTEMS 7

1 #include <unistd.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include "common.h"

5

6 int

7 main(int argc, char *argv[])

8 {

9 int *p = malloc(sizeof(int)); // a1

10 assert(p != NULL);

11 printf("(%d) address of p: %08x\n",

12 getpid(), (unsigned) p); // a2

13 *p = 0; // a3

14 while (1) {

15 Spin(1);

16 *p = *p + 1;

17 printf("(%d) p: %d\n", getpid(), *p); // a4

18 }

19 return 0;

20 }

Figure 2.3: A Program that Accesses Memory

2.2 Virtualizing Memory

Now let’s consider memory. The model of physical memory pre-
sented by modern machines is very simple. Memory is just an array of
bytes; to read memory, one must specify an address to be able to access
the data stored there; to write (or update) memory, one must also specify
the data to be written to the given address.

Memory is accessed all the time when a program is running. A pro-
gram keeps all of its data structures in memory, and accesses them through
various instructions, like loads and stores or other explicit instructions
that access memory in doing their work. Don’t forget that each instruc-
tion of the program is in memory too; thus memory is accessed on each
instruction fetch.

Let’s take a look at a program (in Figure 2.3) that allocates some mem-
ory by calling malloc(). The output of this program can be found here:

prompt> ./mem

(2134) memory address of p: 00200000

(2134) p: 1

(2134) p: 2

(2134) p: 3

(2134) p: 4

(2134) p: 5

ˆC

The program does a couple of things. First, it allocates some memory
(line a1). Then, it prints out the address of the memory (a2), and then
puts the number zero into the first slot of the newly allocated memory
(a3). Finally, it loops, delaying for a second and incrementing the value
stored at the address held in p. With every print statement, it also prints
out what is called the process identifier (the PID) of the running program.
This PID is unique per running process.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

8 INTRODUCTION TO OPERATING SYSTEMS

prompt> ./mem &; ./mem &

[1] 24113

[2] 24114

(24113) memory address of p: 00200000

(24114) memory address of p: 00200000

(24113) p: 1

(24114) p: 1

(24114) p: 2

(24113) p: 2

(24113) p: 3

(24114) p: 3

(24113) p: 4

(24114) p: 4

...

Figure 2.4: Running The Memory Program Multiple Times

Again, this first result is not too interesting. The newly allocated mem-
ory is at address 00200000. As the program runs, it slowly updates the
value and prints out the result.

Now, we again run multiple instances of this same program to see
what happens (Figure 2.4). We see from the example that each running
program has allocated memory at the same address (00200000), and yet
each seems to be updating the value at 00200000 independently! It is as
if each running program has its own private memory, instead of sharing

the same physical memory with other running programs5.
Indeed, that is exactly what is happening here as the OS is virtualiz-

ing memory. Each process accesses its own private virtual address space
(sometimes just called its address space), which the OS somehow maps
onto the physical memory of the machine. A memory reference within
one running program does not affect the address space of other processes
(or the OS itself); as far as the running program is concerned, it has phys-
ical memory all to itself. The reality, however, is that physical memory is
a shared resource, managed by the operating system. Exactly how all of
this is accomplished is also the subject of the first part of this book, on the
topic of virtualization.

2.3 Concurrency

Another main theme of this book is concurrency. We use this concep-
tual term to refer to a host of problems that arise, and must be addressed,
when working on many things at once (i.e., concurrently) in the same
program. The problems of concurrency arose first within the operating
system itself; as you can see in the examples above on virtualization, the
OS is juggling many things at once, first running one process, then an-
other, and so forth. As it turns out, doing so leads to some deep and
interesting problems.

5For this example to work, you need to make sure address-space randomization is dis-
abled; randomization, as it turns out, can be a good defense against certain kinds of security
flaws. Read more about it on your own, especially if you want to learn how to break into
computer systems via stack-smashing attacks. Not that we would recommend such a thing...

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTRODUCTION TO OPERATING SYSTEMS 9

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include "common.h"

4

5 volatile int counter = 0;

6 int loops;

7

8 void *worker(void *arg) {

9 int i;

10 for (i = 0; i < loops; i++) {

11 counter++;

12 }

13 return NULL;

14 }

15

16 int

17 main(int argc, char *argv[])

18 {

19 if (argc != 2) {

20 fprintf(stderr, "usage: threads <value>\n");

21 exit(1);

22 }

23 loops = atoi(argv[1]);

24 pthread_t p1, p2;

25 printf("Initial value : %d\n", counter);

26

27 Pthread_create(&p1, NULL, worker, NULL);

28 Pthread_create(&p2, NULL, worker, NULL);

29 Pthread_join(p1, NULL);

30 Pthread_join(p2, NULL);

31 printf("Final value : %d\n", counter);

32 return 0;

33 }

Figure 2.5: A Multi-threaded Program

Unfortunately, the problems of concurrency are no longer limited just
to the OS itself. Indeed, modern multi-threaded programs exhibit the
same problems. Let us demonstrate with an example of a multi-threaded
program (Figure 2.5).

Although you might not understand this example fully at the moment
(and we’ll learn a lot more about it in later chapters, in the section of the
book on concurrency), the basic idea is simple. The main program creates

two threads using Pthread create()
6. You can think of a thread as a

function running within the same memory space as other functions, with
more than one of them active at a time. In this example, each thread starts
running in a routine called worker(), in which it simply increments a
counter in a loop for loops number of times.

Below is a transcript of what happens when we run this program with
the input value for the variable loops set to 1000. The value of loops

6The actual call should be to lower-case pthread create(); the upper-case version is
our own wrapper that calls pthread create() and makes sure that the return code indicates
that the call succeeded. See the code for details.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

10 INTRODUCTION TO OPERATING SYSTEMS

THE CRUX OF THE PROBLEM:
HOW TO BUILD CORRECT CONCURRENT PROGRAMS

When there are many concurrently executing threads within the same
memory space, how can we build a correctly working program? What
primitives are needed from the OS? What mechanisms should be pro-
vided by the hardware? How can we use them to solve the problems of
concurrency?

determines how many times each of the two workers will increment the
shared counter in a loop. When the program is run with the value of
loops set to 1000, what do you expect the final value of counter to be?

prompt> gcc -o thread thread.c -Wall -pthread

prompt> ./thread 1000

Initial value : 0

Final value : 2000

As you probably guessed, when the two threads are finished, the final
value of the counter is 2000, as each thread incremented the counter 1000
times. Indeed, when the input value of loops is set to N , we would
expect the final output of the program to be 2N . But life is not so simple,
as it turns out. Let’s run the same program, but with higher values for
loops, and see what happens:

prompt> ./thread 100000

Initial value : 0

Final value : 143012 // huh??

prompt> ./thread 100000

Initial value : 0

Final value : 137298 // what the??

In this run, when we gave an input value of 100,000, instead of getting
a final value of 200,000, we instead first get 143,012. Then, when we run
the program a second time, we not only again get the wrong value, but
also a different value than the last time. In fact, if you run the program
over and over with high values of loops, you may find that sometimes
you even get the right answer! So why is this happening?

As it turns out, the reason for these odd and unusual outcomes relate
to how instructions are executed, which is one at a time. Unfortunately, a
key part of the program above, where the shared counter is incremented,
takes three instructions: one to load the value of the counter from mem-
ory into a register, one to increment it, and one to store it back into mem-
ory. Because these three instructions do not execute atomically (all at
once), strange things can happen. It is this problem of concurrency that
we will address in great detail in the second part of this book.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTRODUCTION TO OPERATING SYSTEMS 11

1 #include <stdio.h>

2 #include <unistd.h>

3 #include <assert.h>

4 #include <fcntl.h>

5 #include <sys/types.h>

6

7 int

8 main(int argc, char *argv[])

9 {

10 int fd = open("/tmp/file", O_WRONLY | O_CREAT | O_TRUNC, S_IRWXU);

11 assert(fd > -1);

12 int rc = write(fd, "hello world\n", 13);

13 assert(rc == 13);

14 close(fd);

15 return 0;

16 }

Figure 2.6: A Program That Does I/O

2.4 Persistence

The third major theme of the course is persistence. In system memory,
data can be easily lost, as devices such as DRAM store values in a volatile
manner; when power goes away or the system crashes, any data in mem-
ory is lost. Thus, we need hardware and software to be able to store data
persistently; such storage is thus critical to any system as users care a
great deal about their data.

The hardware comes in the form of some kind of input/output or I/O
device; in modern systems, a hard drive is a common repository for long-
lived information, although solid-state drives (SSDs) are making head-
way in this arena as well.

The software in the operating system that usually manages the disk is
called the file system; it is thus responsible for storing any files the user
creates in a reliable and efficient manner on the disks of the system.

Unlike the abstractions provided by the OS for the CPU and memory,
the OS does not create a private, virtualized disk for each application.
Rather, it is assumed that often times, users will want to share informa-
tion that is in files. For example, when writing a C program, you might

first use an editor (e.g., Emacs7) to create and edit the C file (emacs -nw

main.c). Once done, you might use the compiler to turn the source code
into an executable (e.g., gcc -o main main.c). When you’re finished,
you might run the new executable (e.g., ./main). Thus, you can see how
files are shared across different processes. First, Emacs creates a file that
serves as input to the compiler; the compiler uses that input file to create
a new executable file (in many steps – take a compiler course for details);
finally, the new executable is then run. And thus a new program is born!

To understand this better, let’s look at some code. Figure 2.6 presents
code to create a file (/tmp/file) that contains the string “hello world”.

7You should be using Emacs. If you are using vi, there is probably something wrong with
you. If you are using something that is not a real code editor, that is even worse.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

12 INTRODUCTION TO OPERATING SYSTEMS

THE CRUX OF THE PROBLEM:
HOW TO STORE DATA PERSISTENTLY

The file system is the part of the OS in charge of managing persistent data.
What techniques are needed to do so correctly? What mechanisms and
policies are required to do so with high performance? How is reliability
achieved, in the face of failures in hardware and software?

To accomplish this task, the program makes three calls into the oper-
ating system. The first, a call to open(), opens the file and creates it; the
second, write(), writes some data to the file; the third, close(), sim-
ply closes the file thus indicating the program won’t be writing any more
data to it. These system calls are routed to the part of the operating sys-
tem called the file system, which then handles the requests and returns
some kind of error code to the user.

You might be wondering what the OS does in order to actually write
to disk. We would show you but you’d have to promise to close your
eyes first; it is that unpleasant. The file system has to do a fair bit of work:
first figuring out where on disk this new data will reside, and then keep-
ing track of it in various structures the file system maintains. Doing so
requires issuing I/O requests to the underlying storage device, to either
read existing structures or update (write) them. As anyone who has writ-

ten a device driver8 knows, getting a device to do something on your
behalf is an intricate and detailed process. It requires a deep knowledge
of the low-level device interface and its exact semantics. Fortunately, the
OS provides a standard and simple way to access devices through its sys-
tem calls. Thus, the OS is sometimes seen as a standard library.

Of course, there are many more details in how devices are accessed,
and how file systems manage data persistently atop said devices. For
performance reasons, most file systems first delay such writes for a while,
hoping to batch them into larger groups. To handle the problems of sys-
tem crashes during writes, most file systems incorporate some kind of
intricate write protocol, such as journaling or copy-on-write, carefully
ordering writes to disk to ensure that if a failure occurs during the write
sequence, the system can recover to reasonable state afterwards. To make
different common operations efficient, file systems employ many differ-
ent data structures and access methods, from simple lists to complex b-
trees. If all of this doesn’t make sense yet, good! We’ll be talking about
all of this quite a bit more in the third part of this book on persistence,
where we’ll discuss devices and I/O in general, and then disks, RAIDs,
and file systems in great detail.

8A device driver is some code in the operating system that knows how to deal with a
specific device. We will talk more about devices and device drivers later.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTRODUCTION TO OPERATING SYSTEMS 13

2.5 Design Goals

So now you have some idea of what an OS actually does: it takes phys-
ical resources, such as a CPU, memory, or disk, and virtualizes them. It
handles tough and tricky issues related to concurrency. And it stores files
persistently, thus making them safe over the long-term. Given that we
want to build such a system, we want to have some goals in mind to help
focus our design and implementation and make trade-offs as necessary;
finding the right set of trade-offs is a key to building systems.

One of the most basic goals is to build up some abstractions in order
to make the system convenient and easy to use. Abstractions are fun-
damental to everything we do in computer science. Abstraction makes
it possible to write a large program by dividing it into small and under-
standable pieces, to write such a program in a high-level language like

C9 without thinking about assembly, to write code in assembly without
thinking about logic gates, and to build a processor out of gates without
thinking too much about transistors. Abstraction is so fundamental that
sometimes we forget its importance, but we won’t here; thus, in each sec-
tion, we’ll discuss some of the major abstractions that have developed
over time, giving you a way to think about pieces of the OS.

One goal in designing and implementing an operating system is to
provide high performance; another way to say this is our goal is to mini-
mize the overheads of the OS. Virtualization and making the system easy
to use are well worth it, but not at any cost; thus, we must strive to pro-
vide virtualization and other OS features without excessive overheads.
These overheads arise in a number of forms: extra time (more instruc-
tions) and extra space (in memory or on disk). We’ll seek solutions that
minimize one or the other or both, if possible. Perfection, however, is not
always attainable, something we will learn to notice and (where appro-
priate) tolerate.

Another goal will be to provide protection between applications, as
well as between the OS and applications. Because we wish to allow
many programs to run at the same time, we want to make sure that the
malicious or accidental bad behavior of one does not harm others; we
certainly don’t want an application to be able to harm the OS itself (as
that would affect all programs running on the system). Protection is at
the heart of one of the main principles underlying an operating system,
which is that of isolation; isolating processes from one another is the key
to protection and thus underlies much of what an OS must do.

The operating system must also run non-stop; when it fails, all appli-
cations running on the system fail as well. Because of this dependence,
operating systems often strive to provide a high degree of reliability. As
operating systems grow evermore complex (sometimes containing mil-
lions of lines of code), building a reliable operating system is quite a chal-

9Some of you might object to calling C a high-level language. Remember this is an OS
course, though, where we’re simply happy not to have to code in assembly all the time!

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

14 INTRODUCTION TO OPERATING SYSTEMS

lenge – and indeed, much of the on-going research in the field (including
some of our own work [BS+09, SS+10]) focuses on this exact problem.

Other goals make sense: energy-efficiency is important in our increas-
ingly green world; security (an extension of protection, really) against
malicious applications is critical, especially in these highly-networked
times; mobility is increasingly important as OSes are run on smaller and
smaller devices. Depending in how the system is used, the OS will have
different goals and thus likely be implemented in at least slightly differ-
ent ways. However, as we will see, many of the principles we will present
on how to build operating systems are useful in the range of different de-
vices.

2.6 Some History

Before closing this introduction, let us present a brief history of how
operating systems developed. Like any system built by humans, good
ideas accumulated in operating systems over time, as engineers learned
what was important in their design. Here, we discuss a few major devel-
opments. For a richer treatment, see Brinch Hansen’s excellent history of
operating systems [BH00].

Early Operating Systems: Just Libraries

In the beginning, the operating system didn’t do too much. Basically,
it was just a set of libraries of commonly-used functions; for example,
instead of having each programmer of the system write low-level I/O
handling code, the “OS” would provide such APIs, and thus make life
easier for the developer.

Usually, on these old mainframe systems, one program ran at a time,
as controlled by a human operator. Much of what you think a modern
OS would do (e.g., deciding what order to run jobs in) was performed by
this operator. If you were a smart developer, you would be nice to this
operator, so that they might move your job to the front of the queue.

This mode of computing was known as batch processing, as a number
of jobs were set up and then run in a “batch” by the operator. Computers,
as of that point, were not used in an interactive manner, because of cost:
it was simply too costly to let a user sit in front of the computer and use it,
as most of the time it would just sit idle then, costing the facility hundreds
of thousands of dollars per hour [BH00].

Beyond Libraries: Protection

In moving beyond being a simple library of commonly-used services, op-
erating systems took on a more central role in managing machines. One
important aspect of this was the realization that code run on behalf of the
OS was special; it had control of devices and thus should be treated dif-

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTRODUCTION TO OPERATING SYSTEMS 15

ferently than normal application code. Why is this? Well, imagine if you
allowed any application to read from anywhere on the disk; the notion of
privacy goes out the window, as any program could read any file. Thus,
implementing a file system (to manage your files) as a library makes little
sense. Instead, something else was needed.

Thus, the idea of a system call was invented, pioneered by the Atlas
computing system [K+61,L78]. Instead of providing OS routines as a li-
brary (where you just make a procedure call to access them), the idea here
was to add a special pair of hardware instructions and hardware state to
make the transition into the OS a more formal, controlled process.

The key difference between a system call and a procedure call is that
a system call transfers control (i.e., jumps) into the OS while simultane-
ously raising the hardware privilege level. User applications run in what
is referred to as user mode which means the hardware restricts what ap-
plications can do; for example, an application running in user mode can’t
typically initiate an I/O request to the disk, access any physical memory
page, or send a packet on the network. When a system call is initiated
(usually through a special hardware instruction called a trap), the hard-
ware transfers control to a pre-specified trap handler (that the OS set up
previously) and simultaneously raises the privilege level to kernel mode.
In kernel mode, the OS has full access to the hardware of the system and
thus can do things like initiate an I/O request or make more memory
available to a program. When the OS is done servicing the request, it
passes control back to the user via a special return-from-trap instruction,
which reverts to user mode while simultaneously passing control back to
where the application left off.

The Era of Multiprogramming

Where operating systems really took off was in the era of computing be-
yond the mainframe, that of the minicomputer. Classic machines like
the PDP family from Digital Equipment made computers hugely more
affordable; thus, instead of having one mainframe per large organization,
now a smaller collection of people within an organization could likely
have their own computer. Not surprisingly, one of the major impacts of
this drop in cost was an increase in developer activity; more smart people
got their hands on computers and thus made computer systems do more
interesting and beautiful things.

In particular, multiprogramming became commonplace due to the de-
sire to make better use of machine resources. Instead of just running one
job at a time, the OS would load a number of jobs into memory and switch
rapidly between them, thus improving CPU utilization. This switching
was particularly important because I/O devices were slow; having a pro-
gram wait on the CPU while its I/O was being serviced was a waste of
CPU time. Instead, why not switch to another job and run it for a while?

The desire to support multiprogramming and overlap in the presence
of I/O and interrupts forced innovation in the conceptual development of

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

16 INTRODUCTION TO OPERATING SYSTEMS

operating systems along a number of directions. Issues such as memory
protection became important; we wouldn’t want one program to be able
to access the memory of another program. Understanding how to deal
with the concurrency issues introduced by multiprogramming was also
critical; making sure the OS was behaving correctly despite the presence
of interrupts is a great challenge. We will study these issues and related
topics later in the book.

One of the major practical advances of the time was the introduction
of the UNIX operating system, primarily thanks to Ken Thompson (and
Dennis Ritchie) at Bell Labs (yes, the phone company). UNIX took many
good ideas from different operating systems (particularly from Multics
[O72], and some from systems like TENEX [B+72] and the Berkeley Time-
Sharing System [S+68]), but made them simpler and easier to use. Soon
this team was shipping tapes containing UNIX source code to people
around the world, many of whom then got involved and added to the

system themselves; see the Aside (next page) for more detail10.

The Modern Era

Beyond the minicomputer came a new type of machine, cheaper, faster,
and for the masses: the personal computer, or PC as we call it today. Led
by Apple’s early machines (e.g., the Apple II) and the IBM PC, this new
breed of machine would soon become the dominant force in computing,
as their low-cost enabled one machine per desktop instead of a shared
minicomputer per workgroup.

Unfortunately, for operating systems, the PC at first represented a
great leap backwards, as early systems forgot (or never knew of) the
lessons learned in the era of minicomputers. For example, early operat-
ing systems such as DOS (the Disk Operating System, from Microsoft)
didn’t think memory protection was important; thus, a malicious (or per-
haps just a poorly-programmed) application could scribble all over mem-
ory. The first generations of the Mac OS (v9 and earlier) took a coopera-
tive approach to job scheduling; thus, a thread that accidentally got stuck
in an infinite loop could take over the entire system, forcing a reboot. The
painful list of OS features missing in this generation of systems is long,
too long for a full discussion here.

Fortunately, after some years of suffering, the old features of minicom-
puter operating systems started to find their way onto the desktop. For
example, Mac OS X has UNIX at its core, including all of the features
one would expect from such a mature system. Windows has similarly
adopted many of the great ideas in computing history, starting in partic-
ular with Windows NT, a great leap forward in Microsoft OS technology.
Even today’s cell phones run operating systems (such as Linux) that are

10We’ll use asides and other related text boxes to call attention to various items that don’t
quite fit the main flow of the text. Sometimes, we’ll even use them just to make a joke, because
why not have a little fun along the way? Yes, many of the jokes are bad.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTRODUCTION TO OPERATING SYSTEMS 17

ASIDE: THE IMPORTANCE OF UNIX

It is difficult to overstate the importance of UNIX in the history of oper-
ating systems. Influenced by earlier systems (in particular, the famous
Multics system from MIT), UNIX brought together many great ideas and
made a system that was both simple and powerful.

Underlying the original “Bell Labs” UNIX was the unifying principle of
building small powerful programs that could be connected together to
form larger workflows. The shell, where you type commands, provided
primitives such as pipes to enable such meta-level programming, and
thus it became easy to string together programs to accomplish a big-
ger task. For example, to find lines of a text file that have the word
“foo” in them, and then to count how many such lines exist, you would
type: grep foo file.txt|wc -l, thus using the grep and wc (word
count) programs to achieve your task.

The UNIX environment was friendly for programmers and developers
alike, also providing a compiler for the new C programming language.
Making it easy for programmers to write their own programs, as well as
share them, made UNIX enormously popular. And it probably helped a
lot that the authors gave out copies for free to anyone who asked, an early
form of open-source software.

Also of critical importance was the accessibility and readability of the
code. Having a beautiful, small kernel written in C invited others to play
with the kernel, adding new and cool features. For example, an enter-
prising group at Berkeley, led by Bill Joy, made a wonderful distribution
(the Berkeley Systems Distribution, or BSD) which had some advanced
virtual memory, file system, and networking subsystems. Joy later co-
founded Sun Microsystems.

Unfortunately, the spread of UNIX was slowed a bit as companies tried to
assert ownership and profit from it, an unfortunate (but common) result
of lawyers getting involved. Many companies had their own variants:
SunOS from Sun Microsystems, AIX from IBM, HPUX (a.k.a. “H-Pucks”)
from HP, and IRIX from SGI. The legal wrangling among AT&T/Bell
Labs and these other players cast a dark cloud over UNIX, and many
wondered if it would survive, especially as Windows was introduced and
took over much of the PC market...

much more like what a minicomputer ran in the 1970s than what a PC
ran in the 1980s (thank goodness); it is good to see that the good ideas de-
veloped in the heyday of OS development have found their way into the
modern world. Even better is that these ideas continue to develop, pro-
viding more features and making modern systems even better for users
and applications.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

18 INTRODUCTION TO OPERATING SYSTEMS

ASIDE: AND THEN CAME LINUX

Fortunately for UNIX, a young Finnish hacker named Linus Torvalds de-
cided to write his own version of UNIX which borrowed heavily on the
principles and ideas behind the original system, but not from the code
base, thus avoiding issues of legality. He enlisted help from many oth-
ers around the world, and soon Linux was born (as well as the modern
open-source software movement).

As the internet era came into place, most companies (such as Google,
Amazon, Facebook, and others) chose to run Linux, as it was free and
could be readily modified to suit their needs; indeed, it is hard to imag-
ine the success of these new companies had such a system not existed.
As smart phones became a dominant user-facing platform, Linux found
a stronghold there too (via Android), for many of the same reasons. And
Steve Jobs took his UNIX-based NeXTStep operating environment with
him to Apple, thus making UNIX popular on desktops (though many
users of Apple technology are probably not even aware of this fact). And
thus UNIX lives on, more important today than ever before. The comput-
ing gods, if you believe in them, should be thanked for this wonderful
outcome.

2.7 Summary

Thus, we have an introduction to the OS. Today’s operating systems
make systems relatively easy to use, and virtually all operating systems
you use today have been influenced by the developments we will discuss
throughout the book.

Unfortunately, due to time constraints, there are a number of parts of
the OS we won’t cover in the book. For example, there is a lot of net-
working code in the operating system; we leave it to you to take the net-
working class to learn more about that. Similarly, graphics devices are
particularly important; take the graphics course to expand your knowl-
edge in that direction. Finally, some operating system books talk a great
deal about security; we will do so in the sense that the OS must provide
protection between running programs and give users the ability to pro-
tect their files, but we won’t delve into deeper security issues that one
might find in a security course.

However, there are many important topics that we will cover, includ-
ing the basics of virtualization of the CPU and memory, concurrency, and
persistence via devices and file systems. Don’t worry! While there is a
lot of ground to cover, most of it is quite cool, and at the end of the road,
you’ll have a new appreciation for how computer systems really work.
Now get to work!

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTRODUCTION TO OPERATING SYSTEMS 19

References

[BS+09] “Tolerating File-System Mistakes with EnvyFS”
Lakshmi N. Bairavasundaram, Swaminathan Sundararaman, Andrea C. Arpaci-Dusseau, Remzi
H. Arpaci-Dusseau
USENIX ’09, San Diego, CA, June 2009
A fun paper about using multiple file systems at once to tolerate a mistake in any one of them.

[BH00] “The Evolution of Operating Systems”
P. Brinch Hansen
In Classic Operating Systems: From Batch Processing to Distributed Systems
Springer-Verlag, New York, 2000
This essay provides an intro to a wonderful collection of papers about historically significant systems.

[B+72] “TENEX, A Paged Time Sharing System for the PDP-10”
Daniel G. Bobrow, Jerry D. Burchfiel, Daniel L. Murphy, Raymond S. Tomlinson
CACM, Volume 15, Number 3, March 1972
TENEX has much of the machinery found in modern operating systems; read more about it to see how
much innovation was already in place in the early 1970’s.

[B75] “The Mythical Man-Month”
Fred Brooks
Addison-Wesley, 1975
A classic text on software engineering; well worth the read.

[BOH10] “Computer Systems: A Programmer’s Perspective”
Randal E. Bryant and David R. O’Hallaron
Addison-Wesley, 2010
Another great intro to how computer systems work. Has a little bit of overlap with this book – so if you’d
like, you can skip the last few chapters of that book, or simply read them to get a different perspective
on some of the same material. After all, one good way to build up your own knowledge is to hear as
many other perspectives as possible, and then develop your own opinion and thoughts on the matter.
You know, by thinking!

[K+61] “One-Level Storage System”
T. Kilburn, D.B.G. Edwards, M.J. Lanigan, F.H. Sumner
IRE Transactions on Electronic Computers, April 1962
The Atlas pioneered much of what you see in modern systems. However, this paper is not the best read.
If you were to only read one, you might try the historical perspective below [L78].

[L78] “The Manchester Mark I and Atlas: A Historical Perspective”
S. H. Lavington
Communications of the ACM archive
Volume 21, Issue 1 (January 1978), pages 4-12
A nice piece of history on the early development of computer systems and the pioneering efforts of the
Atlas. Of course, one could go back and read the Atlas papers themselves, but this paper provides a great
overview and adds some historical perspective.

[O72] “The Multics System: An Examination of its Structure”
Elliott Organick, 1972
A great overview of Multics. So many good ideas, and yet it was an over-designed system, shooting for
too much, and thus never really worked as expected. A classic example of what Fred Brooks would call
the “second-system effect” [B75].

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

20 INTRODUCTION TO OPERATING SYSTEMS

[PP03] “Introduction to Computing Systems:
From Bits and Gates to C and Beyond”
Yale N. Patt and Sanjay J. Patel
McGraw-Hill, 2003
One of our favorite intro to computing systems books. Starts at transistors and gets you all the way up
to C; the early material is particularly great.

[RT74] “The UNIX Time-Sharing System”
Dennis M. Ritchie and Ken Thompson
CACM, Volume 17, Number 7, July 1974, pages 365-375
A great summary of UNIX written as it was taking over the world of computing, by the people who
wrote it.

[S68] “SDS 940 Time-Sharing System”
Scientific Data Systems Inc.
TECHNICAL MANUAL, SDS 90 11168 August 1968
Available: http://goo.gl/EN0Zrn
Yes, a technical manual was the best we could find. But it is fascinating to read these old system
documents, and see how much was already in place in the late 1960’s. One of the minds behind the
Berkeley Time-Sharing System (which eventually became the SDS system) was Butler Lampson, who
later won a Turing award for his contributions in systems.

[SS+10] “Membrane: Operating System Support for Restartable File Systems”
Swaminathan Sundararaman, Sriram Subramanian, Abhishek Rajimwale,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Michael M. Swift
FAST ’10, San Jose, CA, February 2010
The great thing about writing your own class notes: you can advertise your own research. But this
paper is actually pretty neat – when a file system hits a bug and crashes, Membrane auto-magically
restarts it, all without applications or the rest of the system being affected.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

Part I

Virtualization

21

3

A Dialogue on Virtualization

Professor: And thus we reach the first of our three pieces on operating systems:
virtualization.

Student: But what is virtualization, oh noble professor?

Professor: Imagine we have a peach.

Student: A peach? (incredulous)

Professor: Yes, a peach. Let us call that the physical peach. But we have many
eaters who would like to eat this peach. What we would like to present to each
eater is their own peach, so that they can be happy. We call the peach we give
eaters virtual peaches; we somehow create many of these virtual peaches out of
the one physical peach. And the important thing: in this illusion, it looks to each
eater like they have a physical peach, but in reality they don’t.

Student: So you are sharing the peach, but you don’t even know it?

Professor: Right! Exactly.

Student: But there’s only one peach.

Professor: Yes. And...?

Student: Well, if I was sharing a peach with somebody else, I think I would
notice.

Professor: Ah yes! Good point. But that is the thing with many eaters; most
of the time they are napping or doing something else, and thus, you can snatch
that peach away and give it to someone else for a while. And thus we create the
illusion of many virtual peaches, one peach for each person!

Student: Sounds like a bad campaign slogan. You are talking about computers,
right Professor?

Professor: Ah, young grasshopper, you wish to have a more concrete example.
Good idea! Let us take the most basic of resources, the CPU. Assume there is one
physical CPU in a system (though now there are often two or four or more). What
virtualization does is take that single CPU and make it look like many virtual
CPUs to the applications running on the system. Thus, while each applications

23

24 A DIALOGUE ON VIRTUALIZATION

thinks it has its own CPU to use, there is really only one. And thus the OS has
created a beautiful illusion: it has virtualized the CPU.

Student: Wow! That sounds like magic. Tell me more! How does that work?

Professor: In time, young student, in good time. Sounds like you are ready to
begin.

Student: I am! Well, sort of. I must admit, I’m a little worried you are going to
start talking about peaches again.

Professor: Don’t worry too much; I don’t even like peaches. And thus we be-
gin...

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

4

The Abstraction: The Process

In this note, we discuss one of the most fundamental abstractions that the
OS provides to users: the process. The definition of a process, informally,
is quite simple: it is a running program [V+65,B70]. The program itself is
a lifeless thing: it just sits there on the disk, a bunch of instructions (and
maybe some static data), waiting to spring into action. It is the operating
system that takes these bytes and gets them running, transforming the
program into something useful.

It turns out that one often wants to run more than one program at
once; for example, consider your desktop or laptop where you might like
to run a web browser, mail program, a game, a music player, and so forth.
In fact, a typical system may be seemingly running tens or even hundreds
of processes at the same time. Doing so makes the system easy to use, as
one never need be concerned with whether a CPU is available; one simply
runs programs. Hence our challenge:

THE CRUX OF THE PROBLEM:
HOW TO PROVIDE THE ILLUSION OF MANY CPUS?

Although there are only a few physical CPUs available, how can the
OS provide the illusion of a nearly-endless supply of said CPUs?

The OS creates this illusion by virtualizing the CPU. By running one
process, then stopping it and running another, and so forth, the OS can
promote the illusion that many virtual CPUs exist when in fact there is
only one physical CPU (or a few). This basic technique, known as time
sharing of the CPU, allows users to run as many concurrent processes as
they would like; the potential cost is performance, as each will run more
slowly if the CPU(s) must be shared.

To implement virtualization of the CPU, and to implement it well, the
OS will need both some low-level machinery as well as some high-level
intelligence. We call the low-level machinery mechanisms; mechanisms
are low-level methods or protocols that implement a needed piece of

25

26 THE ABSTRACTION: THE PROCESS

TIP: USE TIME SHARING (AND SPACE SHARING)
Time sharing is one of the most basic techniques used by an OS to share
a resource. By allowing the resource to be used for a little while by one
entity, and then a little while by another, and so forth, the resource in
question (e.g., the CPU, or a network link) can be shared by many. The
natural counterpart of time sharing is space sharing, where a resource is
divided (in space) among those who wish to use it. For example, disk
space is naturally a space-shared resource, as once a block is assigned to
a file, it is not likely to be assigned to another file until the user deletes it.

functionality. For example, we’ll learn below how to implement a con-
text switch, which gives the OS the ability to stop running one program
and start running another on a given CPU; this time-sharing mechanism
is employed by all modern OSes.

On top of these mechanisms resides some of the intelligence in the
OS, in the form of policies. Policies are algorithms for making some
kind of decision within the OS. For example, given a number of possi-
ble programs to run on a CPU, which program should the OS run? A
scheduling policy in the OS will make this decision, likely using histori-
cal information (e.g., which program has run more over the last minute?),
workload knowledge (e.g., what types of programs are run), and perfor-
mance metrics (e.g., is the system optimizing for interactive performance,
or throughput?) to make its decision.

4.1 The Abstraction: A Process

The abstraction provided by the OS of a running program is something
we will call a process. As we said above, a process is simply a running
program; at any instant in time, we can summarize a process by taking an
inventory of the different pieces of the system it accesses or affects during
the course of its execution.

To understand what constitutes a process, we thus have to understand
its machine state: what a program can read or update when it is running.
At any given time, what parts of the machine are important to the execu-
tion of this program?

One obvious component of machine state that comprises a process is
its memory. Instructions lie in memory; the data that the running pro-
gram reads and writes sits in memory as well. Thus the memory that the
process can address (called its address space) is part of the process.

Also part of the process’s machine state are registers; many instructions
explicitly read or update registers and thus clearly they are important to
the execution of the process.

Note that there are some particularly special registers that form part
of this machine state. For example, the program counter (PC) (sometimes
called the instruction pointer or IP) tells us which instruction of the pro-

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

THE ABSTRACTION: THE PROCESS 27

TIP: SEPARATE POLICY AND MECHANISM

In many operating systems, a common design paradigm is to separate
high-level policies from their low-level mechanisms [L+75]. You can
think of the mechanism as providing the answer to a how question about
a system; for example, how does an operating system perform a context
switch? The policy provides the answer to a which question; for example,
which process should the operating system run right now? Separating the
two allows one easily to change policies without having to rethink the
mechanism and is thus a form of modularity, a general software design
principle.

gram is currently being executed; similarly a stack pointer and associated
frame pointer are used to manage the stack for function parameters, local
variables, and return addresses.

Finally, programs often access persistent storage devices too. Such I/O
information might include a list of the files the process currently has open.

4.2 Process API

Though we defer discussion of a real process API until a subsequent
chapter, here we first give some idea of what must be included in any
interface of an operating system. These APIs, in some form, are available
on any modern operating system.

• Create: An operating system must include some method to cre-
ate new processes. When you type a command into the shell, or
double-click on an application icon, the OS is invoked to create a
new process to run the program you have indicated.

• Destroy: As there is an interface for process creation, systems also
provide an interface to destroy processes forcefully. Of course, many
processes will run and just exit by themselves when complete; when
they don’t, however, the user may wish to kill them, and thus an in-
terface to halt a runaway process is quite useful.

• Wait: Sometimes it is useful to wait for a process to stop running;
thus some kind of waiting interface is often provided.

• Miscellaneous Control: Other than killing or waiting for a process,
there are sometimes other controls that are possible. For example,
most operating systems provide some kind of method to suspend a
process (stop it from running for a while) and then resume it (con-
tinue it running).

• Status: There are usually interfaces to get some status information
about a process as well, such as how long it has run for, or what
state it is in.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

28 THE ABSTRACTION: THE PROCESS

MemoryCPU

Disk

code
static data

heap

stack

Process

code
static data

Program Loading:
Takes on-disk program

and reads it into the
address space of process

Figure 4.1: Loading: From Program To Process

4.3 Process Creation: A Little More Detail

One mystery that we should unmask a bit is how programs are trans-
formed into processes. Specifically, how does the OS get a program up
and running? How does process creation actually work?

The first thing that the OS must do to run a program is to load its code
and any static data (e.g., initialized variables) into memory, into the ad-
dress space of the process. Programs initially reside on disk (or, in some
modern systems, flash-based SSDs) in some kind of executable format;
thus, the process of loading a program and static data into memory re-
quires the OS to read those bytes from disk and place them in memory
somewhere (as shown in Figure 4.1).

In early (or simple) operating systems, the loading process is done ea-
gerly, i.e., all at once before running the program; modern OSes perform
the process lazily, i.e., by loading pieces of code or data only as they are
needed during program execution. To truly understand how lazy loading
of pieces of code and data works, you’ll have to understand more about
the machinery of paging and swapping, topics we’ll cover in the future
when we discuss the virtualization of memory. For now, just remember
that before running anything, the OS clearly must do some work to get
the important program bits from disk into memory.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

THE ABSTRACTION: THE PROCESS 29

Once the code and static data are loaded into memory, there are a few
other things the OS needs to do before running the process. Some mem-
ory must be allocated for the program’s run-time stack (or just stack).
As you should likely already know, C programs use the stack for local
variables, function parameters, and return addresses; the OS allocates
this memory and gives it to the process. The OS will also likely initial-
ize the stack with arguments; specifically, it will fill in the parameters to
the main() function, i.e., argc and the argv array.

The OS may also create some initial memory for the program’s heap.
In C programs, the heap is used for explicitly requested dynamically-
allocated data; programs request such space by calling malloc() and
free it explicitly by calling free(). The heap is needed for data struc-
tures such as linked lists, hash tables, trees, and other interesting data
structures. The heap will be small at first; as the program runs, and re-
quests more memory via the malloc() library API, the OS may get in-
volved and allocate more memory to the process to help satisfy such calls.

The OS will also do some other initialization tasks, particularly as re-
lated to input/output (I/O). For example, in UNIX systems, each process
by default has three open file descriptors, for standard input, output, and
error; these descriptors let programs easily read input from the terminal
as well as print output to the screen. We’ll learn more about I/O, file
descriptors, and the like in the third part of the book on persistence.

By loading the code and static data into memory, by creating and ini-
tializing a stack, and by doing other work as related to I/O setup, the OS
has now (finally) set the stage for program execution. It thus has one last
task: to start the program running at the entry point, namely main(). By
jumping to the main() routine (through a specialized mechanism that
we will discuss next chapter), the OS transfers control of the CPU to the
newly-created process, and thus the program begins its execution.

4.4 Process States

Now that we have some idea of what a process is (though we will
continue to refine this notion), and (roughly) how it is created, let us talk
about the different states a process can be in at a given time. The notion
that a process can be in one of these states arose in early computer systems
[V+65,DV66]. In a simplified view, a process can be in one of three states:

• Running: In the running state, a process is running on a processor.
This means it is executing instructions.

• Ready: In the ready state, a process is ready to run but for some
reason the OS has chosen not to run it at this given moment.

• Blocked: In the blocked state, a process has performed some kind
of operation that makes it not ready to run until some other event
takes place. A common example: when a process initiates an I/O
request to a disk, it becomes blocked and thus some other process
can use the processor.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

30 THE ABSTRACTION: THE PROCESS

Running Ready

Blocked

Descheduled

Scheduled

I/O: initiate I/O: done

Figure 4.2: Process: State Transitions

If we were to map these states to a graph, we would arrive at the di-
agram in Figure 4.2. As you can see in the diagram, a process can be
moved between the ready and running states at the discretion of the OS.
Being moved from ready to running means the process has been sched-
uled; being moved from running to ready means the process has been
descheduled. Once a process has become blocked (e.g., by initiating an
I/O operation), the OS will keep it as such until some event occurs (e.g.,
I/O completion); at that point, the process moves to the ready state again
(and potentially immediately to running again, if the OS so decides).

4.5 Data Structures

The OS is a program, and like any program, it has some key data struc-
tures that track various relevant pieces of information. To track the state
of each process, for example, the OS likely will keep some kind of process
list for all processes that are ready, as well as some additional informa-
tion to track which process is currently running. The OS must also track,
in some way, blocked processes; when an I/O event completes, the OS
should make sure to wake the correct process and ready it to run again.

Figure 4.3 shows what type of information an OS needs to track about
each process in the xv6 kernel [CK+08]. Similar process structures exist
in “real” operating systems such as Linux, Mac OS X, or Windows; look
them up and see how much more complex they are.

From the figure, you can see a couple of important pieces of informa-
tion the OS tracks about a process. The register context will hold, for
a stopped process, the contents of its register state. When a process is
stopped, its register state will be saved to this memory location; by restor-
ing these registers (i.e., placing their values back into the actual physical
registers), the OS can resume running the process. We’ll learn more about
this technique known as a context switch in future chapters.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

THE ABSTRACTION: THE PROCESS 31

// the registers xv6 will save and restore

// to stop and subsequently restart a process

struct context {

int eip;

int esp;

int ebx;

int ecx;

int edx;

int esi;

int edi;

int ebp;

};

// the different states a process can be in

enum proc_state { UNUSED, EMBRYO, SLEEPING,

RUNNABLE, RUNNING, ZOMBIE };

// the information xv6 tracks about each process

// including its register context and state

struct proc {

char *mem; // Start of process memory

uint sz; // Size of process memory

char *kstack; // Bottom of kernel stack

// for this process

enum proc_state state; // Process state

int pid; // Process ID

struct proc *parent; // Parent process

void *chan; // If non-zero, sleeping on chan

int killed; // If non-zero, have been killed

struct file *ofile[NOFILE]; // Open files

struct inode *cwd; // Current directory

struct context context; // Switch here to run process

struct trapframe *tf; // Trap frame for the

// current interrupt

};

Figure 4.3: The xv6 Proc Structure

You can also see from the figure that there are some other states a pro-
cess can be in, beyond running, ready, and blocked. Sometimes a system
will have an initial state that the process is in when it is being created.
Also, a process could be placed in a final state where it has exited but
has not yet been cleaned up (in UNIX-based systems, this is called the

zombie state1). This final state can be useful as it allows other processes
(usually the parent that created the process) to examine the return code
of the process and see if it the just-finished process executed successfully
(usually, programs return zero in UNIX-based systems when they have
accomplished a task successfully, and non-zero otherwise). When fin-
ished, the parent will make one final call (e.g., wait()) to wait for the
completion of the child, and to also indicate to the OS that it can clean up
any relevant data structures that referred to the now-extinct process.

1Yes, the zombie state. Just like real zombies, these zombies are relatively easy to kill.
However, different techniques are usually recommended.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

32 THE ABSTRACTION: THE PROCESS

ASIDE: DATA STRUCTURE – THE PROCESS LIST

Operating systems are replete with various important data structures
that we will discuss in these notes. The process list is the first such struc-
ture. It is one of the simpler ones, but certainly any OS that has the ability
to run multiple programs at once will have something akin to this struc-
ture in order to keep track of all the running programs in the system.
Sometimes people refer to the individual structure that stores informa-
tion about a process as a Process Control Block (PCB), a fancy way of
talking about a C structure that contains information about each process.

4.6 Summary

We have introduced the most basic abstraction of the OS: the process.
It is quite simply viewed as a running program. With this conceptual
view in mind, we will now move on to the nitty-gritty: the low-level
mechanisms needed to implement processes, and the higher-level poli-
cies required to schedule them in an intelligent way. By combining mech-
anisms and policies, we will build up our understanding of how an oper-
ating system virtualizes the CPU.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

THE ABSTRACTION: THE PROCESS 33

References

[CK+08] “The xv6 Operating System”
Russ Cox, Frans Kaashoek, Robert Morris, Nickolai Zeldovich
From: http://pdos.csail.mit.edu/6.828/2008/index.html
The coolest real and little OS in the world. Download and play with it to learn more about the details of
how operating systems actually work.

[DV66] “Programming Semantics for Multiprogrammed Computations”
Jack B. Dennis and Earl C. Van Horn
Communications of the ACM, Volume 9, Number 3, March 1966
This paper defined many of the early terms and concepts around building multiprogrammed systems.

[H70] “The Nucleus of a Multiprogramming System”
Per Brinch Hansen
Communications of the ACM, Volume 13, Number 4, April 1970
This paper introduces one of the first microkernels in operating systems history, called Nucleus. The
idea of smaller, more minimal systems is a theme that rears its head repeatedly in OS history; it all began
with Brinch Hansen’s work described herein.

[L+75] “Policy/mechanism separation in Hydra”
R. Levin, E. Cohen, W. Corwin, F. Pollack, W. Wulf
SOSP 1975
An early paper about how to structure operating systems in a research OS known as Hydra. While
Hydra never became a mainstream OS, some of its ideas influenced OS designers.

[V+65] “Structure of the Multics Supervisor”
V.A. Vyssotsky, F. J. Corbato, R. M. Graham
Fall Joint Computer Conference, 1965
An early paper on Multics, which described many of the basic ideas and terms that we find in modern
systems. Some of the vision behind computing as a utility are finally being realized in modern cloud
systems.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

5

Interlude: Process API

ASIDE: INTERLUDES

Interludes will cover more practical aspects of systems, including a par-
ticular focus on operating system APIs and how to use them. If you don’t
like practical things, you could skip these interludes. But you should like
practical things, because, well, they are generally useful in real life; com-
panies, for example, don’t usually hire you for your non-practical skills.

In this interlude, we discuss process creation in UNIX systems. UNIX

presents one of the most intriguing ways to create a new process with
a pair of system calls: fork() and exec(). A third routine, wait(),
can be used by a process wishing to wait for a process it has created to
complete. We now present these interfaces in more detail, with a few
simple examples to motivate us. And thus, our problem:

CRUX: HOW TO CREATE AND CONTROL PROCESSES

What interfaces should the OS present for process creation and con-
trol? How should these interfaces be designed to enable ease of use as
well as utility?

5.1 The fork() System Call

The fork() system call is used to create a new process [C63]. How-
ever, be forewarned: it is certainly the strangest routine you will ever

call1. More specifically, you have a running program whose code looks
like what you see in Figure 5.1; examine the code, or better yet, type it in
and run it yourself!

1Well, OK, we admit that we don’t know that for sure; who knows what routines you
call when no one is looking? But fork() is pretty odd, no matter how unusual your routine-
calling patterns are.

35

36 INTERLUDE: PROCESS API

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <unistd.h>

4

5 int

6 main(int argc, char *argv[])

7 {

8 printf("hello world (pid:%d)\n", (int) getpid());

9 int rc = fork();

10 if (rc < 0) { // fork failed; exit

11 fprintf(stderr, "fork failed\n");

12 exit(1);

13 } else if (rc == 0) { // child (new process)

14 printf("hello, I am child (pid:%d)\n", (int) getpid());

15 } else { // parent goes down this path (main)

16 printf("hello, I am parent of %d (pid:%d)\n",

17 rc, (int) getpid());

18 }

19 return 0;

20 }

Figure 5.1: p1.c: Calling fork()

When you run this program (called p1.c), you’ll see the following:

prompt> ./p1

hello world (pid:29146)

hello, I am parent of 29147 (pid:29146)

hello, I am child (pid:29147)

prompt>

Let us understand what happened in more detail in p1.c. When it
first started running, the process prints out a hello world message; in-
cluded in that message is its process identifier, also known as a PID. The
process has a PID of 29146; in UNIX systems, the PID is used to name
the process if one wants to do something with the process, such as (for
example) stop it from running. So far, so good.

Now the interesting part begins. The process calls the fork() system
call, which the OS provides as a way to create a new process. The odd
part: the process that is created is an (almost) exact copy of the calling pro-
cess. That means that to the OS, it now looks like there are two copies of
the program p1 running, and both are about to return from the fork()
system call. The newly-created process (called the child, in contrast to the
creating parent) doesn’t start running at main(), like you might expect
(note, the “hello, world” message only got printed out once); rather, it
just comes into life as if it had called fork() itself.

You might have noticed: the child isn’t an exact copy. Specifically, al-
though it now has its own copy of the address space (i.e., its own private
memory), its own registers, its own PC, and so forth, the value it returns
to the caller of fork() is different. Specifically, while the parent receives
the PID of the newly-created child, the child is simply returned a 0. This
differentiation is useful, because it is simple then to write the code that
handles the two different cases (as above).

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTERLUDE: PROCESS API 37

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <unistd.h>

4 #include <sys/wait.h>

5

6 int

7 main(int argc, char *argv[])

8 {

9 printf("hello world (pid:%d)\n", (int) getpid());

10 int rc = fork();

11 if (rc < 0) { // fork failed; exit

12 fprintf(stderr, "fork failed\n");

13 exit(1);

14 } else if (rc == 0) { // child (new process)

15 printf("hello, I am child (pid:%d)\n", (int) getpid());

16 } else { // parent goes down this path (main)

17 int wc = wait(NULL);

18 printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

19 rc, wc, (int) getpid());

20 }

21 return 0;

22 }

Figure 5.2: p2.c: Calling fork() And wait()

You might also have noticed: the output is not deterministic. When
the child process is created, there are now two active processes in the sys-
tem that we care about: the parent and the child. Assuming we are run-
ning on a system with a single CPU (for simplicity), then either the child
or the parent might run at that point. In our example (above), the parent
did and thus printed out its message first. In other cases, the opposite
might happen, as we show in this output trace:

prompt> ./p1

hello world (pid:29146)

hello, I am child (pid:29147)

hello, I am parent of 29147 (pid:29146)

prompt>

The CPU scheduler, a topic we’ll discuss in great detail soon, deter-
mines which process runs at a given moment in time; because the sched-
uler is complex, we cannot usually make strong assumptions about what
it will choose to do, and hence which process will run first. This non-
determinism, as it turns out, leads to some interesting problems, par-
ticularly in multi-threaded programs; hence, we’ll see a lot more non-
determinism when we study concurrency in the second part of the book.

5.2 Adding wait() System Call

So far, we haven’t done much: just created a child that prints out a
message and exits. Sometimes, as it turns out, it is quite useful for a
parent to wait for a child process to finish what it has been doing. This
task is accomplished with the wait() system call (or its more complete
sibling waitpid()); see Figure 5.2 for details.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

38 INTERLUDE: PROCESS API

In this example (p2.c), the parent process calls wait() to delay its
execution until the child finishes executing. When the child is done,
wait() returns to the parent.

Adding a wait() call to the code above makes the output determin-
istic. Can you see why? Go ahead, think about it.

(waiting for you to think and done)

Now that you have thought a bit, here is the output:

prompt> ./p2

hello world (pid:29266)

hello, I am child (pid:29267)

hello, I am parent of 29267 (wc:29267) (pid:29266)

prompt>

With this code, we now know that the child will always print first.
Why do we know that? Well, it might simply run first, as before, and
thus print before the parent. However, if the parent does happen to run
first, it will immediately call wait(); this system call won’t return until

the child has run and exited2. Thus, even when the parent runs first, it
politely waits for the child to finish running, then wait() returns, and
then the parent prints its message.

5.3 Finally, the exec() System Call

A final and important piece of the process creation API is the exec()

system call3. This system call is useful when you want to run a program
that is different from the calling program. For example, calling fork()

in p2.c is only useful if you want to keep running copies of the same
program. However, often you want to run a different program; exec()
does just that (Figure 5.3).

In this example, the child process calls execvp() in order to run the
program wc, which is the word counting program. In fact, it runs wc on
the source file p3.c, thus telling us how many lines, words, and bytes are
found in the file:

prompt> ./p3

hello world (pid:29383)

hello, I am child (pid:29384)

29 107 1030 p3.c

hello, I am parent of 29384 (wc:29384) (pid:29383)

prompt>

2There are a few cases where wait() returns before the child exits; read the man page
for more details, as always. And beware of any absolute and unqualified statements this book
makes, such as “the child will always print first” or “UNIX is the best thing in the world, even
better than ice cream.”

3Actually, there are six variants of exec(): execl(), execle(), execlp(), execv(),
and execvp(). Read the man pages to learn more.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTERLUDE: PROCESS API 39

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <unistd.h>

4 #include <string.h>

5 #include <sys/wait.h>

6

7 int

8 main(int argc, char *argv[])

9 {

10 printf("hello world (pid:%d)\n", (int) getpid());

11 int rc = fork();

12 if (rc < 0) { // fork failed; exit

13 fprintf(stderr, "fork failed\n");

14 exit(1);

15 } else if (rc == 0) { // child (new process)

16 printf("hello, I am child (pid:%d)\n", (int) getpid());

17 char *myargs[3];

18 myargs[0] = strdup("wc"); // program: "wc" (word count)

19 myargs[1] = strdup("p3.c"); // argument: file to count

20 myargs[2] = NULL; // marks end of array

21 execvp(myargs[0], myargs); // runs word count

22 printf("this shouldn’t print out");

23 } else { // parent goes down this path (main)

24 int wc = wait(NULL);

25 printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

26 rc, wc, (int) getpid());

27 }

28 return 0;

29 }

Figure 5.3: p3.c: Calling fork(), wait(), And exec()

If fork() was strange, exec() is not so normal either. What it does:
given the name of an executable (e.g., wc), and some arguments (e.g.,
p3.c), it loads code (and static data) from that executable and over-
writes its current code segment (and current static data) with it; the heap
and stack and other parts of the memory space of the program are re-
initialized. Then the OS simply runs that program, passing in any argu-
ments as the argv of that process. Thus, it does not create a new process;
rather, it transforms the currently running program (formerly p3) into a
different running program (wc). After the exec() in the child, it is al-
most as if p3.c never ran; a successful call to exec() never returns.

5.4 Why? Motivating the API

Of course, one big question you might have: why would we build
such an odd interface to what should be the simple act of creating a new
process? Well, as it turns out, the separation of fork() and exec() is
essential in building a UNIX shell, because it lets the shell run code after
the call to fork() but before the call to exec(); this code can alter the
environment of the about-to-be-run program, and thus enables a variety
of interesting features to be readily built.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

40 INTERLUDE: PROCESS API

TIP: GETTING IT RIGHT (LAMPSON’S LAW)
As Lampson states in his well-regarded “Hints for Computer Systems

Design” [L83], “Get it right. Neither abstraction nor simplicity is a substi-
tute for getting it right.” Sometimes, you just have to do the right thing,
and when you do, it is way better than the alternatives. There are lots
of ways to design APIs for process creation; however, the combination
of fork() and exec() are simple and immensely powerful. Here, the
UNIX designers simply got it right. And because Lampson so often “got
it right”, we name the law in his honor.

The shell is just a user program4. It shows you a prompt and then
waits for you to type something into it. You then type a command (i.e.,
the name of an executable program, plus any arguments) into it; in most
cases, the shell then figures out where in the file system the executable
resides, calls fork() to create a new child process to run the command,
calls some variant of exec() to run the command, and then waits for the
command to complete by calling wait(). When the child completes, the
shell returns from wait() and prints out a prompt again, ready for your
next command.

The separation of fork() and exec() allows the shell to do a whole
bunch of useful things rather easily. For example:

prompt> wc p3.c > newfile.txt

In the example above, the output of the program wc is redirected into
the output file newfile.txt (the greater-than sign is how said redirec-
tion is indicated). The way the shell accomplishes this task is quite sim-
ple: when the child is created, before calling exec(), the shell closes
standard output and opens the file newfile.txt. By doing so, any out-
put from the soon-to-be-running program wc are sent to the file instead
of the screen.

Figure 5.4 shows a program that does exactly this. The reason this redi-
rection works is due to an assumption about how the operating system
manages file descriptors. Specifically, UNIX systems start looking for free
file descriptors at zero. In this case, STDOUT FILENO will be the first
available one and thus get assigned when open() is called. Subsequent
writes by the child process to the standard output file descriptor, for ex-
ample by routines such as printf(), will then be routed transparently
to the newly-opened file instead of the screen.

Here is the output of running the p4.c program:

prompt> ./p4

prompt> cat p4.output

32 109 846 p4.c

prompt>

4And there are lots of shells; tcsh, bash, and zsh to name a few. You should pick one,
read its man pages, and learn more about it; all UNIX experts do.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTERLUDE: PROCESS API 41

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <unistd.h>

4 #include <string.h>

5 #include <fcntl.h>

6 #include <sys/wait.h>

7

8 int

9 main(int argc, char *argv[])

10 {

11 int rc = fork();

12 if (rc < 0) { // fork failed; exit

13 fprintf(stderr, "fork failed\n");

14 exit(1);

15 } else if (rc == 0) { // child: redirect standard output to a file

16 close(STDOUT_FILENO);

17 open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);

18

19 // now exec "wc"...

20 char *myargs[3];

21 myargs[0] = strdup("wc"); // program: "wc" (word count)

22 myargs[1] = strdup("p4.c"); // argument: file to count

23 myargs[2] = NULL; // marks end of array

24 execvp(myargs[0], myargs); // runs word count

25 } else { // parent goes down this path (main)

26 int wc = wait(NULL);

27 }

28 return 0;

29 }

Figure 5.4: p4.c: All Of The Above With Redirection
You’ll notice (at least) two interesting tidbits about this output. First,

when p4 is run, it looks as if nothing has happened; the shell just prints
the command prompt and is immediately ready for your next command.
However, that is not the case; the program p4 did indeed call fork() to
create a new child, and then run the wc program via a call to execvp().
You don’t see any output printed to the screen because it has been redi-
rected to the file p4.output. Second, you can see that when we cat the
output file, all the expected output from running wc is found. Cool, right?

UNIX pipes are implemented in a similar way, but with the pipe()

system call. In this case, the output of one process is connected to an in-
kernel pipe (i.e., queue), and the input of another process is connected
to that same pipe; thus, the output of one process seamlessly is used as
input to the next, and long and useful chains of commands can be strung
together. As a simple example, consider the looking for a word in a file,
and then counting how many times said word occurs; with pipes and the
utilities grep and wc, it is easy – just type grep foo file | wc -l

into the command prompt and marvel at the result.
Finally, while we just have sketched out the process API at a high level,

there is a lot more detail about these calls out there to be learned and
digested; we’ll learn more, for example, about file descriptors when we
talk about file systems in the third part of the book. For now, suffice it
to say that the fork()/exec() combination is a powerful way to create
and manipulate processes.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

42 INTERLUDE: PROCESS API

ASIDE: RTFM – READ THE MAN PAGES

Many times in this book, when referring to a particular system call or
library call, we’ll tell you to read the manual pages, or man pages for
short. Man pages are the original form of documentation that exist on
UNIX systems; realize that they were created before the thing called the
web existed.

Spending some time reading man pages is a key step in the growth of
a systems programmer; there are tons of useful tidbits hidden in those
pages. Some particularly useful pages to read are the man pages for
whichever shell you are using (e.g., tcsh, or bash), and certainly for any
system calls your program makes (in order to see what return values and
error conditions exist).

Finally, reading the man pages can save you some embarrassment. When
you ask colleagues about some intricacy of fork(), they may simply
reply: “RTFM.” This is your colleagues’ way of gently urging you to Read
The Man pages. The F in RTFM just adds a little color to the phrase...

5.5 Other Parts of the API

Beyond fork(), exec(), and wait(), there are a lot of other inter-
faces for interacting with processes in UNIX systems. For example, the
kill() system call is used to send signals to a process, including direc-
tives to go to sleep, die, and other useful imperatives. In fact, the entire
signals subsystem provides a rich infrastructure to deliver external events
to processes, including ways to receive and process those signals.

There are many command-line tools that are useful as well. For exam-
ple, using the ps command allows you to see which processes are run-
ning; read the man pages for some useful flags to pass to ps. The tool
top is also quite helpful, as it displays the processes of the system and
how much CPU and other resources they are eating up. Humorously,
many times when you run it, top claims it is the top resource hog; per-
haps it is a bit of an egomaniac. Finally, there are many different kinds of
CPU meters you can use to get a quick glance understanding of the load
on your system; for example, we always keep MenuMeters (from Raging
Menace software) running on our Macintosh toolbars, so we can see how
much CPU is being utilized at any moment in time. In general, the more
information about what is going on, the better.

5.6 Summary

We have introduced some of the APIs dealing with UNIX process cre-
ation: fork(), exec(), and wait(). However, we have just skimmed
the surface. For more detail, read Stevens and Rago [SR05], of course,
particularly the chapters on Process Control, Process Relationships, and
Signals. There is much to extract from the wisdom therein.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTERLUDE: PROCESS API 43

References

[C63] “A Multiprocessor System Design”
Melvin E. Conway
AFIPS ’63 Fall Joint Computer Conference
New York, USA 1963
An early paper on how to design multiprocessing systems; may be the first place the term fork() was
used in the discussion of spawning new processes.

[DV66] “Programming Semantics for Multiprogrammed Computations”
Jack B. Dennis and Earl C. Van Horn
Communications of the ACM, Volume 9, Number 3, March 1966
A classic paper that outlines the basics of multiprogrammed computer systems. Undoubtedly had great
influence on Project MAC, Multics, and eventually UNIX.

[L83] “Hints for Computer Systems Design”
Butler Lampson
ACM Operating Systems Review, 15:5, October 1983
Lampson’s famous hints on how to design computer systems. You should read it at some point in your
life, and probably at many points in your life.

[SR05] “Advanced Programming in the UNIX Environment”
W. Richard Stevens and Stephen A. Rago
Addison-Wesley, 2005
All nuances and subtleties of using UNIX APIs are found herein. Buy this book! Read it! And most
importantly, live it.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

6

Mechanism: Limited Direct Execution

In order to virtualize the CPU, the operating system needs to somehow
share the physical CPU among many jobs running seemingly at the same
time. The basic idea is simple: run one process for a little while, then
run another one, and so forth. By time sharing the CPU in this manner,
virtualization is achieved.

There are a few challenges, however, in building such virtualization
machinery. The first is performance: how can we implement virtualiza-
tion without adding excessive overhead to the system? The second is
control: how can we run processes efficiently while retaining control over
the CPU? Control is particularly important to the OS, as it is in charge of
resources; without control, a process could simply run forever and take
over the machine, or access information that it should not be allowed to
access. Attaining performance while maintaining control is thus one of
the central challenges in building an operating system.

THE CRUX:
HOW TO EFFICIENTLY VIRTUALIZE THE CPU WITH CONTROL

The OS must virtualize the CPU in an efficient manner, but while re-
taining control over the system. To do so, both hardware and operating
systems support will be required. The OS will often use a judicious bit of
hardware support in order to accomplish its work effectively.

6.1 Basic Technique: Limited Direct Execution

To make a program run as fast as one might expect, not surprisingly
OS developers came up with a technique, which we call limited direct
execution. The “direct execution” part of the idea is simple: just run the
program directly on the CPU. Thus, when the OS wishes to start a pro-
gram running, it creates a process entry for it in a process list, allocates
some memory pages for it, loads the program code into memory (from

45

46 MECHANISM: LIMITED DIRECT EXECUTION

OS Program
Create entry for process list
Allocate memory for program
Load program into memory
Set up stack with argc/argv
Clear registers
Execute call main()

Run main()
Execute return from main

Free memory of process
Remove from process list

Table 6.1: Direction Execution Protocol (Without Limits)

disk), locates its entry point (i.e., the main() routine or something simi-
lar), jumps to it, and starts running the user’s code. Table 6.1 shows this
basic direct execution protocol (without any limits, yet), using a normal
call and return to jump to the program’s main() and later to get back
into the kernel.

Sounds simple, no? But this approach gives rise to a few problems
in our quest to virtualize the CPU. The first is simple: if we just run a
program, how can the OS make sure the program doesn’t do anything
that we don’t want it to do, while still running it efficiently? The second:
when we are running a process, how does the operating system stop it
from running and switch to another process, thus implementing the time
sharing we require to virtualize the CPU?

In answering these questions below, we’ll get a much better sense of
what is needed to virtualize the CPU. In developing these techniques,
we’ll also see where the “limited” part of the name arises from; without
limits on running programs, the OS wouldn’t be in control of anything
and thus would be “just a library” – a very sad state of affairs for an
aspiring operating system!

6.2 Problem #1: Restricted Operations

Direct execution has the obvious advantage of being fast; the program
runs natively on the hardware CPU and thus executes as quickly as one
would expect. But running on the CPU introduces a problem: what if
the process wishes to perform some kind of restricted operation, such
as issuing an I/O request to a disk, or gaining access to more system
resources such as CPU or memory?

THE CRUX: HOW TO PERFORM RESTRICTED OPERATIONS

A process must be able to perform I/O and some other restricted oper-
ations, but without giving the process complete control over the system.
How can the OS and hardware work together to do so?

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

MECHANISM: LIMITED DIRECT EXECUTION 47

TIP: USE PROTECTED CONTROL TRANSFER

The hardware assists the OS by providing different modes of execution.
In user mode, applications do not have full access to hardware resources.
In kernel mode, the OS has access to the full resources of the machine.
Special instructions to trap into the kernel and return-from-trap back to
user-mode programs are also provided, as well instructions that allow the
OS to tell the hardware where the trap table resides in memory.

One approach would simply be to let any process do whatever it wants
in terms of I/O and other related operations. However, doing so would
prevent the construction of many kinds of systems that are desirable. For
example, if we wish to build a file system that checks permissions before
granting access to a file, we can’t simply let any user process issue I/Os
to the disk; if we did, a process could simply read or write the entire disk
and thus all protections would be lost.

Thus, the approach we take is to introduce a new processor mode,
known as user mode; code that runs in user mode is restricted in what it
can do. For example, when running in user mode, a process can’t issue
I/O requests; doing so would result in the processor raising an exception;
the OS would then likely kill the process.

In contrast to user mode is kernel mode, which the operating system
(or kernel) runs in. In this mode, code that runs can do what it likes, in-
cluding privileged operations such as issuing I/O requests and executing
all types of restricted instructions.

We are still left with a challenge, however: what should a user pro-
cess do when it wishes to perform some kind of privileged operation,
such as reading from disk? To enable this, virtually all modern hard-
ware provides the ability for user programs to perform a system call.
Pioneered on ancient machines such as the Atlas [K+61,L78], system calls
allow the kernel to carefully expose certain key pieces of functionality to
user programs, such as accessing the file system, creating and destroy-
ing processes, communicating with other processes, and allocating more
memory. Most operating systems provide a few hundred calls (see the
POSIX standard for details [P10]); early Unix systems exposed a more
concise subset of around twenty calls.

To execute a system call, a program must execute a special trap instruc-
tion. This instruction simultaneously jumps into the kernel and raises the
privilege level to kernel mode; once in the kernel, the system can now per-
form whatever privileged operations are needed (if allowed), and thus do
the required work for the calling process. When finished, the OS calls a
special return-from-trap instruction, which, as you might expect, returns
into the calling user program while simultaneously reducing the privi-
lege level back to user mode.

The hardware needs to be a bit careful when executing a trap, in that
it must make sure to save enough of the caller’s register state in order

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

48 MECHANISM: LIMITED DIRECT EXECUTION

ASIDE: WHY SYSTEM CALLS LOOK LIKE PROCEDURE CALLS

You may wonder why a call to a system call, such as open() or read(),
looks exactly like a typical procedure call in C; that is, if it looks just like
a procedure call, how does the system know it’s a system call, and do all
the right stuff? The simple reason: it is a procedure call, but hidden in-
side that procedure call is the famous trap instruction. More specifically,
when you call open() (for example), you are executing a procedure call
into the C library. Therein, whether for open() or any of the other sys-
tem calls provided, the library uses an agreed-upon calling convention
with the kernel to put the arguments to open in well-known locations
(e.g., on the stack, or in specific registers), puts the system-call number
into a well-known location as well (again, onto the stack or a register),
and then executes the aforementioned trap instruction. The code in the
library after the trap unpacks return values and returns control to the
program that issued the system call. Thus, the parts of the C library that
make system calls are hand-coded in assembly, as they need to carefully
follow convention in order to process arguments and return values cor-
rectly, as well as execute the hardware-specific trap instruction. And now
you know why you personally don’t have to write assembly code to trap
into an OS; somebody has already written that assembly for you.

to be able to return correctly when the OS issues the return-from-trap
instruction. On x86, for example, the processor will push the program
counter, flags, and a few other registers onto a per-process kernel stack;
the return-from-trap will pop these values off the stack and resume exe-
cution of the user-mode program (see the Intel systems manuals [I11] for
details). Other hardware systems use different conventions, but the basic
concepts are similar across platforms.

There is one important detail left out of this discussion: how does the
trap know which code to run inside the OS? Clearly, the calling process
can’t specify an address to jump to (as you would when making a pro-
cedure call); doing so would allow programs to jump anywhere into the
kernel which clearly is a bad idea (imagine jumping into code to access
a file, but just after a permission check; in fact, it is likely such ability
would enable a wily programmer to get the kernel to run arbitrary code
sequences [S07]). Thus the kernel must carefully control what code exe-
cutes upon a trap.

The kernel does so by setting up a trap table at boot time. When the
machine boots up, it does so in privileged (kernel) mode, and thus is
free to configure machine hardware as need be. One of the first things
the OS thus does is to tell the hardware what code to run when certain
exceptional events occur. For example, what code should run when a
hard-disk interrupt takes place, when a keyboard interrupt occurs, or
when program makes a system call? The OS informs the hardware of
the locations of these trap handlers, usually with some kind of special

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

MECHANISM: LIMITED DIRECT EXECUTION 49

OS @ boot Hardware
(kernel mode)
initialize trap table

remember address of...
syscall handler

OS @ run Hardware Program
(kernel mode) (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup user stack with argv
Fill kernel stack with reg/PC
return-from-trap

restore regs from kernel stack
move to user mode
jump to main

Run main()
...
Call system call
trap into OS

save regs to kernel stack
move to kernel mode
jump to trap handler

Handle trap
Do work of syscall

return-from-trap
restore regs from kernel stack
move to user mode
jump to PC after trap

...
return from main
trap (via exit())

Free memory of process
Remove from process list

Table 6.2: Limited Direction Execution Protocol

instruction. Once the hardware is informed, it remembers the location of
these handlers until the machine is next rebooted, and thus the hardware
knows what to do (i.e., what code to jump to) when system calls and other
exceptional events take place.

One last aside: being able to execute the instruction to tell the hard-
ware where the trap tables are is a very powerful capability. Thus, as you
might have guessed, it is also a privileged operation. If you try to exe-
cute this instruction in user mode, the hardware won’t let you, and you
can probably guess what will happen (hint: adios, offending program).
Point to ponder: what horrible things could you do to a system if you
could install your own trap table? Could you take over the machine?

The timeline (with time increasing downward, in Table 6.2) summa-
rizes the protocol. We assume each process has a kernel stack where reg-
isters (including general purpose registers and the program counter) are
saved to and restored from (by the hardware) when transitioning into and
out of the kernel.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

50 MECHANISM: LIMITED DIRECT EXECUTION

There are two phases in the LDE protocol. In the first (at boot time),
the kernel initializes the trap table, and the CPU remembers its location
for subsequent use. The kernel does so via a privileged instruction (all
privileged instructions are highlighted in bold).

In the second (when running a process), the kernel sets up a few things
(e.g., allocating a node on the process list, allocating memory) before us-
ing a return-from-trap instruction to start the execution of the process;
this switches the CPU to user mode and begins running the process.
When the process wishes to issue a system call, it traps back into the OS,
which handles it and once again returns control via a return-from-trap
to the process. The process then completes its work, and returns from
main(); this usually will return into some stub code which will properly
exit the program (say, by calling the exit() system call, which traps into
the OS). At this point, the OS cleans up and we are done.

6.3 Problem #2: Switching Between Processes

The next problem with direct execution is achieving a switch between
processes. Switching between processes should be simple, right? The
OS should just decide to stop one process and start another. What’s the
big deal? But it actually is a little bit tricky: specifically, if a process is
running on the CPU, this by definition means the OS is not running. If
the OS is not running, how can it do anything at all? (hint: it can’t) While
this sounds almost philosophical, it is a real problem: there is clearly no
way for the OS to take an action if it is not running on the CPU. Thus we
arrive at the crux of the problem.

THE CRUX: HOW TO REGAIN CONTROL OF THE CPU
How can the operating system regain control of the CPU so that it can

switch between processes?

A Cooperative Approach: Wait For System Calls

One approach that some systems have taken in the past (for example,
early versions of the Macintosh operating system [M11], or the old Xerox
Alto system [A79]) is known as the cooperative approach. In this style,
the OS trusts the processes of the system to behave reasonably. Processes
that run for too long are assumed to periodically give up the CPU so that
the OS can decide to run some other task.

Thus, you might ask, how does a friendly process give up the CPU in
this utopian world? Most processes, as it turns out, transfer control of
the CPU to the OS quite frequently by making system calls, for example,
to open a file and subsequently read it, or to send a message to another
machine, or to create a new process. Systems like this often include an

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

MECHANISM: LIMITED DIRECT EXECUTION 51

TIP: DEALING WITH APPLICATION MISBEHAVIOR

Operating systems often have to deal with misbehaving processes, those
that either through design (maliciousness) or accident (bugs) attempt to
do something that they shouldn’t. In modern systems, the way the OS
tries to handle such malfeasance is to simply terminate the offender. One
strike and you’re out! Perhaps brutal, but what else should the OS do
when you try to access memory illegally or execute an illegal instruction?

explicit yield system call, which does nothing except to transfer control
to the OS so it can run other processes.

Applications also transfer control to the OS when they do something
illegal. For example, if an application divides by zero, or tries to access
memory that it shouldn’t be able to access, it will generate a trap to the
OS. The OS will then have control of the CPU again (and likely terminate
the offending process).

Thus, in a cooperative scheduling system, the OS regains control of
the CPU by waiting for a system call or an illegal operation of some kind
to take place. You might also be thinking: isn’t this passive approach less
than ideal? What happens, for example, if a process (whether malicious,
or just full of bugs) ends up in an infinite loop, and never makes a system
call? What can the OS do then?

A Non-Cooperative Approach: The OS Takes Control

Without some additional help from the hardware, it turns out the OS can’t
do much at all when a process refuses to make system calls (or mistakes)
and thus return control to the OS. In fact, in the cooperative approach,
your only recourse when a process gets stuck in an infinite loop is to
resort to the age-old solution to all problems in computer systems: reboot
the machine. Thus, we again arrive at a subproblem of our general quest
to gain control of the CPU.

THE CRUX: HOW TO GAIN CONTROL WITHOUT COOPERATION

How can the OS gain control of the CPU even if processes are not being
cooperative? What can the OS do to ensure a rogue process does not take
over the machine?

The answer turns out to be simple and was discovered by a number
of people building computer systems many years ago: a timer interrupt
[M+63]. A timer device can be programmed to raise an interrupt every
so many milliseconds; when the interrupt is raised, the currently running
process is halted, and a pre-configured interrupt handler in the OS runs.
At this point, the OS has regained control of the CPU, and thus can do
what it pleases: stop the current process, and start a different one.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

52 MECHANISM: LIMITED DIRECT EXECUTION

TIP: USE THE TIMER INTERRUPT TO REGAIN CONTROL

The addition of a timer interrupt gives the OS the ability to run again
on a CPU even if processes act in a non-cooperative fashion. Thus, this
hardware feature is essential in helping the OS maintain control of the
machine.

As we discussed before with system calls, the OS must inform the
hardware of which code to run when the timer interrupt occurs; thus,
at boot time, the OS does exactly that. Second, also during the boot
sequence, the OS must start the timer, which is of course a privileged
operation. Once the timer has begun, the OS can thus feel safe in that
control will eventually be returned to it, and thus the OS is free to run
user programs. The timer can also be turned off (also a privileged opera-
tion), something we will discuss later when we understand concurrency
in more detail.

Note that the hardware has some responsibility when an interrupt oc-
curs, in particular to save enough of the state of the program that was
running when the interrupt occurred such that a subsequent return-from-
trap instruction will be able to resume the running program correctly.
This set of actions is quite similar to the behavior of the hardware during
an explicit system-call trap into the kernel, with various registers thus
getting saved (e.g., onto a kernel stack) and thus easily restored by the
return-from-trap instruction.

Saving and Restoring Context

Now that the OS has regained control, whether cooperatively via a sys-
tem call, or more forcefully via a timer interrupt, a decision has to be
made: whether to continue running the currently-running process, or
switch to a different one. This decision is made by a part of the operating
system known as the scheduler; we will discuss scheduling policies in
great detail in the next few chapters.

If the decision is made to switch, the OS then executes a low-level
piece of code which we refer to as a context switch. A context switch is
conceptually simple: all the OS has to do is save a few register values
for the currently-executing process (onto its kernel stack, for example)
and restore a few for the soon-to-be-executing process (from its kernel
stack). By doing so, the OS thus ensures that when the return-from-trap
instruction is finally executed, instead of returning to the process that was
running, the system resumes execution of another process.

To save the context of the currently-running process, the OS will exe-
cute some low-level assembly code to save the general purpose registers,
PC, as well as the kernel stack pointer of the currently-running process,
and then restore said registers, PC, and switch to the kernel stack for the
soon-to-be-executing process. By switching stacks, the kernel enters the

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

MECHANISM: LIMITED DIRECT EXECUTION 53

OS @ boot Hardware
(kernel mode)
initialize trap table

remember addresses of...
syscall handler
timer handler

start interrupt timer
start timer
interrupt CPU in X ms

OS @ run Hardware Program
(kernel mode) (user mode)

Process A
...

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

Handle the trap
Call switch() routine

save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)
switch to k-stack(B)

return-from-trap (into B)
restore regs(B) from k-stack(B)
move to user mode
jump to B’s PC

Process B
...

Table 6.3: Limited Direction Execution Protocol (Timer Interrupt)

call to the switch code in the context of one process (the one that was in-
terrupted) and returns in the context of another (the soon-to-be-executing
one). When the OS then finally executes a return-from-trap instruction,
the soon-to-be-executing process becomes the currently-running process.
And thus the context switch is complete.

A timeline of the entire process is shown in Table 6.3. In this exam-
ple, Process A is running and then is interrupted by the timer interrupt.
The hardware saves its state (onto its kernel stack) and enters the kernel
(switching to kernel mode). In the timer interrupt handler, the OS decides
to switch from running Process A to Process B. At that point, it calls the
switch() routine, which carefully saves current register values (into the
process structure of A), restores the registers of Process B (from its process
structure entry), and then switches contexts, specifically by changing the
stack pointer to use B’s kernel stack (and not A’s). Finally, the OS returns-
from-trap, which restores B’s register state and starts running it.

Note that there are two types of register saves/restores that happen
during this protocol. The first is when the timer interrupt occurs; in this
case, the user register state of the running process is implicitly saved by
the hardware, using the kernel stack of that process. The second is when
the OS decides to switch from A to B; in this case, the kernel register state

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

54 MECHANISM: LIMITED DIRECT EXECUTION

1 # void swtch(struct context **old, struct context *new);

2 #

3 # Save current register context in old

4 # and then load register context from new.

5 .globl swtch

6 swtch:

7 # Save old registers

8 movl 4(%esp), %eax # put old ptr into eax

9 popl 0(%eax) # save the old IP

10 movl %esp, 4(%eax) # and stack

11 movl %ebx, 8(%eax) # and other registers

12 movl %ecx, 12(%eax)

13 movl %edx, 16(%eax)

14 movl %esi, 20(%eax)

15 movl %edi, 24(%eax)

16 movl %ebp, 28(%eax)

17

18 # Load new registers

19 movl 4(%esp), %eax # put new ptr into eax

20 movl 28(%eax), %ebp # restore other registers

21 movl 24(%eax), %edi

22 movl 20(%eax), %esi

23 movl 16(%eax), %edx

24 movl 12(%eax), %ecx

25 movl 8(%eax), %ebx

26 movl 4(%eax), %esp # stack is switched here

27 pushl 0(%eax) # return addr put in place

28 ret # finally return into new ctxt

Figure 6.1: The xv6 Context Switch Code

is explicitly saved by the software (i.e., the OS), but this time into memory
in the process structure of the process. The latter action moves the system
from running as if it just trapped into the kernel from A to as if it just
trapped into the kernel from B.

To give you a better sense of how such a switch is enacted, Figure 6.1
shows the context switch code for xv6. See if you can make sense of it
(you’ll have to know a bit of x86, as well as some xv6, to do so). The
context structures old and new are found the old and new process’s
process structures, respectively.

6.4 Worried About Concurrency?

Some of you, as attentive and thoughtful readers, may be now think-
ing: “Hmm... what happens when, during a system call, a timer interrupt
occurs?” or “What happens when you’re handling one interrupt and an-
other one happens? Doesn’t that get hard to handle in the kernel?” Good
questions – we really have some hope for you yet!

The answer is yes, the OS does indeed need to be concerned as to what
happens if, during interrupt or trap handling, another interrupt occurs.
This, in fact, is the exact topic of the entire second piece of this book, on
concurrency; we’ll defer a detailed discussion until then.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

MECHANISM: LIMITED DIRECT EXECUTION 55

ASIDE: HOW LONG CONTEXT SWITCHES TAKE

A natural question you might have is: how long does something like a
context switch take? Or even a system call? For those of you that are cu-
rious, there is a tool called lmbench [MS96] that measures exactly those
things, as well as a few other performance measures that might be rele-
vant.

Results have improved quite a bit over time, roughly tracking processor
performance. For example, in 1996 running Linux 1.3.37 on a 200-MHz
P6 CPU, system calls took roughly 4 microseconds, and a context switch
roughly 6 microseconds [MS96]. Modern systems perform almost an or-
der of magnitude better, with sub-microsecond results on systems with
2- or 3-GHz processors.

It should be noted that not all operating-system actions track CPU per-
formance. As Ousterhout observed, many OS operations are memory
intensive, and memory bandwidth has not improved as dramatically as
processor speed over time [O90]. Thus, depending on your workload,
buying the latest and greatest processor may not speed up your OS as
much as you might hope.

To whet your appetite, we’ll just sketch some basics of how the OS
handles these tricky situations. One simple thing an OS might do is dis-
able interrupts during interrupt processing; doing so ensures that when
one interrupt is being handled, no other one will be delivered to the CPU.
Of course, the OS has to be careful in doing so; disabling interrupts for
too long could lead to lost interrupts, which is (in technical terms) bad.

Operating systems also have developed a number of sophisticated
locking schemes to protect concurrent access to internal data structures.
This enables multiple activities to be on-going within the kernel at the
same time, particularly useful on multiprocessors. As we’ll see in the
next piece of this book on concurrency, though, such locking can be com-
plicated and lead to a variety of interesting and hard-to-find bugs.

6.5 Summary

We have described some key low-level mechanisms to implement CPU
virtualization, a set of techniques which we collectively refer to as limited
direct execution. The basic idea is straightforward: just run the program
you want to run on the CPU, but first make sure to set up the hardware
so as to limit what the process can do without OS assistance.

This general approach is taken in real life as well. For example, those
of you who have children, or, at least, have heard of children, may be
familiar with the concept of baby proofing a room: locking cabinets con-
taining dangerous stuff and covering electrical sockets. When the room is
thus readied, you can let your baby roam freely, secure in the knowledge
that the most dangerous aspects of the room have been restricted.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

56 MECHANISM: LIMITED DIRECT EXECUTION

TIP: REBOOT IS USEFUL

Earlier on, we noted that the only solution to infinite loops (and similar
behaviors) under cooperative preemption is to reboot the machine. While
you may scoff at this hack, researchers have shown that reboot (or in gen-
eral, starting over some piece of software) can be a hugely useful tool in
building robust systems [C+04].

Specifically, reboot is useful because it moves software back to a known
and likely more tested state. Reboots also reclaim stale or leaked re-
sources (e.g., memory) which may otherwise be hard to handle. Finally,
reboots are easy to automate. For all of these reasons, it is not uncommon
in large-scale cluster Internet services for system management software
to periodically reboot sets of machines in order to reset them and thus
obtain the advantages listed above.

Thus, next time you reboot, you are not just enacting some ugly hack.
Rather, you are using a time-tested approach to improving the behavior
of a computer system. Well done!

In an analogous manner, the OS “baby proofs” the CPU, by first (dur-
ing boot time) setting up the trap handlers and starting an interrupt timer,
and then by only running processes in a restricted mode. By doing so, the
OS can feel quite assured that processes can run efficiently, only requir-
ing OS intervention to perform privileged operations or when they have
monopolized the CPU for too long and thus need to be switched out.

We thus have the basic mechanisms for virtualizing the CPU in place.
But a major question is left unanswered: which process should we run at
a given time? It is this question that the scheduler must answer, and thus
the next topic of our study.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

MECHANISM: LIMITED DIRECT EXECUTION 57

References

[A79] “Alto User’s Handbook”
Xerox Palo Alto Research Center, September 1979
Available: http://history-computer.com/Library/AltoUsersHandbook.pdf
An amazing system, way ahead of its time. Became famous because Steve Jobs visited, took notes, and
built Lisa and eventually Mac.

[C+04] “Microreboot – A Technique for Cheap Recovery”
George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, Armando Fox
OSDI ’04, San Francisco, CA, December 2004
An excellent paper pointing out how far one can go with reboot in building more robust systems.

[I11] “Intel 64 and IA-32 Architectures Software Developer’s Manual”
Volume 3A and 3B: System Programming Guide
Intel Corporation, January 2011

[K+61] “One-Level Storage System”
T. Kilburn, D.B.G. Edwards, M.J. Lanigan, F.H. Sumner
IRE Transactions on Electronic Computers, April 1962
The Atlas pioneered much of what you see in modern systems. However, this paper is not the best one
to read. If you were to only read one, you might try the historical perspective below [L78].

[L78] “The Manchester Mark I and Atlas: A Historical Perspective”
S. H. Lavington
Communications of the ACM, 21:1, January 1978
A history of the early development of computers and the pioneering efforts of Atlas.

[M+63] “A Time-Sharing Debugging System for a Small Computer”
J. McCarthy, S. Boilen, E. Fredkin, J. C. R. Licklider
AFIPS ’63 (Spring), May, 1963, New York, USA
An early paper about time-sharing that refers to using a timer interrupt; the quote that discusses it:
“The basic task of the channel 17 clock routine is to decide whether to remove the current user from core
and if so to decide which user program to swap in as he goes out.”

[MS96] “lmbench: Portable tools for performance analysis”
Larry McVoy and Carl Staelin
USENIX Annual Technical Conference, January 1996
A fun paper about how to measure a number of different things about your OS and its performance.
Download lmbench and give it a try.

[M11] “Mac OS 9”
January 2011
Available: http://en.wikipedia.org/wiki/Mac OS 9

[O90] “Why Aren’t Operating Systems Getting Faster as Fast as Hardware?”
J. Ousterhout
USENIX Summer Conference, June 1990
A classic paper on the nature of operating system performance.

[P10] “The Single UNIX Specification, Version 3”
The Open Group, May 2010
Available: http://www.unix.org/version3/
This is hard and painful to read, so probably avoid it if you can.

[S07] “The Geometry of Innocent Flesh on the Bone:
Return-into-libc without Function Calls (on the x86)”
Hovav Shacham
CCS ’07, October 2007
One of those awesome, mind-blowing ideas that you’ll see in research from time to time. The author
shows that if you can jump into code arbitrarily, you can essentially stitch together any code sequence
you like (given a large code base) – read the paper for the details. The technique makes it even harder to
defend against malicious attacks, alas.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

58 MECHANISM: LIMITED DIRECT EXECUTION

Homework (Measurement)

ASIDE: MEASUREMENT HOMEWORKS

Measurement homeworks are small exercises where you write code to
run on a real machine, in order to measure some aspect of OS or hardware
performance. The idea behind such homeworks is to give you a little bit
of hands-on experience with a real operating system.

In this homework, you’ll measure the costs of a system call and context
switch. Measuring the cost of a system call is relatively easy. For example,
you could repeatedly call a simple system call (e.g., performing a 0-byte
read), and time how long it takes; dividing the time by the number of
iterations gives you an estimate of the cost of a system call.

One thing you’ll have to take into account is the precision and accu-
racy of your timer. A typical timer that you can use is gettimeofday();
read the man page for details. What you’ll see there is that gettimeofday()
returns the time in microseconds since 1970; however, this does not mean
that the timer is precise to the microsecond. Measure back-to-back calls
to gettimeofday() to learn something about how precise the timer re-
ally is; this will tell you how many iterations of your null system-call
test you’ll have to run in order to get a good measurement result. If
gettimeofday() is not precise enough for you, you might look into
using the rdtsc instruction available on x86 machines.

Measuring the cost of a context switch is a little trickier. The lmbench
benchmark does so by running two processes on a single CPU, and set-
ting up two UNIX pipes between them; a pipe is just one of many ways
processes in a UNIX system can communicate with one another. The first
process then issues a write to the first pipe, and waits for a read on the
second; upon seeing the first process waiting for something to read from
the second pipe, the OS puts the first process in the blocked state, and
switches to the other process, which reads from the first pipe and then
writes to the second. When the second process tries to read from the first
pipe again, it blocks, and thus the back-and-forth cycle of communication
continues. By measuring the cost of communicating like this repeatedly,
lmbench can make a good estimate of the cost of a context switch. You
can try to re-create something similar here, using pipes, or perhaps some
other communication mechanism such as UNIX sockets.

One difficulty in measuring context-switch cost arises in systems with
more than one CPU; what you need to do on such a system is ensure that
your context-switching processes are located on the same processor. For-
tunately, most operating systems have calls to bind a process to a partic-
ular processor; on Linux, for example, the sched setaffinity() call
is what you’re looking for. By ensuring both processes are on the same
processor, you are making sure to measure the cost of the OS stopping
one process and restoring another on the same CPU.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

7

Scheduling: Introduction

By now low-level mechanisms of running processes (e.g., context switch-
ing) should be clear; if they are not, go back a chapter or two, and read the
description of how that stuff works again. However, we have yet to un-
derstand the high-level policies that an OS scheduler employs. We will
now do just that, presenting a series of scheduling policies (sometimes
called disciplines) that various smart and hard-working people have de-
veloped over the years.

The origins of scheduling, in fact, predate computer systems; early
approaches were taken from the field of operations management and ap-
plied to computers. This reality should be no surprise: assembly lines
and many other human endeavors also require scheduling, and many of
the same concerns exist therein, including a laser-like desire for efficiency.
And thus, our problem:

THE CRUX: HOW TO DEVELOP SCHEDULING POLICY

How should we develop a basic framework for thinking about
scheduling policies? What are the key assumptions? What metrics are
important? What basic approaches have been used in the earliest of com-
puter systems?

7.1 Workload Assumptions

Before getting into the range of possible policies, let us first make a
number of simplifying assumptions about the processes running in the
system, sometimes collectively called the workload. Determining the
workload is a critical part of building policies, and the more you know
about workload, the more fine-tuned your policy can be.

The workload assumptions we make here are clearly unrealistic, but
that is alright (for now), because we will relax them as we go, and even-
tually develop what we will refer to as ... (dramatic pause) ...

59

60 SCHEDULING: INTRODUCTION

a fully-operational scheduling discipline1.
We will make the following assumptions about the processes, some-

times called jobs, that are running in the system:

1. Each job runs for the same amount of time.
2. All jobs arrive at the same time.
3. All jobs only use the CPU (i.e., they perform no I/O)
4. The run-time of each job is known.

We said all of these assumptions were unrealistic, but just as some an-
imals are more equal than others in Orwell’s Animal Farm [O45], some
assumptions are more unrealistic than others in this chapter. In particu-
lar, it might bother you that the run-time of each job is known: this would
make the scheduler omniscient, which, although it would be great (prob-
ably), is not likely to happen anytime soon.

7.2 Scheduling Metrics

Beyond making workload assumptions, we also need one more thing
to enable us to compare different scheduling policies: a scheduling met-
ric. A metric is just something that we use to measure something, and
there are a number of different metrics that make sense in scheduling.

For now, however, let us also simplify our life by simply having a sin-
gle metric: turnaround time. The turnaround time of a job is defined
as the time at which the job completes minus the time at which the job
arrived in the system. More formally, the turnaround time Tturnaround is:

Tturnaround = Tcompletion − Tarrival (7.1)

Because we have assumed that all jobs arrive at the same time, for now
Tarrival = 0 and hence Tturnaround = Tcompletion. This fact will change
as we relax the aforementioned assumptions.

You should note that turnaround time is a performance metric, which
will be our primary focus this chapter. Another metric of interest is fair-
ness, as measured (for example) by Jain’s Fairness Index [J91]. Perfor-
mance and fairness are often at odds in scheduling; a scheduler, for ex-
ample, may optimize performance but at the cost of preventing a few jobs
from running, thus decreasing fairness. This conundrum shows us that
life isn’t always perfect.

7.3 First In, First Out (FIFO)

The most basic algorithm a scheduler can implement is known as First
In, First Out (FIFO) scheduling or sometimes First Come, First Served

1Said in the same way you would say “A fully-operational Death Star.”

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SCHEDULING: INTRODUCTION 61

(FCFS). FIFO has a number of positive properties: it is clearly very simple
and thus easy to implement. Given our assumptions, it works pretty well.

Let’s do a quick example together. Imagine three jobs arrive in the
system, A, B, and C, at roughly the same time (Tarrival = 0). Because
FIFO has to put some job first, let’s assume that while they all arrived
simultaneously, A arrived just a hair before B which arrived just a hair
before C. Assume also that each job runs for 10 seconds. What will the
average turnaround time be for these jobs?

0 20 40 60 80 100 120

Time

A B C

Figure 7.1: FIFO Simple Example

From Figure 7.1, you can see that A finished at 10, B at 20, and C at 30.
Thus, the average turnaround time for the three jobs is simply 10+20+30

3
=

20. Computing turnaround time is as easy as that.
Now let’s relax one of our assumptions. In particular, let’s relax as-

sumption 1, and thus no longer assume that each job runs for the same
amount of time. How does FIFO perform now? What kind of workload
could you construct to make FIFO perform poorly?

(think about this before reading on ... keep thinking ... got it?!)
Presumably you’ve figured this out by now, but just in case, let’s do

an example to show how jobs of different lengths can lead to trouble for
FIFO scheduling. In particular, let’s again assume three jobs (A, B, and
C), but this time A runs for 100 seconds while B and C run for 10 each.

0 20 40 60 80 100 120

Time

A B C

Figure 7.2: Why FIFO Is Not That Great

As you can see in Figure 7.2, Job A runs first for the full 100 seconds
before B or C even get a chance to run. Thus, the average turnaround
time for the system is high: a painful 110 seconds (100+110+120

3
= 110).

This problem is generally referred to as the convoy effect [B+79], where
a number of relatively-short potential consumers of a resource get queued
behind a heavyweight resource consumer. This scheduling scenario might
remind you of a single line at a grocery store and what you feel like when

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

62 SCHEDULING: INTRODUCTION

TIP: THE PRINCIPLE OF SJF
Shortest Job First represents a general scheduling principle that can be
applied to any system where the perceived turnaround time per customer
(or, in our case, a job) matters. Think of any line you have waited in: if
the establishment in question cares about customer satisfaction, it is likely
they have taken SJF into account. For example, grocery stores commonly
have a “ten-items-or-less” line to ensure that shoppers with only a few
things to purchase don’t get stuck behind the family preparing for some
upcoming nuclear winter.

you see the person in front of you with three carts full of provisions and

a checkbook out; it’s going to be a while2.
So what should we do? How can we develop a better algorithm to

deal with our new reality of jobs that run for different amounts of time?
Think about it first; then read on.

7.4 Shortest Job First (SJF)

It turns out that a very simple approach solves this problem; in fact
it is an idea stolen from operations research [C54,PV56] and applied to
scheduling of jobs in computer systems. This new scheduling discipline
is known as Shortest Job First (SJF), and the name should be easy to
remember because it describes the policy quite completely: it runs the
shortest job first, then the next shortest, and so on.

0 20 40 60 80 100 120

Time

B C A

Figure 7.3: SJF Simple Example

Let’s take our example above but with SJF as our scheduling policy.
Figure 7.3 shows the results of running A, B, and C. Hopefully the dia-
gram makes it clear why SJF performs much better with regards to aver-
age turnaround time. Simply by running B and C before A, SJF reduces
average turnaround from 110 seconds to 50 (10+20+120

3
= 50), more than

a factor of two improvement.
In fact, given our assumptions about jobs all arriving at the same time,

we could prove that SJF is indeed an optimal scheduling algorithm. How-

2Recommended action in this case: either quickly switch to a different line, or take a long,
deep, and relaxing breath. That’s right, breathe in, breathe out. It will be OK, don’t worry.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SCHEDULING: INTRODUCTION 63

ASIDE: PREEMPTIVE SCHEDULERS

In the old days of batch computing, a number of non-preemptive sched-
ulers were developed; such systems would run each job to completion
before considering whether to run a new job. Virtually all modern sched-
ulers are preemptive, and quite willing to stop one process from run-
ning in order to run another. This implies that the scheduler employs the
mechanisms we learned about previously; in particular, the scheduler can
perform a context switch, stopping one running process temporarily and
resuming (or starting) another.

ever, you are in a systems class, not theory or operations research; no
proofs are allowed.

Thus we arrive upon a good approach to scheduling with SJF, but our
assumptions are still fairly unrealistic. Let’s relax another. In particular,
we can target assumption 2, and now assume that jobs can arrive at any
time instead of all at once. What problems does this lead to?

(Another pause to think ... are you thinking? Come on, you can do it)
Here we can illustrate the problem again with an example. This time,

assume A arrives at t = 0 and needs to run for 100 seconds, whereas B
and C arrive at t = 10 and each need to run for 10 seconds. With pure
SJF, we’d get the schedule seen in Figure 7.4.

0 20 40 60 80 100 120

Time

A B C
[B,C arrive]

Figure 7.4: SJF With Late Arrivals From B and C

As you can see from the figure, even though B and C arrived shortly
after A, they still are forced to wait until A has completed, and thus suffer
the same convoy problem. Average turnaround time for these three jobs

is 103.33 seconds (100+(110−10)+(120−10)
3

). What can a scheduler do?

7.5 Shortest Time-to-Completion First (STCF)

As you might have guessed, given our previous discussion about mech-
anisms such as timer interrupts and context switching, the scheduler can
certainly do something else when B and C arrive: it can preempt job A
and decide to run another job, perhaps continuing A later. SJF by our defi-
nition is a non-preemptive scheduler, and thus suffers from the problems
described above.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

64 SCHEDULING: INTRODUCTION

0 20 40 60 80 100 120

Time

A B C A
[B,C arrive]

Figure 7.5: STCF Simple Example

Fortunately, there is a scheduler which does exactly that: add preemp-
tion to SJF, known as the Shortest Time-to-Completion First (STCF) or
Preemptive Shortest Job First (PSJF) scheduler [CK68]. Any time a new
job enters the system, it determines of the remaining jobs and new job,
which has the least time left, and then schedules that one. Thus, in our
example, STCF would preempt A and run B and C to completion; only
when they are finished would A’s remaining time be scheduled. Figure
7.5 shows an example.

The result is a much-improved average turnaround time: 50 seconds

((120−0)+(20−10)+(30−10)
3

). And as before, given our new assumptions,
STCF is provably optimal; given that SJF is optimal if all jobs arrive at
the same time, you should probably be able to see the intuition behind
the optimality of STCF.

Thus, if we knew that job lengths, and jobs only used the CPU, and our
only metric was turnaround time, STCF would be a great policy. In fact,
for a number of early batch computing systems, these types of scheduling
algorithms made some sense. However, the introduction of time-shared
machines changed all that. Now users would sit at a terminal and de-
mand interactive performance from the system as well. And thus, a new
metric was born: response time.

Response time is defined as the time from when the job arrives in a
system to the first time it is scheduled. More formally:

Tresponse = Tfirstrun − Tarrival (7.2)

For example, if we had the schedule above (with A arriving at time 0,
and B and C at time 10), the response time of each job is as follows: 0 for
job A, 0 for B, and 10 for C (average: 3.33).

As you might be thinking, STCF and related disciplines are not par-
ticularly good for response time. If three jobs arrive at the same time,
for example, the third job has to wait for the previous two jobs to run in
their entirety before being scheduled just once. While great for turnaround
time, this approach is quite bad for response time and interactivity. In-
deed, imagine sitting at a terminal, typing, and having to wait 10 seconds
to see a response from the system just because some other job got sched-
uled in front of yours: not too pleasant.

Thus, we are left with another problem: how can we build a scheduler
that is sensitive to response time?

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SCHEDULING: INTRODUCTION 65

0 5 10 15 20 25 30

Time

A B C

Figure 7.6: SJF Again (Bad for Response Time)

0 5 10 15 20 25 30

Time

ABCABCABCABCABC

Figure 7.7: Round Robin (Good for Response Time)

7.6 Round Robin

To solve this problem, we will introduce a new scheduling algorithm.
This approach is classically known as Round-Robin (RR) scheduling [K64].
The basic idea is simple: instead of running jobs to completion, RR runs
a job for a time slice (sometimes called a scheduling quantum) and then
switches to the next job in the run queue. It repeatedly does so un-
til the jobs are finished. For this reason, RR is sometimes called time-
slicing. Note that the length of a time slice must be a multiple of the
timer-interrupt period; thus if the timer interrupts every 10 milliseconds,
the time slice could be 10, 20, or any other multiple of 10 ms.

To understand RR in more detail, let’s look at an example. Assume
three jobs A, B, and C arrive at the same time in the system, and that
they each wish to run for 5 seconds. An SJF scheduler runs each job to
completion before running another (Figure 7.6). In contrast, RR with a
time-slice of 1 second would cycle through the jobs quickly (Figure 7.7).

The average response time of RR is: 0+1+2
3

= 1; for SJF, average re-

sponse time is: 0+5+10
3

= 5.
As you can see, the length of the time slice is critical for RR. The shorter

it is, the better the performance of RR under the response-time metric.
However, making the time slice too short is problematic: suddenly the
cost of context switching will dominate overall performance. Thus, de-
ciding on the length of the time slice presents a trade-off to a system de-
signer, making it long enough to amortize the cost of switching without
making it so long that the system is no longer responsive.

Note that the cost of context switching does not arise solely from the
OS actions of saving and restoring a few registers. When programs run,

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

66 SCHEDULING: INTRODUCTION

TIP: AMORTIZATION CAN REDUCE COSTS

The general technique of amortization is commonly used in systems
when there is a fixed cost to some operation. By incurring that cost less
often (i.e., by performing the operation fewer times), the total cost to the
system is reduced. For example, if the time slice is set to 10 ms, and the
context-switch cost is 1 ms, roughly 10% of time is spent context switch-
ing and is thus wasted. If we want to amortize this cost, we can increase
the time slice, e.g., to 100 ms. In this case, less than 1% of time is spent
context switching, and thus the cost of time-slicing has been amortized.

they build up a great deal of state in CPU caches, TLBs, branch predictors,
and other on-chip hardware. Switching to another job causes this state
to be flushed and new state relevant to the currently-running job to be
brought in, which may exact a noticeable performance cost [MB91].

RR, with a reasonable time slice, is thus an excellent scheduler if re-
sponse time is our only metric. But what about our old friend turnaround
time? Let’s look at our example above again. A, B, and C, each with run-
ning times of 5 seconds, arrive at the same time, and RR is the scheduler
with a (long) 1-second time slice. We can see from the picture above that
A finishes at 13, B at 14, and C at 15, for an average of 14. Pretty awful!

It is not surprising, then, that RR is indeed one of the worst policies if
turnaround time is our metric. Intuitively, this should make sense: what
RR is doing is stretching out each job as long as it can, by only running
each job for a short bit before moving to the next. Because turnaround
time only cares about when jobs finish, RR is nearly pessimal, even worse
than simple FIFO in many cases.

More generally, any policy (such as RR) that is fair, i.e., that evenly di-
vides the CPU among active processes on a small time scale, will perform
poorly on metrics such as turnaround time. Indeed, this is an inherent
trade-off: if you are willing to be unfair, you can run shorter jobs to com-
pletion, but at the cost of response time; if you instead value fairness,
response time is lowered, but at the cost of turnaround time. This type of
trade-off is common in systems; you can’t have your cake and eat it too.

We have developed two types of schedulers. The first type (SJF, STCF)
optimizes turnaround time, but is bad for response time. The second type
(RR) optimizes response time but is bad for turnaround. And we still
have two assumptions which need to be relaxed: assumption 3 (that jobs
do no I/O), and assumption 4 (that the run-time of each job is known).
Let’s tackle those assumptions next.

7.7 Incorporating I/O

First we will relax assumption 3 – of course all programs perform I/O.
Imagine a program that didn’t take any input: it would produce the same
output each time. Imagine one without output: it is the proverbial tree

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SCHEDULING: INTRODUCTION 67

falling in the forest, with no one to see it; it doesn’t matter that it ran.
A scheduler clearly has a decision to make when a job initiates an I/O

request, because the currently-running job won’t be using the CPU dur-
ing the I/O; it is blocked waiting for I/O completion. If the I/O is sent to
a hard disk drive, the process might be blocked for a few milliseconds or
longer, depending on the current I/O load of the drive. Thus, the sched-
uler should probably schedule another job on the CPU at that time.

The scheduler also has to make a decision when the I/O completes.
When that occurs, an interrupt is raised, and the OS runs and moves
the process that issued the I/O from blocked back to the ready state. Of
course, it could even decide to run the job at that point. How should the
OS treat each job?

To understand this issue better, let us assume we have two jobs, A and
B, which each need 50 ms of CPU time. However, there is one obvious
difference: A runs for 10 ms and then issues an I/O request (assume here
that I/Os each take 10 ms), whereas B simply uses the CPU for 50 ms and
performs no I/O. The scheduler runs A first, then B after (Figure 7.8).

0 20 40 60 80 100 120 140

Time

A A A A A B B B B B

CPU

Disk

Figure 7.8: Poor Use of Resources

Assume we are trying to build a STCF scheduler. How should such a
scheduler account for the fact that A is broken up into 5 10-ms sub-jobs,
whereas B is just a single 50-ms CPU demand? Clearly, just running one
job and then the other without considering how to take I/O into account
makes little sense.

0 20 40 60 80 100 120 140

Time

A A A A AB B B B B

CPU

Disk

Figure 7.9: Overlap Allows Better Use of Resources

A common approach is to treat each 10-ms sub-job of A as an indepen-
dent job. Thus, when the system starts, its choice is whether to schedule
a 10-ms A or a 50-ms B. With STCF, the choice is clear: choose the shorter
one, in this case A. Then, when the first sub-job of A has completed, only
B is left, and it begins running. Then a new sub-job of A is submitted,
and it preempts B and runs for 10 ms. Doing so allows for overlap, with

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

68 SCHEDULING: INTRODUCTION

TIP: OVERLAP ENABLES HIGHER UTILIZATION

When possible, overlap operations to maximize the utilization of sys-
tems. Overlap is useful in many different domains, including when per-
forming disk I/O or sending messages to remote machines; in either case,
starting the operation and then switching to other work is a good idea,
and improved the overall utilization and efficiency of the system.

the CPU being used by one process while waiting for the I/O of another
process to complete; the system is thus better utilized (see Figure 7.9).

And thus we see how a scheduler might incorporate I/O. By treating
each CPU burst as a job, the scheduler makes sure processes that are “in-
teractive” get run frequently. While those interactive jobs are performing
I/O, other CPU-intensive jobs run, thus better utilizing the processor.

7.8 No More Oracle

With a basic approach to I/O in place, we come to our final assump-
tion: that the scheduler knows the length of each job. As we said before,
this is likely the worst assumption we could make. In fact, in a general-
purpose OS (like the ones we care about), the OS usually knows very little
about the length of each job. Thus, how can we build an approach that be-
haves like SJF/STCF without such a priori knowledge? Further, how can
we incorporate some of the ideas we have seen with the RR scheduler so
that response time is also quite good?

7.9 Summary

We have introduced the basic ideas behind scheduling and developed
two families of approaches. The first runs the shortest job remaining and
thus optimizes turnaround time; the second alternates between all jobs
and thus optimizes response time. Both are bad where the other is good,
alas, an inherent trade-off common in systems. We have also seen how we
might incorporate I/O into the picture, but have still not solved the prob-
lem of the fundamental inability of the OS to see into the future. Shortly,
we will see how to overcome this problem, by building a scheduler that
uses the recent past to predict the future. This scheduler is known as the
multi-level feedback queue, and it is the topic of the next chapter.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SCHEDULING: INTRODUCTION 69

References

[B+79] “The Convoy Phenomenon”
M. Blasgen, J. Gray, M. Mitoma, T. Price
ACM Operating Systems Review, 13:2, April 1979
Perhaps the first reference to convoys, which occurs in databases as well as the OS.

[C54] “Priority Assignment in Waiting Line Problems”
A. Cobham
Journal of Operations Research, 2:70, pages 70–76, 1954
The pioneering paper on using an SJF approach in scheduling the repair of machines.

[K64] “Analysis of a Time-Shared Processor”
Leonard Kleinrock
Naval Research Logistics Quarterly, 11:1, pages 59–73, March 1964
May be the first reference to the round-robin scheduling algorithm; certainly one of the first analyses of
said approach to scheduling a time-shared system.

[CK68] “Computer Scheduling Methods and their Countermeasures”
Edward G. Coffman and Leonard Kleinrock
AFIPS ’68 (Spring), April 1968
An excellent early introduction to and analysis of a number of basic scheduling disciplines.

[J91] “The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation, and Modeling”
R. Jain
Interscience, New York, April 1991
The standard text on computer systems measurement. A great reference for your library, for sure.

[O45] “Animal Farm”
George Orwell
Secker and Warburg (London), 1945
A great but depressing allegorical book about power and its corruptions. Some say it is a critique of
Stalin and the pre-WWII Stalin era in the U.S.S.R; we say it’s a critique of pigs.

[PV56] “Machine Repair as a Priority Waiting-Line Problem”
Thomas E. Phipps Jr. and W. R. Van Voorhis
Operations Research, 4:1, pages 76–86, February 1956
Follow-on work that generalizes the SJF approach to machine repair from Cobham’s original work; also
postulates the utility of an STCF approach in such an environment. Specifically, “There are certain
types of repair work, ... involving much dismantling and covering the floor with nuts and bolts, which
certainly should not be interrupted once undertaken; in other cases it would be inadvisable to continue
work on a long job if one or more short ones became available (p.81).”

[MB91] “The effect of context switches on cache performance”
Jeffrey C. Mogul and Anita Borg
ASPLOS, 1991
A nice study on how cache performance can be affected by context switching; less of an issue in today’s
systems where processors issue billions of instructions per second but context-switches still happen in
the millisecond time range.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

70 SCHEDULING: INTRODUCTION

Homework

ASIDE: SIMULATION HOMEWORKS

Simulation homeworks come in the form of simulators you run to
make sure you understand some piece of the material. The simulators
are generally python programs that enable you both to generate different
problems (using different random seeds) as well as to have the program
solve the problem for you (with the -c flag) so that you can check your
answers. Running any simulator with a -h or --help flag will provide
with more information as to all the options the simulator gives you.

This program,scheduler.py, allows you to see how different sched-
ulers perform under scheduling metrics such as response time, turnaround
time, and total wait time. See the README for details.

Questions

1. Compute the response time and turnaround time when running
three jobs of length 200 with the SJF and FIFO schedulers.

2. Now do the same but with jobs of different lengths: 100, 200, and
300.

3. Now do the same, but also with the RR scheduler and a time-slice
of 1.

4. For what types of workloads does SJF deliver the same turnaround
times as FIFO?

5. For what types of workloads and quantum lengths does SJF deliver
the same response times as RR?

6. What happens to response time with SJF as job lengths increase?
Can you use the simulator to demonstrate the trend?

7. What happens to response time with RR as quantum lengths in-
crease? Can you write an equation that gives the worst-case re-
sponse time, given N jobs?

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

8

Scheduling:
The Multi-Level Feedback Queue

In this chapter, we’ll tackle the problem of developing one of the most
well-known approaches to scheduling, known as the Multi-level Feed-
back Queue (MLFQ). The Multi-level Feedback Queue (MLFQ) sched-
uler was first described by Corbato et al. in 1962 [C+62] in a system
known as the Compatible Time-Sharing System (CTSS), and this work,
along with later work on Multics, led the ACM to award Corbato its
highest honor, the Turing Award. The scheduler has subsequently been
refined throughout the years to the implementations you will encounter
in some modern systems.

The fundamental problem MLFQ tries to address is two-fold. First, it
would like to optimize turnaround time, which, as we saw in the previous
note, is done by running shorter jobs first; unfortunately, the OS doesn’t
generally know how long a job will run for, exactly the knowledge that
algorithms like SJF (or STCF) require. Second, MLFQ would like to make
a system feel responsive to interactive users (i.e., users sitting and staring
at the screen, waiting for a process to finish), and thus minimize response
time; unfortunately, algorithms like Round Robin reduce response time
but are terrible for turnaround time. Thus, our problem: given that we
in general do not know anything about a process, how can we build a
scheduler to achieve these goals? How can the scheduler learn, as the
system runs, the characteristics of the jobs it is running, and thus make
better scheduling decisions?

THE CRUX:
HOW TO SCHEDULE WITHOUT PERFECT KNOWLEDGE?

How can we design a scheduler that both minimizes response time for
interactive jobs while also minimizing turnaround time without a priori
knowledge of job length?

71

72
SCHEDULING:

THE MULTI-LEVEL FEEDBACK QUEUE

TIP: LEARN FROM HISTORY

The multi-level feedback queue is an excellent example of a system that
learns from the past to predict the future. Such approaches are com-
mon in operating systems (and many other places in Computer Science,
including hardware branch predictors and caching algorithms). Such
approaches work when jobs have phases of behavior and are thus pre-
dictable; of course, one must be careful with such techniques, as they can
easily be wrong and drive a system to make worse decisions than they
would have with no knowledge at all.

8.1 MLFQ: Basic Rules

To build such a scheduler, in this chapter we will describe the basic
algorithms behind a multi-level feedback queue; although the specifics of
many implemented MLFQs differ [E95], most approaches are similar.

In our treatment, the MLFQ has a number of distinct queues, each
assigned a different priority level. At any given time, a job that is ready
to run is on a single queue. MLFQ uses priorities to decide which job
should run at a given time: a job with higher priority (i.e., a job on a
higher queue) is chosen to run.

Of course, more than one job may be on a given queue, and thus have
the same priority. In this case, we will just use round-robin scheduling
among those jobs.

Thus, the key to MLFQ scheduling lies in how the scheduler sets pri-
orities. Rather than giving a fixed priority to each job, MLFQ varies the
priority of a job based on its observed behavior. If, for example, a job repeat-
edly relinquishes the CPU while waiting for input from the keyboard,
MLFQ will keep its priority high, as this is how an interactive process
might behave. If, instead, a job uses the CPU intensively for long periods
of time, MLFQ will reduce its priority. In this way, MLFQ will try to learn
about processes as they run, and thus use the history of the job to predict
its future behavior.

Thus, we arrive at the first two basic rules for MLFQ:

• Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
• Rule 2: If Priority(A) = Priority(B), A & B run in RR.

If we were to put forth a picture of what the queues might look like at
a given instant, we might see something like the following (Figure 8.1).
In the figure, two jobs (A and B) are at the highest priority level, while job
C is in the middle and Job D is at the lowest priority. Given our current
knowledge of how MLFQ works, the scheduler would just alternate time
slices between A and B because they are the highest priority jobs in the
system; poor jobs C and D would never even get to run – an outrage!

Of course, just showing a static snapshot of some queues does not re-
ally give you an idea of how MLFQ works. What we need is to under-

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SCHEDULING:
THE MULTI-LEVEL FEEDBACK QUEUE 73

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

[Low Priority]

[High Priority]

D

C

A B

Figure 8.1: MLFQ Example

stand how job priority changes over time. And that, in a surprise only
to those who are reading a chapter from this book for the first time, is
exactly what we will do next.

8.2 Attempt #1: How to Change Priority

We now must decide how MLFQ is going to change the priority level
of a job (and thus which queue it is on) over the lifetime of a job. To do
this, we must keep in mind our workload: a mix of interactive jobs that
are short-running (and may frequently relinquish the CPU), and some
longer-running “CPU-bound” jobs that need a lot of CPU time but where
response time isn’t important. Here is our first attempt at a priority-
adjustment algorithm:

• Rule 3: When a job enters the system, it is placed at the highest
priority (the topmost queue).

• Rule 4a: If a job uses up an entire time slice while running, its pri-
ority is reduced (i.e., it moves down one queue).

• Rule 4b: If a job gives up the CPU before the time slice is up, it stays
at the same priority level.

Example 1: A Single Long-Running Job

Let’s look at some examples. First, we’ll look at what happens when there
has been a long running job in the system. Figure 8.2 shows what happens
to this job over time in a three-queue scheduler.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

74
SCHEDULING:

THE MULTI-LEVEL FEEDBACK QUEUE

Q2

Q1

Q0

0 50 100 150 200

Figure 8.2: Long-running Job Over Time

As you can see in the example, the job enters at the highest priority
(Q2). After a single time-slice of 10 ms, the scheduler reduces the job’s
priority by one, and thus the job is on Q1. After running at Q1 for a time
slice, the job is finally lowered to the lowest priority in the system (Q0),
where it remains. Pretty simple, no?

Example 2: Along Came A Short Job

Now let’s look at a more complicated example, and hopefully see how
MLFQ tries to approximate SJF. In this example, there are two jobs: A,
which is a long-running CPU-intensive job, and B, which is a short-running
interactive job. Assume A has been running for some time, and then B ar-
rives. What will happen? Will MLFQ approximate SJF for B?

Figure 8.3 plots the results of this scenario. A (shown in black) is run-
ning along in the lowest-priority queue (as would any long-running CPU-
intensive jobs); B (shown in gray) arrives at time T = 100, and thus is

Q2

Q1

Q0

0 50 100 150 200

Figure 8.3: Along Came An Interactive Job

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SCHEDULING:
THE MULTI-LEVEL FEEDBACK QUEUE 75

Q2

Q1

Q0

0 50 100 150 200

Figure 8.4: A Mixed I/O-intensive and CPU-intensive Workload

inserted into the highest queue; as its run-time is short (only 20 ms), B
completes before reaching the bottom queue, in two time slices; then A
resumes running (at low priority).

From this example, you can hopefully understand one of the major
goals of the algorithm: because it doesn’t know whether a job will be a
short job or a long-running job, it first assumes it might be a short job, thus
giving the job high priority. If it actually is a short job, it will run quickly
and complete; if it is not a short job, it will slowly move down the queues,
and thus soon prove itself to be a long-running more batch-like process.
In this manner, MLFQ approximates SJF.

Example 3: What About I/O?

Let’s now look at an example with some I/O. As Rule 4b states above, if a
process gives up the processor before using up its time slice, we keep it at
the same priority level. The intent of this rule is simple: if an interactive
job, for example, is doing a lot of I/O (say by waiting for user input from
the keyboard or mouse), it will relinquish the CPU before its time slice is
complete; in such case, we don’t wish to penalize the job and thus simply
keep it at the same level.

Figure 8.4 shows an example of how this works, with an interactive job
B (shown in gray) that needs the CPU only for 1 ms before performing an
I/O competing for the CPU with a long-running batch job A (shown in
black). The MLFQ approach keeps B at the highest priority because B
keeps releasing the CPU; if B is an interactive job, MLFQ further achieves
its goal of running interactive jobs quickly.

Problems With Our Current MLFQ

We thus have a basic MLFQ. It seems to do a fairly good job, sharing the
CPU fairly between long-running jobs, and letting short or I/O-intensive
interactive jobs run quickly. Unfortunately, the approach we have devel-
oped thus far contains serious flaws. Can you think of any?

(This is where you pause and think as deviously as you can)

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

76
SCHEDULING:

THE MULTI-LEVEL FEEDBACK QUEUE

Q2

Q1

Q0

0 50 100 150 200

Q2

Q1

Q0

0 50 100 150 200

Figure 8.5: Without (Left) and With (Right) Priority Boost

First, there is the problem of starvation: if there are “too many” in-
teractive jobs in the system, they will combine to consume all CPU time,
and thus long-running jobs will never receive any CPU time (they starve).
We’d like to make some progress on these jobs even in this scenario.

Second, a smart user could rewrite their program to game the sched-
uler. Gaming the scheduler generally refers to the idea of doing some-
thing sneaky to trick the scheduler into giving you more than your fair
share of the resource. The algorithm we have described is susceptible to
the following attack: before the time slice is over, issue an I/O operation
(to some file you don’t care about) and thus relinquish the CPU; doing so
allows you to remain in the same queue, and thus gain a higher percent-
age of CPU time. When done right (e.g., by running for 99% of a time slice
before relinquishing the CPU), a job could nearly monopolize the CPU.

Finally, a program may change its behavior over time; what was CPU-
bound may transition to a phase of interactivity. With our current ap-
proach, such a job would be out of luck and not be treated like the other
interactive jobs in the system.

8.3 Attempt #2: The Priority Boost

Let’s try to change the rules and see if we can avoid the problem of
starvation. What could we do in order to guarantee that CPU-bound jobs
will make some progress (even if it is not much?).

The simple idea here is to periodically boost the priority of all the jobs
in system. There are many ways to achieve this, but let’s just do some-
thing simple: throw them all in the topmost queue; hence, a new rule:

• Rule 5: After some time period S, move all the jobs in the system
to the topmost queue.

Our new rule solves two problems at once. First, processes are guar-
anteed not to starve: by sitting in the top queue, a job will share the CPU

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SCHEDULING:
THE MULTI-LEVEL FEEDBACK QUEUE 77

Q2

Q1

Q0

0 50 100 150 200

Q2

Q1

Q0

0 50 100 150 200

Figure 8.6: Without (Left) and With (Right) Gaming Tolerance

with other high-priority jobs in a round-robin fashion, and thus eventu-
ally receive service. Second, if a CPU-bound job has become interactive,
the scheduler treats it properly once it has received the priority boost.

Let’s see an example. In this scenario, we just show the behavior of
a long-running job when competing for the CPU with two short-running
interactive jobs. Two graphs are shown in Figure 8.5. On the left, there is
no priority boost, and thus the long-running job gets starved once the two
short jobs arrive; on the right, there is a priority boost every 50 ms (which
is likely too small of a value, but used here for the example), and thus
we at least guarantee that the long-running job will make some progress,
getting boosted to the highest priority every 50 ms and thus getting to
run periodically.

Of course, the addition of the time period S leads to the obvious ques-
tion: what should S be set to? John Ousterhout, a well-regarded systems
researcher [O11], used to call such values in systems voo-doo constants,
because they seemed to require some form of black magic to set them cor-
rectly. Unfortunately, S has that flavor. If it is set too high, long-running
jobs could starve; too low, and interactive jobs may not get a proper share
of the CPU.

8.4 Attempt #3: Better Accounting

We now have one more problem to solve: how to prevent gaming of
our scheduler? The real culprit here, as you might have guessed, are
Rules 4a and 4b, which let a job retain its priority by relinquishing the
CPU before the time slice expires. So what should we do?

The solution here is to perform better accounting of CPU time at each
level of the MLFQ. Instead of forgetting how much of a time slice a pro-
cess used at a given level, the scheduler should keep track; once a process
has used its allotment, it is demoted to the next priority queue. Whether

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

78
SCHEDULING:

THE MULTI-LEVEL FEEDBACK QUEUE

Q2

Q1

Q0

0 50 100 150 200

Figure 8.7: Lower Priority, Longer Quanta

it uses the time slice in one long burst or many small ones does not matter.
We thus rewrite Rules 4a and 4b to the following single rule:

• Rule 4: Once a job uses up its time allotment at a given level (re-
gardless of how many times it has given up the CPU), its priority is
reduced (i.e., it moves down one queue).

Let’s look at an example. Figure 8.6 shows what happens when a
workload tries to game the scheduler with the old Rules 4a and 4b (on
the left) as well the new anti-gaming Rule 4. Without any protection from
gaming, a process can issue an I/O just before a time slice ends and thus
dominate CPU time. With such protections in place, regardless of the
I/O behavior of the process, it slowly moves down the queues, and thus
cannot gain an unfair share of the CPU.

8.5 Tuning MLFQ And Other Issues

A few other issues arise with MLFQ scheduling. One big question is
how to parameterize such a scheduler. For example, how many queues
should there be? How big should the time slice be per queue? How often
should priority be boosted in order to avoid starvation and account for
changes in behavior? There are no easy answers to these questions, and
thus only some experience with workloads and subsequent tuning of the
scheduler will lead to a satisfactory balance.

For example, most MLFQ variants allow for varying time-slice length
across different queues. The high-priority queues are usually given short
time slices; they are comprised of interactive jobs, after all, and thus
quickly alternating between them makes sense (e.g., 10 or fewer millisec-
onds). The low-priority queues, in contrast, contain long-running jobs
that are CPU-bound; hence, longer time slices work well (e.g., 100s of
ms). Figure 8.7 shows an example in which two long-running jobs run
for 10 ms at the highest queue, 20 in the middle, and 40 at the lowest.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SCHEDULING:
THE MULTI-LEVEL FEEDBACK QUEUE 79

TIP: AVOID VOO-DOO CONSTANTS (OUSTERHOUT’S LAW)
Avoiding voo-doo constants is a good idea whenever possible. Unfor-
tunately, as in the example above, it is often difficult. One could try to
make the system learn a good value, but that too is not straightforward.
The frequent result: a configuration file filled with default parameter val-
ues that a seasoned administrator can tweak when something isn’t quite
working correctly. As you can imagine, these are often left unmodified,
and thus we are left to hope that the defaults work well in the field. This
tip brought to you by our old OS professor, John Ousterhout, and hence
we call it Ousterhout’s Law.

The Solaris MLFQ implementation – the Time-Sharing scheduling class,
or TS – is particularly easy to configure; it provides a set of tables that
determine exactly how the priority of a process is altered throughout its
lifetime, how long each time slice is, and how often to boost the priority of
a job [AD00]; an administrator can muck with this table in order to make
the scheduler behave in different ways. Default values for the table are
60 queues, with slowly increasing time-slice lengths from 20 milliseconds
(highest priority) to a few hundred milliseconds (lowest), and priorities
boosted around every 1 second or so.

Other MLFQ schedulers don’t use a table or the exact rules described
in this chapter; rather they adjust priorities using mathematical formu-
lae. For example, the FreeBSD scheduler (version 4.3) uses a formula to
calculate the current priority level of a job, basing it on how much CPU
the process has used [LM+89]; in addition, usage is decayed over time,
providing the desired priority boost in a different manner than described
herein. See [E95] for an excellent overview of such decay-usage algo-
rithms and their properties.

Finally, many schedulers have a few other features that you might en-
counter. For example, some schedulers reserve the highest priority levels
for operating system work; thus typical user jobs can never obtain the
highest levels of priority in the system. Some systems also allow some
user advice to help set priorities; for example, by using the command-line
utility nice you can increase or decrease the priority of a job (somewhat)
and thus increase or decrease its chances of running at any given time.
See the man page for more.

8.6 MLFQ: Summary

We have described a scheduling approach known as the Multi-Level
Feedback Queue (MLFQ). Hopefully you can now see why it is called
that: it has multiple levels of queues, and uses feedback to determine the
priority of a given job. History is its guide: pay attention to how jobs
behave over time and treat them accordingly.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

80
SCHEDULING:

THE MULTI-LEVEL FEEDBACK QUEUE

TIP: USE ADVICE WHERE POSSIBLE

As the operating system rarely knows what is best for each and every
process of the system, it is often useful to provide interfaces to allow users
or administrators to provide some hints to the OS. We often call such
hints advice, as the OS need not necessarily pay attention to it, but rather
might take the advice into account in order to make a better decision.
Such hints are useful in many parts of the OS, including the scheduler
(e.g., with nice), memory manager (e.g., madvise), and file system (e.g.,
TIP [P+95]).

The refined set of MLFQ rules, spread throughout the chapter, are re-
produced here for your viewing pleasure:

• Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
• Rule 2: If Priority(A) = Priority(B), A & B run in RR.
• Rule 3: When a job enters the system, it is placed at the highest

priority (the topmost queue).
• Rule 4: Once a job uses up its time allotment at a given level (re-

gardless of how many times it has given up the CPU), its priority is
reduced (i.e., it moves down one queue).

• Rule 5: After some time period S, move all the jobs in the system
to the topmost queue.

MLFQ is interesting because instead of demanding a priori knowledge
of the nature of a job, it instead observes the execution of a job and pri-
oritizes it accordingly. In this way, it manages to achieve the best of both
worlds: it can deliver excellent overall performance (similar to SJF/STCF)
for short-running interactive jobs, and is fair and makes progress for long-
running CPU-intensive workloads. For this reason, many systems, in-
cluding BSD UNIX derivatives [LM+89, B86], Solaris [M06], and Win-
dows NT and subsequent Windows operating systems [CS97] use a form
of MLFQ as their base scheduler.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SCHEDULING:
THE MULTI-LEVEL FEEDBACK QUEUE 81

References

[AD00] “Multilevel Feedback Queue Scheduling in Solaris”
Andrea Arpaci-Dusseau
Available: http://www.cs.wisc.edu/˜remzi/solaris-notes.pdf
A great short set of notes by one of the authors on the details of the Solaris scheduler. OK, we are
probably biased in this description, but the notes are pretty darn good.

[B86] “The Design of the UNIX Operating System”
M.J. Bach
Prentice-Hall, 1986
One of the classic old books on how a real UNIX operating system is built; a definite must-read for kernel
hackers.

[C+62] “An Experimental Time-Sharing System”
F. J. Corbato, M. M. Daggett, R. C. Daley
IFIPS 1962
A bit hard to read, but the source of many of the first ideas in multi-level feedback scheduling. Much
of this later went into Multics, which one could argue was the most influential operating system of all
time.

[CS97] “Inside Windows NT”
Helen Custer and David A. Solomon
Microsoft Press, 1997
The NT book, if you want to learn about something other than UNIX. Of course, why would you? OK,
we’re kidding; you might actually work for Microsoft some day you know.

[E95] “An Analysis of Decay-Usage Scheduling in Multiprocessors”
D.H.J. Epema
SIGMETRICS ’95
A nice paper on the state of the art of scheduling back in the mid 1990s, including a good overview of
the basic approach behind decay-usage schedulers.

[LM+89] “The Design and Implementation of the 4.3BSD UNIX Operating System”
S.J. Leffler, M.K. McKusick, M.J. Karels, J.S. Quarterman
Addison-Wesley, 1989
Another OS classic, written by four of the main people behind BSD. The later versions of this book,
while more up to date, don’t quite match the beauty of this one.

[M06] “Solaris Internals: Solaris 10 and OpenSolaris Kernel Architecture”
Richard McDougall
Prentice-Hall, 2006
A good book about Solaris and how it works.

[O11] “John Ousterhout’s Home Page”
John Ousterhout
Available: http://www.stanford.edu/˜ouster/
The home page of the famous Professor Ousterhout. The two co-authors of this book had the pleasure of
taking graduate operating systems from Ousterhout while in graduate school; indeed, this is where the
two co-authors got to know each other, eventually leading to marriage, kids, and even this book. Thus,
you really can blame Ousterhout for this entire mess you’re in.

[P+95] “Informed Prefetching and Caching”
R.H. Patterson, G.A. Gibson, E. Ginting, D. Stodolsky, J. Zelenka
SOSP ’95
A fun paper about some very cool ideas in file systems, including how applications can give the OS
advice about what files it is accessing and how it plans to access them.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

82
SCHEDULING:

THE MULTI-LEVEL FEEDBACK QUEUE

Homework

This program, mlfq.py, allows you to see how the MLFQ scheduler
presented in this chapter behaves. See the README for details.

Questions

1. Run a few randomly-generated problems with just two jobs and
two queues; compute the MLFQ execution trace for each. Make
your life easier by limiting the length of each job and turning off
I/Os.

2. How would you run the scheduler to reproduce each of the exam-
ples in the chapter?

3. How would you configure the scheduler parameters to behave just
like a round-robin scheduler?

4. Craft a workload with two jobs and scheduler parameters so that
one job takes advantage of the older Rules 4a and 4b (turned on
with the -S flag) to game the scheduler and obtain 99% of the CPU
over a particular time interval.

5. Given a system with a quantum length of 10 ms in its highest queue,
how often would you have to boost jobs back to the highest priority
level (with the -B flag) in order to guarantee that a single long-
running (and potentially-starving) job gets at least 5% of the CPU?

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

9

Scheduling: Proportional Share

In this chapter, we’ll examine a different type of scheduler known as a
proportional-share scheduler, also sometimes referred to as a fair-share
scheduler. Proportional-share is based around a simple concept: instead
of optimizing for turnaround or response time, a scheduler might instead
try to guarantee that each job obtain a certain percentage of CPU time.

An excellent modern example of proportional-share scheduling is found
in research by Waldspurger and Weihl [WW94], and is known as lottery
scheduling; however, the idea is certainly much older [KL88]. The basic
idea is quite simple: every so often, hold a lottery to determine which pro-
cess should get to run next; processes that should run more often should
be given more chances to win the lottery. Easy, no? Now, onto the details!
But not before our crux:

CRUX: HOW TO SHARE THE CPU PROPORTIONALLY

How can we design a scheduler to share the CPU in a proportional
manner? What are the key mechanisms for doing so? How effective are
they?

9.1 Basic Concept: Tickets Represent Your Share

Underlying lottery scheduling is one very basic concept: tickets, which
are used to represent the share of a resource that a process (or user or
whatever) should receive. The percent of tickets that a process has repre-
sents its share of the system resource in question.

Let’s look at an example. Imagine two processes, A and B, and further
that A has 75 tickets while B has only 25. Thus, what we would like is for
A to receive 75% of the CPU and B the remaining 25%.

Lottery scheduling achieves this probabilistically (but not determinis-
tically) by holding a lottery every so often (say, every time slice). Holding
a lottery is straightforward: the scheduler must know how many total
tickets there are (in our example, there are 100). The scheduler then picks

83

84 SCHEDULING: PROPORTIONAL SHARE

TIP: USE RANDOMNESS

One of the most beautiful aspects of lottery scheduling is its use of ran-
domness. When you have to make a decision, using such a randomized
approach is often a robust and simple way of doing so.

Random approaches has at least three advantages over more traditional
decisions. First, random often avoids strange corner-case behaviors that
a more traditional algorithm may have trouble handling. For example,
consider LRU page replacement (studied in more detail in a future chap-
ter on virtual memory); while often a good replacement algorithm, LRU
performs pessimally for some cyclic-sequential workloads. Random, on
the other hand, has no such worst case.

Second, random also is lightweight, requiring little state to track alter-
natives. In a traditional fair-share scheduling algorithm, tracking how
much CPU each process has received requires per-process accounting,
which must be updated after running each process. Doing so randomly
necessitates only the most minimal of per-process state (e.g., the number
of tickets each has).

Finally, random can be quite fast. As long as generating a random num-
ber is quick, making the decision is also, and thus random can be used
in a number of places where speed is required. Of course, the faster the
need, the more random tends towards pseudo-random.

a winning ticket, which is a number from 0 to 991. Assuming A holds
tickets 0 through 74 and B 75 through 99, the winning ticket simply de-
termines whether A or B runs. The scheduler then loads the state of that
winning process and runs it.

Here is an example output of a lottery scheduler’s winning tickets:

63 85 70 39 76 17 29 41 36 39 10 99 68 83 63 62 43 0 49 49

Here is the resulting schedule:

A B A A B A A A A A A B A B A A A A A A

As you can see from the example, the use of randomness in lottery
scheduling leads to a probabilistic correctness in meeting the desired pro-
portion, but no guarantee. In our example above, B only gets to run 4 out
of 20 time slices (20%), instead of the desired 25% allocation. However,
the longer these two jobs compete, the more likely they are to achieve the
desired percentages.

1Computer Scientists always start counting at 0. It is so odd to non-computer-types that
famous people have felt obliged to write about why we do it this way [D82].

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SCHEDULING: PROPORTIONAL SHARE 85

TIP: USE TICKETS TO REPRESENT SHARES

One of the most powerful (and basic) mechanisms in the design of lottery
(and stride) scheduling is that of the ticket. The ticket is used to represent
a process’s share of the CPU in these examples, but can be applied much
more broadly. For example, in more recent work on virtual memory man-
agement for hypervisors, Waldspurger shows how tickets can be used to
represent a guest operating system’s share of memory [W02]. Thus, if you
are ever in need of a mechanism to represent a proportion of ownership,
this concept just might be ... (wait for it) ... the ticket.

9.2 Ticket Mechanisms

Lottery scheduling also provides a number of mechanisms to manip-
ulate tickets in different and sometimes useful ways. One way is with
the concept of ticket currency. Currency allows a user with a set of tick-
ets to allocate tickets among their own jobs in whatever currency they
would like; the system then automatically converts said currency into the
correct global value.

For example, assume users A and B have each been given 100 tickets.
User A is running two jobs, A1 and A2, and gives them each 500 tickets
(out of 1000 total) in User A’s own currency. User B is running only 1 job
and gives it 10 tickets (out of 10 total). The system will convert A1’s and
A2’s allocation from 500 each in A’s currency to 50 each in the global cur-
rency; similarly, B1’s 10 tickets will be converted to 100 tickets. The lottery
will then be held over the global ticket currency (200 total) to determine
which job runs.

User A -> 500 (A’s currency) to A1 -> 50 (global currency)

-> 500 (A’s currency) to A2 -> 50 (global currency)

User B -> 10 (B’s currency) to B1 -> 100 (global currency)

Another useful mechanism is ticket transfer. With transfers, a process
can temporarily hand off its tickets to another process. This ability is
especially useful in a client/server setting, where a client process sends
a message to a server asking it to do some work on the client’s behalf.
To speed up the work, the client can pass the tickets to the server and
thus try to maximize the performance of the server while the server is
handling the client’s request. When finished, the server then transfers the
tickets back to the client and all is as before.

Finally, ticket inflation can sometimes be a useful technique. With
inflation, a process can temporarily raise or lower the number of tickets
it owns. Of course, in a competitive scenario with processes that do not
trust one another, this makes little sense; one greedy process could give
itself a vast number of tickets and take over the machine. Rather, inflation
can be applied in an environment where a group of processes trust one
another; in such a case, if any one process knows it needs more CPU time,
it can boost its ticket value as a way to reflect that need to the system, all
without communicating with any other processes.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

86 SCHEDULING: PROPORTIONAL SHARE

1 // counter: used to track if we’ve found the winner yet

2 int counter = 0;

3

4 // winner: use some call to a random number generator to

5 // get a value, between 0 and the total # of tickets

6 int winner = getrandom(0, totaltickets);

7

8 // current: use this to walk through the list of jobs

9 node_t *current = head;

10

11 // loop until the sum of ticket values is > the winner

12 while (current) {

13 counter = counter + current->tickets;

14 if (counter > winner)

15 break; // found the winner

16 current = current->next;

17 }

18 // ’current’ is the winner: schedule it...

Figure 9.1: Lottery Scheduling Decision Code

9.3 Implementation

Probably the most amazing thing about lottery scheduling is the sim-
plicity of its implementation. All you need is a good random number
generator to pick the winning ticket, a data structure to track the pro-
cesses of the system (e.g., a list), and the total number of tickets.

Let’s assume we keep the processes in a list. Here is an example com-
prised of three processes, A, B, and C, each with some number of tickets.

head
Job:A

Tix:100
Job:B
Tix:50

Job:C
Tix:250

NULL

To make a scheduling decision, we first have to pick a random number

(the winner) from the total number of tickets (400)2 Let’s say we pick the
number 300. Then, we simply traverse the list, with a simple counter
used to help us find the winner (Figure 9.1).

The code walks the list of processes, adding each ticket value to counter
until the value exceeds winner. Once that is the case, the current list el-
ement is the winner. With our example of the winning ticket being 300,
the following takes place. First, counter is incremented to 100 to ac-
count for A’s tickets; because 100 is less than 300, the loop continues.
Then counter would be updated to 150 (B’s tickets), still less than 300
and thus again we continue. Finally, counter is updated to 400 (clearly
greater than 300), and thus we break out of the loop with current point-
ing at C (the winner).

To make this process most efficient, it might generally be best to or-
ganize the list in sorted order, from the highest number of tickets to the

2Surprisingly, as pointed out by Björn Lindberg, this can be challenging to do
correctly; for more details, see http://stackoverflow.com/questions/2509679/

how-to-generate-a-random-number-from-within-a-range.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SCHEDULING: PROPORTIONAL SHARE 87

1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

Job Length

U
n

fa
ir
n

e
s
s
 (

A
v
e

ra
g

e
)

Figure 9.2: Lottery Fairness Study

lowest. The ordering does not affect the correctness of the algorithm;
however, it does ensure in general that the fewest number of list itera-
tions are taken, especially if there are a few processes that possess most
of the tickets.

9.4 An Example

To make the dynamics of lottery scheduling more understandable, we
now perform a brief study of the completion time of two jobs competing
against one another, each with the same number of tickets (100) and same
run time (R, which we will vary).

In this scenario, we’d like for each job to finish at roughly the same
time, but due to the randomness of lottery scheduling, sometimes one
job finishes before the other. To quantify this difference, we define a
simple unfairness metric, U which is simply the time the first job com-
pletes divided by the time that the second job completes. For example,
if R = 10, and the first job finishes at time 10 (and the second job at 20),
U = 10

20
= 0.5. When both jobs finish at nearly the same time, U will be

quite close to 1. In this scenario, that is our goal: a perfectly fair scheduler
would achieve U = 1.

Figure 9.2 plots the average unfairness as the length of the two jobs
(R) is varied from 1 to 1000 over thirty trials (results are generated via the
simulator provided at the end of the chapter). As you can see from the
graph, when the job length is not very long, average unfairness can be
quite severe. Only as the jobs run for a significant number of time slices
does the lottery scheduler approach the desired outcome.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

88 SCHEDULING: PROPORTIONAL SHARE

9.5 How To Assign Tickets?

One problem we have not addressed with lottery scheduling is: how
to assign tickets to jobs? This problem is a tough one, because of course
how the system behaves is strongly dependent on how tickets are allo-
cated. One approach is to assume that the users know best; in such a
case, each user is handed some number of tickets, and a user can allocate
tickets to any jobs they run as desired. However, this solution is a non-
solution: it really doesn’t tell you what to do. Thus, given a set of jobs,
the “ticket-assignment problem” remains open.

9.6 Why Not Deterministic?

You might also be wondering: why use randomness at all? As we saw
above, while randomness gets us a simple (and approximately correct)
scheduler, it occasionally will not deliver the exact right proportions, es-
pecially over short time scales. For this reason, Waldspurger invented
stride scheduling, a deterministic fair-share scheduler [W95].

Stride scheduling is also straightforward. Each job in the system has
a stride, which is inverse in proportion to the number of tickets it has. In
our example above, with jobs A, B, and C, with 100, 50, and 250 tickets,
respectively, we can compute the stride of each by dividing some large
number by the number of tickets each process has been assigned. For
example, if we divide 10,000 by each of those ticket values, we obtain
the following stride values for A, B, and C: 100, 200, and 40. We call
this value the stride of each process; every time a process runs, we will
increment a counter for it (called its pass value) by its stride to track its
global progress.

The scheduler then uses the stride and pass to determine which pro-
cess should run next. The basic idea is simple: at any given time, pick
the process to run that has the lowest pass value so far; when you run
a process, increment its pass counter by its stride. A pseudocode imple-
mentation is provided by Waldspurger [W95]:

current = remove_min(queue); // pick client with minimum pass

schedule(current); // use resource for quantum

current->pass += current->stride; // compute next pass using stride

insert(queue, current); // put back into the queue

In our example, we start with three processes (A, B, and C), with stride
values of 100, 200, and 40, and all with pass values initially at 0. Thus, at
first, any of the processes might run, as their pass values are equally low.
Assume we pick A (arbitrarily; any of the processes with equal low pass
values can be chosen). A runs; when finished with the time slice, we
update its pass value to 100. Then we run B, whose pass value is then
set to 200. Finally, we run C, whose pass value is incremented to 40. At
this point, the algorithm will pick the lowest pass value, which is C’s, and
run it, updating its pass to 80 (C’s stride is 40, as you recall). Then C will

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SCHEDULING: PROPORTIONAL SHARE 89

Pass(A) Pass(B) Pass(C) Who Runs?
(stride=100) (stride=200) (stride=40)

0 0 0 A
100 0 0 B
100 200 0 C
100 200 40 C
100 200 80 C
100 200 120 A
200 200 120 C
200 200 160 C
200 200 200 ...

Table 9.1: Stride Scheduling: A Trace

run again (still the lowest pass value), raising its pass to 120. A will run
now, updating its pass to 200 (now equal to B’s). Then C will run twice
more, updating its pass to 160 then 200. At this point, all pass values are
equal again, and the process will repeat, ad infinitum. Table 9.1 traces the
behavior of the scheduler over time.

As we can see from the table, C ran five times, A twice, and B just once,
exactly in proportion to their ticket values of 250, 100, and 50. Lottery
scheduling achieves the proportions probabilistically over time; stride
scheduling gets them exactly right at the end of each scheduling cycle.

So you might be wondering: given the precision of stride scheduling,
why use lottery scheduling at all? Well, lottery scheduling has one nice
property that stride scheduling does not: no global state. Imagine a new
job enters in the middle of our stride scheduling example above; what
should its pass value be? Should it be set to 0? If so, it will monopolize
the CPU. With lottery scheduling, there is no global state per process;
we simply add a new process with whatever tickets it has, update the
single global variable to track how many total tickets we have, and go
from there. In this way, lottery makes it much easier to incorporate new
processes in a sensible manner.

9.7 Summary

We have introduced the concept of proportional-share scheduling and
briefly discussed two implementations: lottery and stride scheduling.
Lottery uses randomness in a clever way to achieve proportional share;
stride does so deterministically. Although both are conceptually inter-
esting, they have not achieved wide-spread adoption as CPU schedulers
for a variety of reasons. One is that such approaches do not particularly
mesh well with I/O [AC97]; another is that they leave open the hard prob-
lem of ticket assignment, i.e., how do you know how many tickets your
browser should be allocated? General-purpose schedulers (such as the
MLFQ we discussed previously, and other similar Linux schedulers) do
so more gracefully and thus are more widely deployed.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

90 SCHEDULING: PROPORTIONAL SHARE

As a result, proportional-share schedulers are more useful in domains
where some of these problems (such as assignment of shares) are rela-
tively easy to solve. For example, in a virtualized data center, where you
might like to assign one-quarter of your CPU cycles to the Windows VM
and the rest to your base Linux installation, proportional sharing can be
simple and effective. See Waldspurger [W02] for further details on how
such a scheme is used to proportionally share memory in VMWare’s ESX
Server.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SCHEDULING: PROPORTIONAL SHARE 91

References

[AC97] “Extending Proportional-Share Scheduling to a Network of Workstations”
Andrea C. Arpaci-Dusseau and David E. Culler
PDPTA’97, June 1997
A paper by one of the authors on how to extend proportional-share scheduling to work better in a
clustered environment.

[D82] “Why Numbering Should Start At Zero”
Edsger Dijkstra, August 1982
http://www.cs.utexas.edu/users/EWD/ewd08xx/EWD831.PDF
A short note from E. Dijkstra, one of the pioneers of computer science. We’ll be hearing much more
on this guy in the section on Concurrency. In the meanwhile, enjoy this note, which includes this
motivating quote: “One of my colleagues – not a computing scientist – accused a number of younger
computing scientists of ’pedantry’ because they started numbering at zero.” The note explains why
doing so is logical.

[KL88] “A Fair Share Scheduler”
J. Kay and P. Lauder
CACM, Volume 31 Issue 1, January 1988
An early reference to a fair-share scheduler.

[WW94] “Lottery Scheduling: Flexible Proportional-Share Resource Management”
Carl A. Waldspurger and William E. Weihl
OSDI ’94, November 1994
The landmark paper on lottery scheduling that got the systems community re-energized about schedul-
ing, fair sharing, and the power of simple randomized algorithms.

[W95] “Lottery and Stride Scheduling: Flexible
Proportional-Share Resource Management”
Carl A. Waldspurger
Ph.D. Thesis, MIT, 1995
The award-winning thesis of Waldspurger’s that outlines lottery and stride scheduling. If you’re think-
ing of writing a Ph.D. dissertation at some point, you should always have a good example around, to
give you something to strive for: this is such a good one.

[W02] “Memory Resource Management in VMware ESX Server”
Carl A. Waldspurger
OSDI ’02, Boston, Massachusetts
The paper to read about memory management in VMMs (a.k.a., hypervisors). In addition to being
relatively easy to read, the paper contains numerous cool ideas about this new type of VMM-level
memory management.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

92 SCHEDULING: PROPORTIONAL SHARE

Homework

This program, lottery.py, allows you to see how a lottery scheduler
works. See the README for details.

Questions

1. Compute the solutions for simulations with 3 jobs and random seeds
of 1, 2, and 3.

2. Now run with two specific jobs: each of length 10, but one (job 0)
with just 1 ticket and the other (job 1) with 100 (e.g.,-l 10:1,10:100).
What happens when the number of tickets is so imbalanced? Will
job 0 ever run before job 1 completes? How often? In general, what
does such a ticket imbalance do to the behavior of lottery schedul-
ing?

3. When running with two jobs of length 100 and equal ticket alloca-
tions of 100 (-l 100:100,100:100), how unfair is the scheduler?
Run with some different random seeds to determine the (probabilis-
tic) answer; let unfairness be determined by how much earlier one
job finishes than the other.

4. How does your answer to the previous question change as the quan-
tum size (-q) gets larger?

5. Can you make a version of the graph that is found in the chapter?
What else would be worth exploring? How would the graph look
with a stride scheduler?

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

10

Multiprocessor Scheduling (Advanced)

This chapter will introduce the basics of multiprocessor scheduling. As
this topic is relatively advanced, it may be best to cover it after you have
studied the topic of concurrency in some detail (i.e., the second major
“easy piece” of the book).

After years of existence only in the high-end of the computing spec-
trum, multiprocessor systems are increasingly commonplace, and have
found their way into desktop machines, laptops, and even mobile de-
vices. The rise of the multicore processor, in which multiple CPU cores
are packed onto a single chip, is the source of this proliferation; these
chips have become popular as computer architects have had a difficult
time making a single CPU much faster without using (way) too much
power. And thus we all now have a few CPUs available to us, which is a
good thing, right?

Of course, there are many difficulties that arise with the arrival of more
than a single CPU. A primary one is that a typical application (i.e., some C
program you wrote) only uses a single CPU; adding more CPUs does not
make that single application run faster. To remedy this problem, you’ll
have to rewrite your application to run in parallel, perhaps using threads
(as discussed in great detail in the second piece of this book). Multi-
threaded applications can spread work across multiple CPUs and thus
run faster when given more CPU resources.

ASIDE: ADVANCED CHAPTERS

Advanced chapters require material from a broad swath of the book to
truly understand, while logically fitting into a section that is earlier than
said set of prerequisite materials. For example, this chapter on multipro-
cessor scheduling makes much more sense if you’ve first read the middle
piece on concurrency; however, it logically fits into the part of the book
on virtualization (generally) and CPU scheduling (specifically). Thus, it
is recommended such chapters be covered out of order; in this case, after
the second piece of the book.

93

94 MULTIPROCESSOR SCHEDULING (ADVANCED)

Memory

CPU

Cache

Figure 10.1: Single CPU With Cache

Beyond applications, a new problem that arises for the operating sys-
tem is (not surprisingly!) that of multiprocessor scheduling. Thus far
we’ve discussed a number of principles behind single-processor schedul-
ing; how can we extend those ideas to work on multiple CPUs? What
new problems must we overcome? And thus, our problem:

CRUX: HOW TO SCHEDULE JOBS ON MULTIPLE CPUS

How should the OS schedule jobs on multiple CPUs? What new prob-
lems arise? Do the same old techniques work, or are new ideas required?

10.1 Background: Multiprocessor Architecture

To understand the new issues surrounding multiprocessor schedul-
ing, we have to understand a new and fundamental difference between
single-CPU hardware and multi-CPU hardware. This difference centers
around the use of hardware caches (e.g., Figure 10.1), and exactly how
data is shared across multiple processors. We now discuss this issue fur-
ther, at a high level. Details are available elsewhere [CSG99], in particular
in an upper-level or perhaps graduate computer architecture course.

In a system with a single CPU, there are a hierarchy of hardware
caches that in general help the processor run programs faster. Caches
are small, fast memories that (in general) hold copies of popular data that
is found in the main memory of the system. Main memory, in contrast,
holds all of the data, but access to this larger memory is slower. By keep-
ing frequently accessed data in a cache, the system can make the large,
slow memory appear to be a fast one.

As an example, consider a program that issues an explicit load instruc-
tion to fetch a value from memory, and a simple system with only a single
CPU; the CPU has a small cache (say 64 KB) and a large main memory.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

MULTIPROCESSOR SCHEDULING (ADVANCED) 95

Memory

CPU CPU

Cache Cache

Bus

Figure 10.2: Two CPUs With Caches Sharing Memory

The first time a program issues this load, the data resides in main mem-
ory, and thus takes a long time to fetch (perhaps in the tens of nanosec-
onds, or even hundreds). The processor, anticipating that the data may
be reused, puts a copy of the loaded data into the CPU cache. If the pro-
gram later fetches this same data item again, the CPU first checks for it in
the cache; because it finds it there, the data is fetched much more quickly
(say, just a few nanoseconds), and thus the program runs faster.

Caches are thus based on the notion of locality, of which there are
two kinds: temporal locality and spatial locality. The idea behind tem-
poral locality is that when a piece of data is accessed, it is likely to be
accessed again in the near future; imagine variables or even instructions
themselves being accessed over and over again in a loop. The idea be-
hind spatial locality is that if a program accesses a data item at address
x, it is likely to access data items near x as well; here, think of a program
streaming through an array, or instructions being executed one after the
other. Because locality of these types exist in many programs, hardware
systems can make good guesses about which data to put in a cache and
thus work well.

Now for the tricky part: what happens when you have multiple pro-
cessors in a single system, with a single shared main memory, as we see
in Figure 10.2?

As it turns out, caching with multiple CPUs is much more compli-
cated. Imagine, for example, that a program running on CPU 1 reads
a data item (with value D) at address A; because the data is not in the
cache on CPU 1, the system fetches it from main memory, and gets the
value D. The program then modifies the value at address A, just updat-
ing its cache with the new value D′; writing the data through all the way
to main memory is slow, so the system will (usually) do that later. Then
assume the OS decides to stop running the program and move it to CPU
2. The program then re-reads the value at address A; there is no such data

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

96 MULTIPROCESSOR SCHEDULING (ADVANCED)

CPU 2’s cache, and thus the system fetches the value from main memory,
and gets the old value D instead of the correct value D′. Oops!

This general problem is called the problem of cache coherence, and
there is a vast research literature that describes many different subtleties
involved with solving the problem [SHW11]. Here, we will skip all of the
nuance and make some major points; take a computer architecture class
(or three) to learn more.

The basic solution is provided by the hardware: by monitoring mem-
ory accesses, hardware can ensure that basically the “right thing” hap-
pens and that the view of a single shared memory is preserved. One way
to do this on a bus-based system (as described above) is to use an old
technique known as bus snooping [G83]; each cache pays attention to
memory updates by observing the bus that connects them to main mem-
ory. When a CPU then sees an update for a data item it holds in its cache,
it will notice the change and either invalidate its copy (i.e., remove it
from its own cache) or update it (i.e., put the new value into its cache
too). Write-back caches, as hinted at above, make this more complicated
(because the write to main memory isn’t visible until later), but you can
imagine how the basic scheme might work.

10.2 Don’t Forget Synchronization

Given that the caches do all of this work to provide coherence, do pro-
grams (or the OS itself) have to worry about anything when they access
shared data? The answer, unfortunately, is yes, and is documented in
great detail in the second piece of this book on the topic of concurrency.
While we won’t get into the details here, we’ll sketch/review some of the
basic ideas here (assuming you’re familiar with concurrency).

When accessing (and in particular, updating) shared data items or
structures across CPUs, mutual exclusion primitives (such as locks) should
likely be used to guarantee correctness (other approaches, such as build-
ing lock-free data structures, are complex and only used on occasion;
see the chapter on deadlock in the piece on concurrency for details). For
example, assume we have a shared queue being accessed on multiple
CPUs concurrently. Without locks, adding or removing elements from
the queue concurrently will not work as expected, even with the under-
lying coherence protocols; one needs locks to atomically update the data
structure to its new state.

To make this more concrete, imagine this code sequence, which is used
to remove an element from a shared linked list, as we see in Figure 10.3.
Imagine if threads on two CPUs enter this routine at the same time. If
Thread 1 executes the first line, it will have the current value of head
stored in its tmp variable; if Thread 2 then executes the first line as well,
it also will have the same value of head stored in its own private tmp

variable (tmp is allocated on the stack, and thus each thread will have
its own private storage for it). Thus, instead of each thread removing
an element from the head of the list, each thread will try to remove the

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

MULTIPROCESSOR SCHEDULING (ADVANCED) 97

1 typedef struct __Node_t {

2 int value;

3 struct __Node_t *next;

4 } Node_t;

5

6 int List_Pop() {

7 Node_t *tmp = head; // remember old head ...

8 int value = head->value; // ... and its value

9 head = head->next; // advance head to next pointer

10 free(tmp); // free old head

11 return value; // return value at head

12 }

Figure 10.3: Simple List Delete Code

same head element, leading to all sorts of problems (such as an attempted
double free of the head element at line 4, as well as potentially returning
the same data value twice).

The solution, of course, is to make such routines correct via lock-
ing. In this case, allocating a simple mutex (e.g., pthread mutex t

m;) and then adding a lock(&m) at the beginning of the routine and
an unlock(&m) at the end will solve the problem, ensuring that the code
will execute as desired. Unfortunately, as we will see, such an approach is
not without problems, in particular with regards to performance. Specifi-
cally, as the number of CPUs grows, access to a synchronized shared data
structure becomes quite slow.

10.3 One Final Issue: Cache Affinity

One final issue arises in building a multiprocessor cache scheduler,
known as cache affinity. This notion is simple: a process, when run on a
particular CPU, builds up a fair bit of state in the caches (and TLBs) of the
CPU. The next time the process runs, it is often advantageous to run it on
the same CPU, as it will run faster if some of its state is already present in
the caches on that CPU. If, instead, one runs a process on a different CPU
each time, the performance of the process will be worse, as it will have to
reload the state each time it runs (note it will run correctly on a different
CPU thanks to the cache coherence protocols of the hardware). Thus, a
multiprocessor scheduler should consider cache affinity when making its
scheduling decisions, perhaps preferring to keep a process on the same
CPU if at all possible.

10.4 Single-Queue Scheduling

With this background in place, we now discuss how to build a sched-
uler for a multiprocessor system. The most basic approach is to simply
reuse the basic framework for single processor scheduling, by putting all
jobs that need to be scheduled into a single queue; we call this single-
queue multiprocessor scheduling or SQMS for short. This approach
has the advantage of simplicity; it does not require much work to take an
existing policy that picks the best job to run next and adapt it to work on
more than one CPU (where it might pick the best two jobs to run, if there
are two CPUs, for example).

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

98 MULTIPROCESSOR SCHEDULING (ADVANCED)

However, SQMS has obvious shortcomings. The first problem is a lack
of scalability. To ensure the scheduler works correctly on multiple CPUs,
the developers will have inserted some form of locking into the code, as
described above. Locks ensure that when SQMS code accesses the single
queue (say, to find the next job to run), the proper outcome arises.

Locks, unfortunately, can greatly reduce performance, particularly as
the number of CPUs in the systems grows [A91]. As contention for such
a single lock increases, the system spends more and more time in lock
overhead and less time doing the work the system should be doing (note:
it would be great to include a real measurement of this in here someday).

The second main problem with SQMS is cache affinity. For example,
let us assume we have five jobs to run (A, B, C, D, E) and four processors.
Our scheduling queue thus looks like this:

Queue A B C D E NULL

Over time, assuming each job runs for a time slice and then another
job is chosen, here is a possible job schedule across CPUs:

CPU 3

CPU 2

CPU 1

CPU 0

D C B A E

C B A E D

B A E D C

A E D C B

 ... (repeat) ...

 ... (repeat) ...

 ... (repeat) ...

 ... (repeat) ...

Because each CPU simply picks the next job to run from the globally-
shared queue, each job ends up bouncing around from CPU to CPU, thus
doing exactly the opposite of what would make sense from the stand-
point of cache affinity.

To handle this problem, most SQMS schedulers include some kind of
affinity mechanism to try to make it more likely that process will continue
to run on the same CPU if possible. Specifically, one might provide affin-
ity for some jobs, but move others around to balance load. For example,
imagine the same five jobs scheduled as follows:

CPU 3

CPU 2

CPU 1

CPU 0

D D D D E

C C C E C

B B E B B

A E A A A

 ... (repeat) ...

 ... (repeat) ...

 ... (repeat) ...

 ... (repeat) ...

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

MULTIPROCESSOR SCHEDULING (ADVANCED) 99

In this arrangement, jobs A through D are not moved across proces-
sors, with only job E migrating from CPU to CPU, thus preserving affin-
ity for most. You could then decide to migrate a different job the next
time through, thus achieving some kind of affinity fairness as well. Im-
plementing such a scheme, however, can be complex.

Thus, we can see the SQMS approach has its strengths and weak-
nesses. It is straightforward to implement given an existing single-CPU
scheduler, which by definition has only a single queue. However, it does
not scale well (due to synchronization overheads), and it does not readily
preserve cache affinity.

10.5 Multi-Queue Scheduling

Because of the problems caused in single-queue schedulers, some sys-
tems opt for multiple queues, e.g., one per CPU. We call this approach
multi-queue multiprocessor scheduling (or MQMS).

In MQMS, our basic scheduling framework consists of multiple schedul-
ing queues. Each queue will likely follow a particular scheduling disci-
pline, such as round robin, though of course any algorithm can be used.
When a job enters the system, it is placed on exactly one scheduling
queue, according to some heuristic (e.g., random, or picking one with
fewer jobs than others). Then it is scheduled essentially independently,
thus avoiding the problems of information sharing and synchronization
found in the single-queue approach.

For example, assume we have a system where there are just two CPUs
(labeled CPU 0 and CPU 1), and some number of jobs enter the system:
A, B, C, and D for example. Given that each CPU has a scheduling queue
now, the OS has to decide into which queue to place each job. It might do
something like this:

Q0 A C Q1 B D

Depending on the queue scheduling policy, each CPU now has two
jobs to choose from when deciding what should run. For example, with
round robin, the system might produce a schedule that looks like this:

CPU 1

CPU 0 A A C C A A C C A A C C

B B D D B B D D B B D D ...

 ...

MQMS has a distinct advantage of SQMS in that it should be inher-
ently more scalable. As the number of CPUs grows, so too does the num-
ber of queues, and thus lock and cache contention should not become a
central problem. In addition, MQMS intrinsically provides cache affinity;

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

100 MULTIPROCESSOR SCHEDULING (ADVANCED)

jobs stay on the same CPU and thus reap the advantage of reusing cached
contents therein.

But, if you’ve been paying attention, you might see that we have a new
problem, which is fundamental in the multi-queue based approach: load
imbalance. Let’s assume we have the same set up as above (four jobs,
two CPUs), but then one of the jobs (say C) finishes. We now have the
following scheduling queues:

Q0 A Q1 B D

If we then run our round-robin policy on each queue of the system, we
will see this resulting schedule:

CPU 1

CPU 0 A A A A A A A A A A A A

B B D D B B D D B B D D ...

 ...

As you can see from this diagram, A gets twice as much CPU as B and
D, which is not the desired outcome. Even worse, let’s imagine that both
A and C finish, leaving just jobs B and D in the system. The scheduling
queues will look like this:

Q0 Q1 B D

As a result, CPU 0 will be left idle! (insert dramatic and sinister music here)
And hence our CPU usage timeline looks sad:

CPU 0

CPU 1 B B D D B B D D B B D D ...

So what should a poor multi-queue multiprocessor scheduler do? How
can we overcome the insidious problem of load imbalance and defeat the

evil forces of ... the Decepticons1? How do we stop asking questions that
are hardly relevant to this otherwise wonderful book?

1Little known fact is that the home planet of Cybertron was destroyed by bad CPU
scheduling decisions. And now let that be the first and last reference to Transformers in this
book, for which we sincerely apologize.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

MULTIPROCESSOR SCHEDULING (ADVANCED) 101

CRUX: HOW TO DEAL WITH LOAD IMBALANCE

How should a multi-queue multiprocessor scheduler handle load im-
balance, so as to better achieve its desired scheduling goals?

The obvious answer to this query is to move jobs around, a technique
which we (once again) refer to as migration. By migrating a job from one
CPU to another, true load balance can be achieved.

Let’s look at a couple of examples to add some clarity. Once again, we
have a situation where one CPU is idle and the other has some jobs.

Q0 Q1 B D

In this case, the desired migration is easy to understand: the OS should
simply move one of B or D to CPU 0. The result of this single job migra-
tion is evenly balanced load and everyone is happy.

A more tricky case arises in our earlier example, where A was left
alone on CPU 0 and B and D were alternating on CPU 1:

Q0 A Q1 B D

In this case, a single migration does not solve the problem. What
would you do in this case? The answer, alas, is continuous migration
of one or more jobs. One possible solution is to keep switching jobs, as
we see in the following timeline. In the figure, first A is alone on CPU 0,
and B and D alternate on CPU 1. After a few time slices, B is moved to
compete with A on CPU 0, while D enjoys a few time slices alone on CPU
1. And thus load is balanced:

CPU 0

CPU 1

A A A A B A B A B B B B

B D B D D D D D A D A D ...

 ...

Of course, many other possible migration patterns exist. But now for
the tricky part: how should the system decide to enact such a migration?

One basic approach is to use a technique known as work stealing
[FLR98]. With a work-stealing approach, a (source) queue that is low
on jobs will occasionally peek at another (target) queue, to see how full
it is. If the target queue is (notably) more full than the source queue, the
source will “steal” one or more jobs from the target to help balance load.

Of course, there is a natural tension in such an approach. If you look
around at other queues too often, you will suffer from high overhead and
have trouble scaling, which was the entire purpose of implementing the

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

102 MULTIPROCESSOR SCHEDULING (ADVANCED)

multiple queue scheduling in the first place! If, on the other hand, you
don’t look at other queues very often, you are in danger of suffering from
severe load balances. Finding the right threshold remains, as is common
in system policy design, a black art.

10.6 Linux Multiprocessor Schedulers

Interestingly, in the Linux community, no common solution has ap-
proached to building a multiprocessor scheduler. Over time, three dif-
ferent schedulers arose: the O(1) scheduler, the Completely Fair Sched-

uler (CFS), and the BF Scheduler (BFS)2. See Meehean’s dissertation for
an excellent overview of the strengths and weaknesses of said schedulers
[M11]; here we just summarize a few of the basics.

Both O(1) and CFS uses multiple queues, whereas BFS uses a single
queue, showing that both approaches can be successful. Of course, there
are many other details which separate these schedulers. For example, the
O(1) scheduler is a priority-based scheduler (similar to the MLFQ dis-
cussed before), changing a process’s priority over time and then schedul-
ing those with highest priority in order to meet various scheduling objec-
tives; interactivity is a particular focus. CFS, in contrast, is a deterministic
proportional-share approach (more like Stride scheduling, as discussed
earlier). BFS, the only single-queue approach among the three, is also
proportional-share, but based on a more complicated scheme known as
Earliest Eligible Virtual Deadline First (EEVDF) [SA96]. Read more about
these modern algorithms on your own; you should be able to understand
how they work now!

10.7 Summary

We have seen various approaches to multiprocessor scheduling. The
single-queue approach (SQMS) is rather straightforward to build and bal-
ances load well but inherently has difficulty with scaling to many pro-
cessors and cache affinity. The multiple-queue approach (MQMS) scales
better and handles cache affinity well, but has trouble with load imbal-
ance and is more complicated. Whichever approach you take, there is no
simple answer: building a general purpose scheduler remains a daunting
task, as small code changes can lead to large behavioral differences. Only
undertake such an exercise if you know exactly what you are doing, or,
at least, are getting paid a large amount of money to do so.

2Look up what BF stands for on your own; be forewarned, it is not for the faint of heart.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

MULTIPROCESSOR SCHEDULING (ADVANCED) 103

References

[A90] “The Performance of Spin Lock Alternatives for Shared-Memory Multiprocessors”
Thomas E. Anderson
IEEE TPDS Volume 1:1, January 1990
A classic paper on how different locking alternatives do and don’t scale. By Tom Anderson, very well
known researcher in both systems and networking. And author of a very fine OS textbook, we must say.

[B+10] “An Analysis of Linux Scalability to Many Cores Abstract”
Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev, M. Frans Kaashoek,
Robert Morris, Nickolai Zeldovich
OSDI ’10, Vancouver, Canada, October 2010
A terrific modern paper on the difficulties of scaling Linux to many cores.

[CSG99] “Parallel Computer Architecture: A Hardware/Software Approach”
David E. Culler, Jaswinder Pal Singh, and Anoop Gupta
Morgan Kaufmann, 1999
A treasure filled with details about parallel machines and algorithms. As Mark Hill humorously ob-
serves on the jacket, the book contains more information than most research papers.

[FLR98] “The Implementation of the Cilk-5 Multithreaded Language”
Matteo Frigo, Charles E. Leiserson, Keith Randall
PLDI ’98, Montreal, Canada, June 1998
Cilk is a lightweight language and runtime for writing parallel programs, and an excellent example of
the work-stealing paradigm.

[G83] “Using Cache Memory To Reduce Processor-Memory Traffic”
James R. Goodman
ISCA ’83, Stockholm, Sweden, June 1983
The pioneering paper on how to use bus snooping, i.e., paying attention to requests you see on the bus, to
build a cache coherence protocol. Goodman’s research over many years at Wisconsin is full of cleverness,
this being but one example.

[M11] “Towards Transparent CPU Scheduling”
Joseph T. Meehean
Doctoral Dissertation at University of Wisconsin–Madison, 2011
A dissertation that covers a lot of the details of how modern Linux multiprocessor scheduling works.
Pretty awesome! But, as co-advisors of Joe’s, we may be a bit biased here.

[SHW11] “A Primer on Memory Consistency and Cache Coherence”
Daniel J. Sorin, Mark D. Hill, and David A. Wood
Synthesis Lectures in Computer Architecture
Morgan and Claypool Publishers, May 2011
A definitive overview of memory consistency and multiprocessor caching. Required reading for anyone
who likes to know way too much about a given topic.

[SA96] “Earliest Eligible Virtual Deadline First: A Flexible and Accurate Mechanism for Pro-
portional Share Resource Allocation”
Ion Stoica and Hussein Abdel-Wahab
Technical Report TR-95-22, Old Dominion University, 1996
A tech report on this cool scheduling idea, from Ion Stoica, now a professor at U.C. Berkeley and world
expert in networking, distributed systems, and many other things.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

11

Summary Dialogue on CPU Virtualization

Professor: So, Student, did you learn anything?

Student: Well, Professor, that seems like a loaded question. I think you only
want me to say “yes.”

Professor: That’s true. But it’s also still an honest question. Come on, give a
professor a break, will you?

Student: OK, OK. I think I did learn a few things. First, I learned a little about
how the OS virtualizes the CPU. There are a bunch of important mechanisms
that I had to understand to make sense of this: traps and trap handlers, timer
interrupts, and how the OS and the hardware have to carefully save and restore
state when switching between processes.

Professor: Good, good!

Student: All those interactions do seem a little complicated though; how can I
learn more?

Professor: Well, that’s a good question. I think there is no substitute for doing;
just reading about these things doesn’t quite give you the proper sense. Do the
class projects and I bet by the end it will all kind of make sense.

Student: Sounds good. What else can I tell you?

Professor: Well, did you get some sense of the philosophy of the OS in your
quest to understand its basic machinery?

Student: Hmm... I think so. It seems like the OS is fairly paranoid. It wants
to make sure it stays in charge of the machine. While it wants a program to run
as efficiently as possible (and hence the whole reasoning behind limited direct
execution), the OS also wants to be able to say “Ah! Not so fast my friend”
in case of an errant or malicious process. Paranoia rules the day, and certainly
keeps the OS in charge of the machine. Perhaps that is why we think of the OS
as a resource manager.

Professor: Yes indeed – sounds like you are starting to put it together! Nice.

Student: Thanks.

105

106 SUMMARY DIALOGUE ON CPU VIRTUALIZATION

Professor: And what about the policies on top of those mechanisms – any inter-
esting lessons there?

Student: Some lessons to be learned there for sure. Perhaps a little obvious, but
obvious can be good. Like the notion of bumping short jobs to the front of the
queue – I knew that was a good idea ever since the one time I was buying some
gum at the store, and the guy in front of me had a credit card that wouldn’t work.
He was no short job, let me tell you.

Professor: That sounds oddly rude to that poor fellow. What else?

Student: Well, that you can build a smart scheduler that tries to be like SJF and
RR all at once – that MLFQ was pretty neat. Building up a real scheduler seems
difficult.

Professor: Indeed it is. That’s why there is still controversy to this day over
which scheduler to use; see the Linux battles between CFS, BFS, and the O(1)
scheduler, for example. And no, I will not spell out the full name of BFS.

Student: And I won’t ask you to! These policy battles seem like they could rage
forever; is there really a right answer?

Professor: Probably not. After all, even our own metrics are at odds: if your
scheduler is good at turnaround time, it’s bad at response time, and vice versa.
As Lampson said, perhaps the goal isn’t to find the best solution, but rather to
avoid disaster.

Student: That’s a little depressing.

Professor: Good engineering can be that way. And it can also be uplifting!
It’s just your perspective on it, really. I personally think being pragmatic is a
good thing, and pragmatists realize that not all problems have clean and easy
solutions. Anything else that caught your fancy?

Student: I really liked the notion of gaming the scheduler; it seems like that
might be something to look into when I’m next running a job on Amazon’s EC2
service. Maybe I can steal some cycles from some other unsuspecting (and more
importantly, OS-ignorant) customer!

Professor: It looks like I might have created a monster! Professor Frankenstein
is not what I’d like to be called, you know.

Student: But isn’t that the idea? To get us excited about something, so much so
that we look into it on our own? Lighting fires and all that?

Professor: I guess so. But I didn’t think it would work!

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

12

A Dialogue on Memory Virtualization

Student: So, are we done with virtualization?

Professor: No!

Student: Hey, no reason to get so excited; I was just asking a question. Students
are supposed to do that, right?

Professor: Well, professors do always say that, but really they mean this: ask
questions, if they are good questions, and you have actually put a little thought
into them.

Student: Well, that sure takes the wind out of my sails.

Professor: Mission accomplished. In any case, we are not nearly done with
virtualization! Rather, you have just seen how to virtualize the CPU, but really
there is a big monster waiting in the closet: memory. Virtualizing memory is
complicated and requires us to understand many more intricate details about
how the hardware and OS interact.

Student: That sounds cool. Why is it so hard?

Professor: Well, there are a lot of details, and you have to keep them straight
in your head to really develop a mental model of what is going on. We’ll start
simple, with very basic techniques like base/bounds, and slowly add complexity
to tackle new challenges, including fun topics like TLBs and multi-level page
tables. Eventually, we’ll be able to describe the workings of a fully-functional
modern virtual memory manager.

Student: Neat! Any tips for the poor student, inundated with all of this infor-
mation and generally sleep-deprived?

Professor: For the sleep deprivation, that’s easy: sleep more (and party less).
For understanding virtual memory, start with this: every address generated
by a user program is a virtual address. The OS is just providing an illusion
to each process, specifically that it has its own large and private memory; with
some hardware help, the OS will turn these pretend virtual addresses into real
physical addresses, and thus be able to locate the desired information.

107

108 A DIALOGUE ON MEMORY VIRTUALIZATION

Student: OK, I think I can remember that... (to self) every address from a user
program is virtual, every address from a user program is virtual, every ...

Professor: What are you mumbling about?

Student: Oh nothing.... (awkward pause) ... Anyway, why does the OS want
to provide this illusion again?

Professor: Mostly ease of use: the OS will give each program the view that it
has a large contiguous address space to put its code and data into; thus, as a
programmer, you never have to worry about things like “where should I store this
variable?” because the virtual address space of the program is large and has lots
of room for that sort of thing. Life, for a programmer, becomes much more tricky
if you have to worry about fitting all of your code data into a small, crowded
memory.

Student: Why else?

Professor: Well, isolation and protection are big deals, too. We don’t want
one errant program to be able to read, or worse, overwrite, some other program’s
memory, do we?

Student: Probably not. Unless it’s a program written by someone you don’t
like.

Professor: Hmmm.... I think we might need to add a class on morals and ethics
to your schedule for next semester. Perhaps OS class isn’t getting the right mes-
sage across.

Student: Maybe we should. But remember, it’s not me who taught us that the
proper OS response to errant process behavior is to kill the offending process!

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

13

The Abstraction: Address Spaces

In the early days, building computer systems was easy. Why, you ask?
Because users didn’t expect much. It is those darned users with their
expectations of “ease of use”, “high performance”, “reliability”, etc., that
really have led to all these headaches. Next time you meet one of those
computer users, thank them for all the problems they have caused.

13.1 Early Systems

From the perspective of memory, early machines didn’t provide much
of an abstraction to users. Basically, the physical memory of the machine
looked something like what you see in Figure 13.1.

The OS was a set of routines (a library, really) that sat in memory (start-
ing at physical address 0 in this example), and there would be one run-
ning program (a process) that currently sat in physical memory (starting
at physical address 64k in this example) and used the rest of memory.
There were few illusions here, and the user didn’t expect much from the
OS. Life was sure easy for OS developers in those days, wasn’t it?

max

64KB

0KB

Current Program
(code, data, etc.)

Operating System
(code, data, etc.)

Figure 13.1: Operating Systems: The Early Days

109

110 THE ABSTRACTION: ADDRESS SPACES

512KB

448KB

384KB

320KB

256KB

192KB

128KB

64KB

0KB

(free)

(free)

(free)

(free)

Operating System
(code, data, etc.)

Process A
(code, data, etc.)

Process B
(code, data, etc.)

Process C
(code, data, etc.)

Figure 13.2: Three Processes: Sharing Memory

13.2 Multiprogramming and Time Sharing

After a time, because machines were expensive, people began to share
machines more effectively. Thus the era of multiprogramming was born
[DV66], in which multiple processes were ready to run at a given time,
and the OS would switch between them, for example when one decided
to perform an I/O. Doing so increased the effective utilization of the
CPU. Such increases in efficiency were particularly important in those
days where each machine cost hundreds of thousands or even millions of
dollars (and you thought your Mac was expensive!).

Soon enough, however, people began demanding more of machines,
and the era of time sharing was born [S59, L60, M62, M83]. Specifically,
many realized the limitations of batch computing, particularly on pro-
grammers themselves [CV65], who were tired of long (and hence ineffec-
tive) program-debug cycles. The notion of interactivity became impor-
tant, as many users might be concurrently using a machine, each waiting
for (or hoping for) a timely response from their currently-executing tasks.

One way to implement time sharing would be to run one process for
a short while, giving it full access to all memory (as in Figure 13.1), then
stop it, save all of its state to some kind of disk (including all of physical
memory), load some other process’s state, run it for a while, and thus
implement some kind of crude sharing of the machine [M+63].

Unfortunately, this approach has a big problem: it is way too slow, par-
ticularly as memory grew. While saving and restoring register-level state
(e.g., the PC, general-purpose registers, etc.) is relatively fast, saving the
entire contents of memory to disk is brutally non-performant. Thus, what
we’d rather do is leave processes in memory while switching between
them, allowing the OS to implement time sharing efficiently (Figure 13.2).

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

THE ABSTRACTION: ADDRESS SPACES 111

16KB

15KB

2KB

1KB

0KB

Stack

(free)

Heap

Program Code
the code segment:

where instructions live

the heap segment:
contains malloc’d data

dynamic data structures
(it grows downward)

(it grows upward)
the stack segment:

contains local variables
arguments to routines,

return values, etc.

Figure 13.3: An Example Address Space

In the diagram, there are three processes (A, B, and C) and each of
them have a small part of the 512-KB physical memory carved out for
them. Assuming a single CPU, the OS chooses to run one of the processes
(say A), while the others (B and C) sit in the ready queue waiting to run.

As time sharing became more popular, you can probably guess that
new demands were placed on the operating system. In particular, allow-
ing multiple programs to reside concurrently in memory makes protec-
tion an important issue; you don’t want a process to be able to read, or
worse, write some other process’s memory.

13.3 The Address Space

However, we have to keep those pesky users in mind, and doing so
requires the OS to create an easy to use abstraction of physical memory.
We call this abstraction the address space, and it is the running program’s
view of memory in the system. Understanding this fundamental OS ab-
straction of memory is key to understanding how memory is virtualized.

The address space of a process contains all of the memory state of the
running program. For example, the code of the program (the instruc-
tions) have to live in memory somewhere, and thus they are in the ad-
dress space. The program, while it is running, uses a stack to keep track
of where it is in the function call chain as well as to allocate local variables
and pass parameters and return values to and from routines. Finally, the
heap is used for dynamically-allocated, user-managed memory, such as
that you might receive from a call to malloc() in C or new in an object-
oriented language such as C++ or Java. Of course, there are other things
in there too (e.g., statically-initialized variables), but for now let us just
assume those three components: code, stack, and heap.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

112 THE ABSTRACTION: ADDRESS SPACES

In the example in Figure 13.3, we have a tiny address space (only 16

KB)1. The program code lives at the top of the address space (starting at
0 in this example, and is packed into the first 1K of the address space).
Code is static (and thus easy to place in memory), so we can place it at
the top of the address space and know that it won’t need any more space
as the program runs.

Next, we have the two regions of the address space that may grow
(and shrink) while the program runs. Those are the heap (at the top) and
the stack (at the bottom). We place them like this because each wishes to
be able to grow, and by putting them at opposite ends of the address
space, we can allow such growth: they just have to grow in opposite
directions. The heap thus starts just after the code (at 1KB) and grows
downward (say when a user requests more memory via malloc()); the
stack starts at 16KB and grows upward (say when a user makes a proce-
dure call). However, this placement of stack and heap is just a convention;
you could arrange the address space in a different way if you’d like (as
we’ll see later, when multiple threads co-exist in an address space, no
nice way to divide the address space like this works anymore, alas).

Of course, when we describe the address space, what we are describ-
ing is the abstraction that the OS is providing to the running program.
The program really isn’t in memory at physical addresses 0 through 16KB;
rather it is loaded at some arbitrary physical address(es). Examine pro-
cesses A, B, and C in Figure 13.2; there you can see how each process is
loaded into memory at a different address. And hence the problem:

THE CRUX: HOW TO VIRTUALIZE MEMORY

How can the OS build this abstraction of a private, potentially large
address space for multiple running processes (all sharing memory) on
top of a single, physical memory?

When the OS does this, we say the OS is virtualizing memory, because
the running program thinks it is loaded into memory at a particular ad-
dress (say 0) and has a potentially very large address space (say 32-bits or
64-bits); the reality is quite different.

When, for example, process A in Figure 13.2 tries to perform a load
at address 0 (which we will call a virtual address), somehow the OS, in
tandem with some hardware support, will have to make sure the load
doesn’t actually go to physical address 0 but rather to physical address
320KB (where A is loaded into memory). This is the key to virtualization
of memory, which underlies every modern computer system in the world.

1We will often use small examples like this because it is a pain to represent a 32-bit address
space and the numbers start to become hard to handle.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

THE ABSTRACTION: ADDRESS SPACES 113

TIP: THE PRINCIPLE OF ISOLATION

Isolation is a key principle in building reliable systems. If two entities are
properly isolated from one another, this implies that one can fail with-
out affecting the other. Operating systems strive to isolate processes from
each other and in this way prevent one from harming the other. By using
memory isolation, the OS further ensures that running programs cannot
affect the operation of the underlying OS. Some modern OS’s take iso-
lation even further, by walling off pieces of the OS from other pieces of
the OS. Such microkernels [BH70, R+89, S+03] thus may provide greater
reliability than typical monolithic kernel designs.

13.4 Goals

Thus we arrive at the job of the OS in this set of notes: to virtualize
memory. The OS will not only virtualize memory, though; it will do so
with style. To make sure the OS does so, we need some goals to guide us.
We have seen these goals before (think of the Introduction), and we’ll see
them again, but they are certainly worth repeating.

One major goal of a virtual memory (VM) system is transparency2.
The OS should implement virtual memory in a way that is invisible to
the running program. Thus, the program shouldn’t be aware of the fact
that memory is virtualized; rather, the program behaves as if it has its
own private physical memory. Behind the scenes, the OS (and hardware)
does all the work to multiplex memory among many different jobs, and
hence implements the illusion.

Another goal of VM is efficiency. The OS should strive to make the
virtualization as efficient as possible, both in terms of time (i.e., not mak-
ing programs run much more slowly) and space (i.e., not using too much
memory for structures needed to support virtualization). In implement-
ing time-efficient virtualization, the OS will have to rely on hardware
support, including hardware features such as TLBs (which we will learn
about in due course).

Finally, a third VM goal is protection. The OS should make sure to
protect processes from one another as well as the OS itself from pro-
cesses. When one process performs a load, a store, or an instruction fetch,
it should not be able to access or affect in any way the memory contents
of any other process or the OS itself (that is, anything outside its address
space). Protection thus enables us to deliver the property of isolation
among processes; each process should be running in its own isolated co-
coon, safe from the ravages of other faulty or even malicious processes.

2This usage of transparency is sometimes confusing; some students think that “being
transparent” means keeping everything out in the open, i.e., what government should be like.
Here, it means the opposite: that the illusion provided by the OS should not be visible to ap-
plications. Thus, in common usage, a transparent system is one that is hard to notice, not one
that responds to requests as stipulated by the Freedom of Information Act.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

114 THE ABSTRACTION: ADDRESS SPACES

ASIDE: EVERY ADDRESS YOU SEE IS VIRTUAL

Ever write a C program that prints out a pointer? The value you see
(some large number, often printed in hexadecimal), is a virtual address.
Ever wonder where the code of your program is found? You can print
that out too, and yes, if you can print it, it also is a virtual address. In
fact, any address you can see as a programmer of a user-level program
is a virtual address. It’s only the OS, through its tricky techniques of
virtualizing memory, that knows where in the physical memory of the
machine these instructions and data values lie. So never forget: if you
print out an address in a program, it’s a virtual one, an illusion of how
things are laid out in memory; only the OS (and the hardware) knows the
real truth.

Here’s a little program that prints out the locations of the main() rou-
tine (where code lives), the value of a heap-allocated value returned from
malloc(), and the location of an integer on the stack:

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main(int argc, char *argv[]) {

4 printf("location of code : %p\n", (void *) main);

5 printf("location of heap : %p\n", (void *) malloc(1));

6 int x = 3;

7 printf("location of stack : %p\n", (void *) &x);

8 return x;

9 }

When run on a 64-bit Mac OS X machine, we get the following output:

location of code : 0x1095afe50

location of heap : 0x1096008c0

location of stack : 0x7fff691aea64

From this, you can see that code comes first in the address space, then
the heap, and the stack is all the way at the other end of this large virtual
space. All of these addresses are virtual, and will be translated by the OS
and hardware in order to fetch values from their true physical locations.

In the next chapters, we’ll focus our exploration on the basic mecha-
nisms needed to virtualize memory, including hardware and operating
systems support. We’ll also investigate some of the more relevant poli-
cies that you’ll encounter in operating systems, including how to manage
free space and which pages to kick out of memory when you run low on
space. In doing so, we’ll build up your understanding of how a modern

virtual memory system really works3.

3Or, we’ll convince you to drop the course. But hold on; if you make it through VM, you’ll
likely make it all the way!

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

THE ABSTRACTION: ADDRESS SPACES 115

13.5 Summary

We have seen the introduction of a major OS subsystem: virtual mem-
ory. The VM system is responsible for providing the illusion of a large,
sparse, private address space to programs, which hold all of their instruc-
tions and data therein. The OS, with some serious hardware help, will
take each of these virtual memory references, and turn them into physi-
cal addresses, which can be presented to the physical memory in order to
fetch the desired information. The OS will do this for many processes at
once, making sure to protect programs from one another, as well as pro-
tect the OS. The entire approach requires a great deal of mechanism (lots
of low-level machinery) as well as some critical policies to work; we’ll
start from the bottom up, describing the critical mechanisms first. And
thus we proceed!

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

116 THE ABSTRACTION: ADDRESS SPACES

References

[BH70] “The Nucleus of a Multiprogramming System”
Per Brinch Hansen
Communications of the ACM, 13:4, April 1970
The first paper to suggest that the OS, or kernel, should be a minimal and flexible substrate for building
customized operating systems; this theme is revisited throughout OS research history.

[CV65] “Introduction and Overview of the Multics System”
F. J. Corbato and V. A. Vyssotsky
Fall Joint Computer Conference, 1965
A great early Multics paper. Here is the great quote about time sharing: “The impetus for time-sharing
first arose from professional programmers because of their constant frustration in debugging programs
at batch processing installations. Thus, the original goal was to time-share computers to allow simulta-
neous access by several persons while giving to each of them the illusion of having the whole machine at
his disposal.”

[DV66] “Programming Semantics for Multiprogrammed Computations”
Jack B. Dennis and Earl C. Van Horn
Communications of the ACM, Volume 9, Number 3, March 1966
An early paper (but not the first) on multiprogramming.

[L60] “Man-Computer Symbiosis”
J. C. R. Licklider
IRE Transactions on Human Factors in Electronics, HFE-1:1, March 1960
A funky paper about how computers and people are going to enter into a symbiotic age; clearly well
ahead of its time but a fascinating read nonetheless.

[M62] “Time-Sharing Computer Systems”
J. McCarthy
Management and the Computer of the Future, MIT Press, Cambridge, Mass, 1962
Probably McCarthy’s earliest recorded paper on time sharing. However, in another paper [M83], he
claims to have been thinking of the idea since 1957. McCarthy left the systems area and went on to be-
come a giant in Artificial Intelligence at Stanford, including the creation of the LISP programming lan-
guage. See McCarthy’s home page for more info: http://www-formal.stanford.edu/jmc/

[M+63] “A Time-Sharing Debugging System for a Small Computer”
J. McCarthy, S. Boilen, E. Fredkin, J. C. R. Licklider
AFIPS ’63 (Spring), May, 1963, New York, USA
A great early example of a system that swapped program memory to the “drum” when the program
wasn’t running, and then back into “core” memory when it was about to be run.

[M83] “Reminiscences on the History of Time Sharing”
John McCarthy
Winter or Spring of 1983
Available: http://www-formal.stanford.edu/jmc/history/timesharing/timesharing.html
A terrific historical note on where the idea of time-sharing might have come from, including some doubts
towards those who cite Strachey’s work [S59] as the pioneering work in this area.

[R+89] “Mach: A System Software kernel”
Richard Rashid, Daniel Julin, Douglas Orr, Richard Sanzi, Robert Baron, Alessandro Forin,
David Golub, Michael Jones
COMPCON 89, February 1989
Although not the first project on microkernels per se, the Mach project at CMU was well-known and
influential; it still lives today deep in the bowels of Mac OS X.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

THE ABSTRACTION: ADDRESS SPACES 117

[S59] “Time Sharing in Large Fast Computers”
C. Strachey
Proceedings of the International Conference on Information Processing, UNESCO, June 1959
One of the earliest references on time sharing.

[S+03] “Improving the Reliability of Commodity Operating Systems”
Michael M. Swift, Brian N. Bershad, Henry M. Levy
SOSP 2003
The first paper to show how microkernel-like thinking can improve operating system reliability.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

14

Interlude: Memory API

In this interlude, we discuss the memory allocation interfaces in UNIX

systems. The interfaces provided are quite simple, and hence the chapter

is short and to the point1. The main problem we address is this:

CRUX: HOW TO ALLOCATE AND MANAGE MEMORY

In UNIX/C programs, understanding how to allocate and manage
memory is critical in building robust and reliable software. What inter-
faces are commonly used? What mistakes should be avoided?

14.1 Types of Memory

In running a C program, there are two types of memory that are allo-
cated. The first is called stack memory, and allocations and deallocations
of it are managed implicitly by the compiler for you, the programmer; for
this reason it is sometimes called automatic memory.

Declaring memory on the stack in C is easy. For example, let’s say you
need some space in a function func() for an integer, called x. To declare
such a piece of memory, you just do something like this:

void func() {

int x; // declares an integer on the stack

...

}

The compiler does the rest, making sure to make space on the stack
when you call into func(). When your return from the function, the
compiler deallocates the memory for you; thus, if you want some infor-
mation to live beyond the call invocation, you had better not leave that
information on the stack.

It is this need for long-lived memory that gets us to the second type
of memory, called heap memory, where all allocations and deallocations

1Indeed, we hope all chapters are! But this one is shorter and pointier, we think.

119

120 INTERLUDE: MEMORY API

are explicitly handled by you, the programmer. A heavy responsibility,
no doubt! And certainly the cause of many bugs. But if you are careful
and pay attention, you will use such interfaces correctly and without too
much trouble. Here is an example of how one might allocate a pointer to
an integer on the heap:

void func() {

int *x = (int *) malloc(sizeof(int));

...

}

A couple of notes about this small code snippet. First, you might no-
tice that both stack and heap allocation occur on this line: first the com-
piler knows to make room for a pointer to an integer when it sees your
declaration of said pointer (int *x); subsequently, when the program
calls malloc(), it requests space for an integer on the heap; the routine
returns the address of such an integer (upon success, or NULL on failure),
which is then stored on the stack for use by the program.

Because of its explicit nature, and because of its more varied usage,
heap memory presents more challenges to both users and systems. Thus,
it is the focus of the remainder of our discussion.

14.2 The malloc() Call

The malloc() call is quite simple: you pass it a size asking for some
room on the heap, and it either succeeds and gives you back a pointer to

the newly-allocated space, or fails and returns NULL2.
The manual page shows what you need to do to use malloc; type man

malloc at the command line and you will see:

#include <stdlib.h>

...

void *malloc(size_t size);

From this information, you can see that all you need to do is include
the header file stdlib.h to use malloc. In fact, you don’t really need to
even do this, as the C library, which all C programs link with by default,
has the code for malloc() inside of it; adding the header just lets the
compiler check whether you are calling malloc() correctly (e.g., passing
the right number of arguments to it, of the right type).

The single parameter malloc() takes is of type size t which sim-
ply describes how many bytes you need. However, most programmers
do not type in a number here directly (such as 10); indeed, it would be
considered poor form to do so. Instead, various routines and macros are
utilized. For example, to allocate space for a double-precision floating
point value, you simply do this:

double *d = (double *) malloc(sizeof(double));

2Note that NULL in C isn’t really anything special at all, just a macro for the value zero.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTERLUDE: MEMORY API 121

TIP: WHEN IN DOUBT, TRY IT OUT

If you aren’t sure how some routine or operator you are using behaves,
there is no substitute for simply trying it out and making sure it behaves
as you expect. While reading the manual pages or other documentation
is useful, how it works in practice is what matters. Write some code and
test it! That is no doubt the best way to make sure your code behaves as
you desire. Indeed, that is what we did to double-check the things we
were saying about sizeof() were actually true!

Wow, that’s lot of double-ing! This invocation of malloc() uses the
sizeof() operator to request the right amount of space; in C, this is
generally thought of as a compile-time operator, meaning that the actual
size is known at compile time and thus a number (in this case, 8, for a
double) is substituted as the argument to malloc(). For this reason,
sizeof() is correctly thought of as an operator and not a function call
(a function call would take place at run time).

You can also pass in the name of a variable (and not just a type) to
sizeof(), but in some cases you may not get the desired results, so be
careful. For example, let’s look at the following code snippet:

int *x = malloc(10 * sizeof(int));

printf("%d\n", sizeof(x));

In the first line, we’ve declared space for an array of 10 integers, which
is fine and dandy. However, when we use sizeof() in the next line,
it returns a small value, such as 4 (on 32-bit machines) or 8 (on 64-bit
machines). The reason is that in this case, sizeof() thinks we are sim-
ply asking how big a pointer to an integer is, not how much memory we
have dynamically allocated. However, sometimes sizeof() does work
as you might expect:

int x[10];

printf("%d\n", sizeof(x));

In this case, there is enough static information for the compiler to
know that 40 bytes have been allocated.

Another place to be careful is with strings. When declaring space for a
string, use the following idiom: malloc(strlen(s) + 1), which gets
the length of the string using the function strlen(), and adds 1 to it
in order to make room for the end-of-string character. Using sizeof()

may lead to trouble here.
You might also notice that malloc() returns a pointer to type void.

Doing so is just the way in C to pass back an address and let the pro-
grammer decide what to do with it. The programmer further helps out
by using what is called a cast; in our example above, the programmer
casts the return type of malloc() to a pointer to a double. Casting
doesn’t really accomplish anything, other than tell the compiler and other

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

122 INTERLUDE: MEMORY API

programmers who might be reading your code: “yeah, I know what I’m
doing.” By casting the result of malloc(), the programmer is just giving
some reassurance; the cast is not needed for the correctness.

14.3 The free() Call

As it turns out, allocating memory is the easy part of the equation;
knowing when, how, and even if to free memory is the hard part. To free
heap memory that is no longer in use, programmers simply call free():

int *x = malloc(10 * sizeof(int));

...

free(x);

The routine takes one argument, a pointer that was returned by malloc().
Thus, you might notice, the size of the allocated region is not passed in
by the user, and must be tracked by the memory-allocation library itself.

14.4 Common Errors

There are a number of common errors that arise in the use of malloc()
and free(). Here are some we’ve seen over and over again in teaching
the undergraduate operating systems course. All of these examples com-
pile and run with nary a peep from the compiler; while compiling a C
program is necessary to build a correct C program, it is far from suffi-
cient, as you will learn (often in the hard way).

Correct memory management has been such a problem, in fact, that
many newer languages have support for automatic memory manage-
ment. In such languages, while you call something akin to malloc()

to allocate memory (usually new or something similar to allocate a new
object), you never have to call something to free space; rather, a garbage
collector runs and figures out what memory you no longer have refer-
ences to and frees it for you.

Forgetting To Allocate Memory

Many routines expect memory to be allocated before you call them. For
example, the routine strcpy(dst, src) copies a string from a source
pointer to a destination pointer. However, if you are not careful, you
might do this:

char *src = "hello";

char *dst; // oops! unallocated

strcpy(dst, src); // segfault and die

When you run this code, it will likely lead to a segmentation fault3,
which is a fancy term for YOU DID SOMETHING WRONG WITH
MEMORY YOU FOOLISH PROGRAMMER AND I AM ANGRY.

3Although it sounds arcane, you will soon learn why such an illegal memory access is
called a segmentation fault; if that isn’t incentive to read on, what is?

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTERLUDE: MEMORY API 123

TIP: IT COMPILED OR IT RAN 6= IT IS CORRECT

Just because a program compiled(!) or even ran once or many times cor-
rectly does not mean the program is correct. Many events may have con-
spired to get you to a point where you believe it works, but then some-
thing changes and it stops. A common student reaction is to say (or yell)
“But it worked before!” and then blame the compiler, operating system,
hardware, or even (dare we say it) the professor. But the problem is usu-
ally right where you think it would be, in your code. Get to work and
debug it before you blame those other components.

In this case, the proper code might instead look like this:

char *src = "hello";

char *dst = (char *) malloc(strlen(src) + 1);

strcpy(dst, src); // work properly

Alternately, you could use strdup() and make your life even easier.
Read the strdup man page for more information.

Not Allocating Enough Memory

A related error is not allocating enough memory, sometimes called a buffer
overflow. In the example above, a common error is to make almost enough
room for the destination buffer.

char *src = "hello";

char *dst = (char *) malloc(strlen(src)); // too small!

strcpy(dst, src); // work properly

Oddly enough, depending on how malloc is implemented and many
other details, this program will often run seemingly correctly. In some
cases, when the string copy executes, it writes one byte too far past the
end of the allocated space, but in some cases this is harmless, perhaps
overwriting a variable that isn’t used anymore. In some cases, these over-
flows can be incredibly harmful, and in fact are the source of many secu-
rity vulnerabilities in systems [W06]. In other cases, the malloc library
allocated a little extra space anyhow, and thus your program actually
doesn’t scribble on some other variable’s value and works quite fine. In
even other cases, the program will indeed fault and crash. And thus we
learn another valuable lesson: even though it ran correctly once, doesn’t
mean it’s correct.

Forgetting to Initialize Allocated Memory

With this error, you call malloc() properly, but forget to fill in some val-
ues into your newly-allocated data type. Don’t do this! If you do forget,
your program will eventually encounter an uninitialized read, where it

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

124 INTERLUDE: MEMORY API

reads from the heap some data of unknown value. Who knows what
might be in there? If you’re lucky, some value such that the program still
works (e.g., zero). If you’re not lucky, something random and harmful.

Forgetting To Free Memory

Another common error is known as a memory leak, and it occurs when
you forget to free memory. In long-running applications or systems (such
as the OS itself), this is a huge problem, as slowly leaking memory even-
tually leads one to run out of memory, at which point a restart is required.
Thus, in general, when you are done with a chunk of memory, you should
make sure to free it. Note that using a garbage-collected language doesn’t
help here: if you still have a reference to some chunk of memory, no
garbage collector will ever free it, and thus memory leaks remain a prob-
lem even in more modern languages.

Note that not all memory need be freed, at least, in certain cases. For
example, when you write a short-lived program, you might allocate some
space using malloc(). The program runs and is about to complete: is
there need to call free() a bunch of times just before exiting? While
it seems wrong not to, it is in this case quite fine to simply exit. After
all, when your program exits, the OS will clean up everything about this
process, including any memory it has allocated. Calling free() a bunch
of times and then exiting is thus pointless, and, if you do so incorrectly,
will cause the program to crash. Just call exit and be happy instead.

Freeing Memory Before You Are Done With It

Sometimes a program will free memory before it is finished using it; such
a mistake is called a dangling pointer, and it, as you can guess, is also a
bad thing. The subsequent use can crash the program, or overwrite valid
memory (e.g., you called free(), but then called malloc() again to
allocate something else, which then recycles the errantly-freed memory).

Freeing Memory Repeatedly

Programs also sometimes free memory more than once; this is known as
the double free. The result of doing so is undefined. As you can imag-
ine, the memory-allocation library might get confused and do all sorts of
weird things; crashes are a common outcome.

Calling free() Incorrectly

One last problem we discuss is the call of free() incorrectly. After all,
free() expects you only to pass to it one of the pointers you received
from malloc() earlier. When you pass in some other value, bad things
can (and do) happen. Thus, such invalid frees are dangerous and of
course should also be avoided.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTERLUDE: MEMORY API 125

Summary

As you can see, there are lots of ways to abuse memory. Because of fre-
quent errors with memory, a whole ecosphere of tools have developed to
help find such problems in your code. Check out both purify [HJ92] and
valgrind [SN05]; both are excellent at helping you locate the source of
your memory-related problems. Once you become accustomed to using
these powerful tools, you will wonder how you survived without them.

14.5 Underlying OS Support

You might have noticed that we haven’t been talking about system
calls when discussing malloc() and free(). The reason for this is sim-
ple: they are not system calls, but rather library calls. Thus the malloc li-
brary manages space within your virtual address space, but itself is built
on top of some system calls which call into the OS to ask for more mem-
ory or release some back to the system.

One such system call is called brk, which is used to change the loca-
tion of the program’s break: the location of the end of the heap. It takes
one argument (the address of the new break), and thus either increases or
decreases the size of the heap based on whether the new break is larger
or smaller than the current break. An additional call sbrk is passed an
increment but otherwise serves a similar purpose.

Note that you should never directly call either brk or sbrk. They
are used by the memory-allocation library; if you try to use them, you
will likely make something go (horribly) wrong. Stick to malloc() and
free() instead.

Finally, you can also obtain memory from the operating system via the
mmap() call. By passing in the correct arguments, mmap() can create an
anonymous memory region within your program – a region which is not
associated with any particular file but rather with swap space, something
we’ll discuss in detail later on in virtual memory. This memory can then
also be treated like a heap and managed as such. Read the manual page
of mmap() for more details.

14.6 Other Calls

There are a few other calls that the memory-allocation library sup-
ports. For example, calloc() allocates memory and also zeroes it be-
fore returning; this prevents some errors where you assume that memory
is zeroed and forget to initialize it yourself (see the paragraph on “unini-
tialized reads” above). The routine realloc() can also be useful, when
you’ve allocated space for something (say, an array), and then need to
add something to it: realloc() makes a new larger region of memory,
copies the old region into it, and returns the pointer to the new region.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

126 INTERLUDE: MEMORY API

14.7 Summary

We have introduced some of the APIs dealing with memory allocation.
As always, we have just covered the basics; more details are available
elsewhere. Read the C book [KR88] and Stevens [SR05] (Chapter 7) for
more information. For a cool modern paper on how to detect and correct
many of these problems automatically, see Novark et al. [N+07]; this
paper also contains a nice summary of common problems and some neat
ideas on how to find and fix them.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTERLUDE: MEMORY API 127

References

[HJ92] Purify: Fast Detection of Memory Leaks and Access Errors
R. Hastings and B. Joyce
USENIX Winter ’92
The paper behind the cool Purify tool, now a commercial product.

[KR88] “The C Programming Language”
Brian Kernighan and Dennis Ritchie
Prentice-Hall 1988
The C book, by the developers of C. Read it once, do some programming, then read it again, and then
keep it near your desk or wherever you program.

[N+07] “Exterminator: Automatically Correcting Memory Errors with High Probability”
Gene Novark, Emery D. Berger, and Benjamin G. Zorn
PLDI 2007
A cool paper on finding and correcting memory errors automatically, and a great overview of many
common errors in C and C++ programs.

[SN05] “Using Valgrind to Detect Undefined Value Errors with Bit-precision”
J. Seward and N. Nethercote
USENIX ’05
How to use valgrind to find certain types of errors.

[SR05] “Advanced Programming in the UNIX Environment”
W. Richard Stevens and Stephen A. Rago
Addison-Wesley, 2005
We’ve said it before, we’ll say it again: read this book many times and use it as a reference whenever you
are in doubt. The authors are always surprised at how each time they read something in this book, they
learn something new, even after many years of C programming.

[W06] “Survey on Buffer Overflow Attacks and Countermeasures”
Tim Werthman
Available: www.nds.rub.de/lehre/seminar/SS06/Werthmann BufferOverflow.pdf
A nice survey of buffer overflows and some of the security problems they cause. Refers to many of the
famous exploits.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

15

Mechanism: Address Translation

In developing the virtualization of the CPU, we focused on a general
mechanism known as limited direct execution (or LDE). The idea be-
hind LDE is simple: for the most part, let the program run directly on the
hardware; however, at certain key points in time (such as when a process
issues a system call, or a timer interrupt occurs), arrange so that the OS
gets involved and makes sure the “right” thing happens. Thus, the OS,
with a little hardware support, tries its best to get out of the way of the
running program, to deliver an efficient virtualization; however, by inter-
posing at those critical points in time, the OS ensures that it maintains
control over the hardware. Efficiency and control together are two of the
main goals of any modern operating system.

In virtualizing memory, we will pursue a similar strategy, attaining
both efficiency and control while providing the desired virtualization. Ef-
ficiency dictates that we make use of hardware support, which at first
will be quite rudimentary (e.g., just a few registers) but will grow to be
fairly complex (e.g., TLBs, page-table support, and so forth, as you will
see). Control implies that the OS ensures that no application is allowed
to access any memory but its own; thus, to protect applications from one
another, and the OS from applications, we will need help from the hard-
ware here too. Finally, we will need a little more from the VM system, in
terms of flexibility; specifically, we’d like for programs to be able to use
their address spaces in whatever way they would like, thus making the
system easier to program. And thus arrive at the refined crux:

THE CRUX:
HOW TO EFFICIENTLY AND FLEXIBLY VIRTUALIZE MEMORY

How can we build an efficient virtualization of memory? How do
we provide the flexibility needed by applications? How do we maintain
control over which memory locations an application can access, and thus
ensure that application memory accesses are properly restricted? How
do we do all of this efficiently?

129

130 MECHANISM: ADDRESS TRANSLATION

The generic technique we will use, which you can consider an addition
to our general approach of limited direct execution, is something that is
referred to as hardware-based address translation, or just address trans-
lation for short. With address translation, the hardware transforms each
memory access (e.g., an instruction fetch, load, or store), changing the vir-
tual address provided by the instruction to a physical address where the
desired information is actually located. Thus, on each and every memory
reference, an address translation is performed by the hardware to redirect
application memory references to their actual locations in memory.

Of course, the hardware alone cannot virtualize memory, as it just pro-
vides the low-level mechanism for doing so efficiently. The OS must get
involved at key points to set up the hardware so that the correct trans-
lations take place; it must thus manage memory, keeping track of which
locations are free and which are in use, and judiciously intervening to
maintain control over how memory is used.

Once again the goal of all of this work is to create a beautiful illu-
sion: that the program has its own private memory, where its own code
and data reside. Behind that virtual reality lies the ugly physical truth:
that many programs are actually sharing memory at the same time, as
the CPU (or CPUs) switches between running one program and the next.
Through virtualization, the OS (with the hardware’s help) turns the ugly
machine reality into something that is a useful, powerful, and easy to use
abstraction.

15.1 Assumptions

Our first attempts at virtualizing memory will be very simple, almost
laughably so. Go ahead, laugh all you want; pretty soon it will be the OS
laughing at you, when you try to understand the ins and outs of TLBs,
multi-level page tables, and other technical wonders. Don’t like the idea
of the OS laughing at you? Well, you may be out of luck then; that’s just
how the OS rolls.

Specifically, we will assume for now that the user’s address space must
be placed contiguously in physical memory. We will also assume, for sim-
plicity, that the size of the address space is not too big; specifically, that
it is less than the size of physical memory. Finally, we will also assume that
each address space is exactly the same size. Don’t worry if these assump-
tions sound unrealistic; we will relax them as we go, thus achieving a
realistic virtualization of memory.

15.2 An Example

To understand better what we need to do to implement address trans-
lation, and why we need such a mechanism, let’s look at a simple exam-
ple. Imagine there is a process whose address space as indicated in Figure
15.1. What we are going to examine here is a short code sequence that

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

MECHANISM: ADDRESS TRANSLATION 131

TIP: INTERPOSITION IS POWERFUL

Interposition is a generic and powerful technique that is often used to
great effect in computer systems. In virtualizing memory, the hardware
will interpose on each memory access, and translate each virtual address
issued by the process to a physical address where the desired informa-
tion is actually stored. However, the general technique of interposition is
much more broadly applicable; indeed, almost any well-defined interface
can be interposed upon, to add new functionality or improve some other
aspect of the system. One of the usual benefits of such an approach is
transparency; the interposition often is done without changing the client
of the interface, thus requiring no changes to said client.

loads a value from memory, increments it by three, and then stores the
value back into memory. You can imagine the C-language representation
of this code might look like this:

void func()

int x;

...

x = x + 3; // this is the line of code we are interested in

The compiler turns this line of code into assembly, which might look
something like this (in x86 assembly). Use objdump on Linux or otool
on Mac OS X to disassemble it:

128: movl 0x0(%ebx), %eax ;load 0+ebx into eax

132: addl $0x03, %eax ;add 3 to eax register

135: movl %eax, 0x0(%ebx) ;store eax back to mem

This code snippet is relatively straightforward; it presumes that the
address of x has been placed in the register ebx, and then loads the value
at that address into the general-purpose register eax using the movl in-
struction (for “longword” move). The next instruction adds 3 to eax,
and the final instruction stores the value in eax back into memory at that
same location.

In Figure 15.1, you can see how both the code and data are laid out in
the process’s address space; the three-instruction code sequence is located
at address 128 (in the code section near the top), and the value of the
variable x at address 15 KB (in the stack near the bottom). In the figure,
the initial value of x is 3000, as shown in its location on the stack.

When these instructions run, from the perspective of the process, the
following memory accesses take place.

• Fetch instruction at address 128
• Execute this instruction (load from address 15 KB)
• Fetch instruction at address 132
• Execute this instruction (no memory reference)
• Fetch the instruction at address 135
• Execute this instruction (store to address 15 KB)

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

132 MECHANISM: ADDRESS TRANSLATION

16KB

15KB

14KB

4KB

3KB

2KB

1KB

0KB

Stack

(free)

Heap

Program Code

128
132
135

movl 0x0(%ebx),%eax
addl 0x03, %eax
movl %eax,0x0(%ebx)

3000

Figure 15.1: A Process And Its Address Space

From the program’s perspective, its address space starts at address 0
and grows to a maximum of 16 KB; all memory references it generates
should be within these bounds. However, to virtualize memory, the OS
wants to place the process somewhere else in physical memory, not nec-
essarily at address 0. Thus, we have the problem: how can we relocate
this process in memory in a way that is transparent to the process? How
can provide the illusion of a virtual address space starting at 0, when in
reality the address space is located at some other physical address?

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

MECHANISM: ADDRESS TRANSLATION 133

64KB

48KB

32KB

16KB

0KB

(not in use)

(not in use)

Operating System

Stack

Code
Heap

(allocated but not in use)

R
e
lo

c
a
te

d
 P

ro
c
e
s
s

Figure 15.2: Physical Memory with a Single Relocated Process

An example of what physical memory might look like once this pro-
cess’s address space has been placed in memory is found in Figure 15.2.
In the figure, you can see the OS using the first slot of physical memory
for itself, and that it has relocated the process from the example above
into the slot starting at physical memory address 32 KB. The other two
slots are free (16 KB-32 KB and 48 KB-64 KB).

15.3 Dynamic (Hardware-based) Relocation

To gain some understanding of hardware-based address translation,
we’ll first discuss its first incarnation. Introduced in the first time-sharing
machines of the late 1950’s is a simple idea referred to as base and bounds
(the technique is also referred to as dynamic relocation; we’ll use both
terms interchangeably) [SS74].

Specifically, we’ll need two hardware registers within each CPU: one
is called the base register, and the other the bounds (sometimes called a
limit register). This base-and-bounds pair is going to allow us to place the
address space anywhere we’d like in physical memory, and do so while
ensuring that the process can only access its own address space.

In this setup, each program is written and compiled as if it is loaded at
address zero. However, when a program starts running, the OS decides
where in physical memory it should be loaded and sets the base register
to that value. In the example above, the OS decides to load the process at
physical address 32 KB and thus sets the base register to this value.

Interesting things start to happen when the process is running. Now,
when any memory reference is generated by the process, it is translated
by the processor in the following manner:

physical address = virtual address + base

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

134 MECHANISM: ADDRESS TRANSLATION

ASIDE: SOFTWARE-BASED RELOCATION

In the early days, before hardware support arose, some systems per-
formed a crude form of relocation purely via software methods. The
basic technique is referred to as static relocation, in which a piece of soft-
ware known as the loader takes an executable that is about to be run and
rewrites its addresses to the desired offset in physical memory.

For example, if an instruction was a load from address 1000 into a reg-
ister (e.g., movl 1000, %eax), and the address space of the program
was loaded starting at address 3000 (and not 0, as the program thinks),
the loader would rewrite the instruction to offset each address by 3000
(e.g., movl 4000, %eax). In this way, a simple static relocation of the
process’s address space is achieved.

However, static relocation has numerous problems. First and most im-
portantly, it does not provide protection, as processes can generate bad
addresses and thus illegally access other process’s or even OS memory; in
general, hardware support is likely needed for true protection [WL+93].
A smaller negative is that once placed, it is difficult to later relocate an
address space to another location [M65].

Each memory reference generated by the process is a virtual address;
the hardware in turn adds the contents of the base register to this address
and the result is a physical address that can be issued to the memory
system.

To understand this better, let’s trace through what happens when a
single instruction is executed. Specifically, let’s look at one instruction
from our earlier sequence:

128: movl 0x0(%ebx), %eax

The program counter (PC) is set to 128; when the hardware needs to
fetch this instruction, it first adds the value to the the base register value
of 32 KB (32768) to get a physical address of 32896; the hardware then
fetches the instruction from that physical address. Next, the processor
begins executing the instruction. At some point, the process then issues
the load from virtual address 15 KB, which the processor takes and again
adds to the base register (32 KB), getting the final physical address of
47 KB and thus the desired contents.

Transforming a virtual address into a physical address is exactly the
technique we refer to as address translation; that is, the hardware takes a
virtual address the process thinks it is referencing and transforms it into
a physical address which is where the data actually resides. Because this
relocation of the address happens at runtime, and because we can move
address spaces even after the process has started running, the technique
is often referred to as dynamic relocation [M65].

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

MECHANISM: ADDRESS TRANSLATION 135

TIP: HARDWARE-BASED DYNAMIC RELOCATION

With dynamic relocation, we can see how a little hardware goes a long
way. Namely, a base register is used to transform virtual addresses (gen-
erated by the program) into physical addresses. A bounds (or limit) reg-
ister ensures that such addresses are within the confines of the address
space. Together, they combine to provide a simple and efficient virtual-
ization of memory.

Now you might be asking: what happened to that bounds (limit) reg-
ister? After all, isn’t this supposed to be the base-and-bounds approach?
Indeed, it is. And as you might have guessed, the bounds register is there
to help with protection. Specifically, the processor will first check that
the memory reference is within bounds to make sure it is legal; in the sim-
ple example above, the bounds register would always be set to 16 KB. If
a process generates a virtual address that is greater than the bounds, or
one that is negative, the CPU will raise an exception, and the process will
likely be terminated. The point of the bounds is thus to make sure that all
addresses generated by the process are legal and within the “bounds” of
the process.

We should note that the base and bounds registers are hardware struc-
tures kept on the chip (one pair per CPU). Sometimes people call the
part of the processor that helps with address translation the memory
management unit (MMU); as we develop more sophisticated memory-
management techniques, we will be adding more circuitry to the MMU.

A small aside about bound registers, which can be defined in one of
two ways. In one way (as above), it holds the size of the address space,
and thus the hardware checks the virtual address against it first before
adding the base. In the second way, it holds the physical address of the
end of the address space, and thus the hardware first adds the base and
then makes sure the address is within bounds. Both methods are logically
equivalent; for simplicity, we’ll usually assume that the bounds register
holds the size of the address space.

Example Translations

To understand address translation via base-and-bounds in more detail,
let’s take a look at an example. Imagine a process with an address space of
size 4 KB (yes, unrealistically small) has been loaded at physical address
16 KB. Here are the results of a number of address translations:

• Virtual Address 0 → Physical Address 16 KB
• VA 1 KB → PA 17 KB
• VA 3000 → PA 19384
• VA 4400 → Fault (out of bounds)

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

136 MECHANISM: ADDRESS TRANSLATION

ASIDE: DATA STRUCTURE – THE FREE LIST

The OS must track which parts of free memory are not in use, so as to
be able to allocate memory to processes. Many different data structures
can of course be used for such a task; the simplest (which we will assume
here) is a free list, which simply is a list of the ranges of the physical
memory which are not currently in use.

As you can see from the example, it is easy for you to simply add the
base address to the virtual address (which can rightly be viewed as an
offset into the address space) to get the resulting physical address. Only if
the virtual address is “too big” or negative will the result be a fault (e.g.,
4400 is greater than the 4 KB bounds), causing an exception to be raised
and the process to be terminated.

15.4 OS Issues

There are a number of new OS issues that arise when using base and
bounds to implement a simple virtual memory. Specifically, there are
three critical junctures where the OS must take action to implement this
base-and-bounds approach to virtualizing memory.

First, The OS must take action when a process is created, finding space
for its address space in memory. Fortunately, given our assumptions that
each address space is (a) smaller than the size of physical memory and
(b) the same size, this is quite easy for the OS; it can simply view physical
memory as an array of slots, and track whether each one is free or in use.
When a new process is created, the OS will have to search a data structure
(often called a free list) to find room for the new address space and then
mark it used.

An example of what physical memory might look like can be found
in Figure 15.2. In the figure, you can see the OS using the first slot of
physical memory for itself, and that it has relocated the process from the
example above into the slot starting at physical memory address 32 KB.
The other two slots are free (16 KB-32 KB and 48 KB-64 KB); thus, the free
list should consist of these two entries.

Second, the OS must take action when a process is terminated, reclaim-
ing all of its memory for use in other processes or the OS. Upon termina-
tion of a process, the OS thus puts its memory back on the free list, and
cleans up any associated data structures as need be.

Third, the OS must also take action when a context switch occurs.
There is only one base and bounds register on each CPU, after all, and
their values differ for each running program, as each program is loaded at
a different physical address in memory. Thus, the OS must save and restore
the base-and-bounds pair when it switches between processes. Specifi-
cally, when the OS decides to stop running a process, it must save the

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

MECHANISM: ADDRESS TRANSLATION 137

values of the base and bounds registers to memory, in some per-process
structure such as the process structure or process control block (PCB).
Similarly, when the OS resumes a running process (or runs it the first
time), it must set the values of the base and bounds on the CPU to the
correct values for this process.

We should note that when a process is stopped (i.e., not running), it is
possible for the OS to move an address space from one location in mem-
ory to another rather easily. To move a process’s address space, the OS
first deschedules the process; then, the OS copies the address space from
the current location to the new location; finally, the OS updates the saved
base register (in the process structure) to point to the new location. When
the process is resumed, its (new) base register is restored, and it begins
running again, oblivious that its instructions and data are now in a com-
pletely new spot in memory!

We should also note that access to the base and bounds registers is ob-
viously privileged. Special hardware instructions are required to access
base-and-bounds registers; if a process, running in user mode, attempts
to do so, the CPU will raise an exception and the OS will likely termi-
nate the process. Only in kernel (or privileged) mode can such registers

be modified. Imagine the havoc a user process could wreak1 if it could
arbitrarily change the base register while running. Imagine it! And then
quickly flush such dark thoughts from your mind, as they are the ghastly
stuff of which nightmares are made.

15.5 Summary

In this chapter, we have extended the concept of limited direct exe-
cution with a specific mechanism used in virtual memory, known as ad-
dress translation. With address translation, the OS can control each and
every memory access from a process, ensuring the accesses stay within
the bounds of the address space. Key to the efficiency of this technique
is hardware support, which performs the translation quickly for each ac-
cess, turning virtual addresses (the process’s view of memory) into phys-
ical ones (the actual view). All of this is performed in a way that is trans-
parent to the process that has been relocated; the process has no idea its
memory references are being translated, making for a wonderful illusion.

We have also seen one particular form of virtualization, known as base
and bounds or dynamic relocation. Base-and-bounds virtualization is
quite efficient, as only a little more hardware logic is required to add a
base register to the virtual address and check that the address generated
by the process is in bounds. Base-and-bounds also offers protection; the
OS and hardware combine to ensure no process can generate memory
references outside its own address space. Protection is certainly one of
the most important goals of the OS; without it, the OS could not control

1Is there anything other than “havoc” that can be “wreaked”?

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

138 MECHANISM: ADDRESS TRANSLATION

the machine (if processes were free to overwrite memory, they could eas-
ily do nasty things like overwrite the trap table and take over the system).

Unfortunately, this simple technique of dynamic relocation does have
its inefficiencies. For example, as you can see in Figure 15.2 (back a few
pages), the relocated process is using physical memory from 32 KB to
48 KB; however, because the process stack and heap are not too big, all of
the space between the two is simply wasted. This type of waste is usually
called internal fragmentation, as the space inside the allocated unit is not
all used (i.e., is fragmented) and thus wasted. In our current approach, al-
though there might be enough physical memory for more processes, we
are currently restricted to placing an address space in a fixed-sized slot

and thus internal fragmentation can arise2. Thus, we are going to need
more sophisticated machinery, to try to better utilize physical memory
and avoid internal fragmentation. Our first attempt will be a slight gen-
eralization of base and bounds known as segmentation, which we will
discuss next.

2A different solution might instead place a fixed-sized stack within the address space,
just below the code region, and a growing heap below that. However, this limits flexibility
by making recursion and deeply-nested function calls challenging, and thus is something we
hope to avoid.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

MECHANISM: ADDRESS TRANSLATION 139

References

[M65] “On Dynamic Program Relocation”
W.C. McGee
IBM Systems Journal
Volume 4, Number 3, 1965, pages 184–199
This paper is a nice summary of early work on dynamic relocation, as well as some basics on static
relocation.

[P90] “Relocating loader for MS-DOS .EXE executable files”
Kenneth D. A. Pillay
Microprocessors & Microsystems archive
Volume 14, Issue 7 (September 1990)
An example of a relocating loader for MS-DOS. Not the first one, but just a relatively modern example
of how such a system works.

[SS74] “The Protection of Information in Computer Systems”
J. Saltzer and M. Schroeder
CACM, July 1974
From this paper: “The concepts of base-and-bound register and hardware-interpreted descriptors ap-
peared, apparently independently, between 1957 and 1959 on three projects with diverse goals. At
M.I.T., McCarthy suggested the base-and-bound idea as part of the memory protection system nec-
essary to make time-sharing feasible. IBM independently developed the base-and-bound register as a
mechanism to permit reliable multiprogramming of the Stretch (7030) computer system. At Burroughs,
R. Barton suggested that hardware-interpreted descriptors would provide direct support for the naming
scope rules of higher level languages in the B5000 computer system.” We found this quote on Mark
Smotherman’s cool history pages [S04]; see them for more information.

[S04] “System Call Support”
Mark Smotherman, May 2004
http://people.cs.clemson.edu/˜mark/syscall.html
A neat history of system call support. Smotherman has also collected some early history on items like
interrupts and other fun aspects of computing history. See his web pages for more details.

[WL+93] “Efficient Software-based Fault Isolation”
Robert Wahbe, Steven Lucco, Thomas E. Anderson, Susan L. Graham
SOSP ’93
A terrific paper about how you can use compiler support to bound memory references from a program,
without hardware support. The paper sparked renewed interest in software techniques for isolation of
memory references.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

140 MECHANISM: ADDRESS TRANSLATION

Homework

The program relocation.py allows you to see how address trans-
lations are performed in a system with base and bounds registers. See the
README for details.

Questions

• Run with seeds 1, 2, and 3, and compute whether each virtual ad-
dress generated by the process is in or out of bounds. If in bounds,
compute the translation.

• Run with these flags: -s 0 -n 10. What value do you have set
-l (the bounds register) to in order to ensure that all the generated
virtual addresses are within bounds?

• Run with these flags: -s 1 -n 10 -l 100. What is the maxi-
mum value that bounds can be set to, such that the address space
still fits into physical memory in its entirety?

• Run some of the same problems above, but with larger address
spaces (-a) and physical memories (-p).

• What fraction of randomly-generated virtual addresses are valid,
as a function of the value of the bounds register? Make a graph
from running with different random seeds, with limit values rang-
ing from 0 up to the maximum size of the address space.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

16

Segmentation

So far we have been putting the entire address space of each process in
memory. With the base and bounds registers, the OS can easily relocate
processes to different parts of physical memory. However, you might
have noticed something interesting about these address spaces of ours:
there is a big chunk of “free” space right in the middle, between the stack
and the heap.

As you can imagine from Figure 16.1, although the space between the
stack and heap is not being used by the process, it is still taking up phys-
ical memory when we relocate the entire address space somewhere in
physical memory; thus, the simple approach of using a base and bounds
register pair to virtualize memory is wasteful. It also makes it quite hard
to run a program when the entire address space doesn’t fit into memory;
thus, base and bounds is not as flexible as we would like. And thus:

THE CRUX: HOW TO SUPPORT A LARGE ADDRESS SPACE

How do we support a large address space with (potentially) a lot of
free space between the stack and the heap? Note that in our examples,
with tiny (pretend) address spaces, the waste doesn’t seem too bad. Imag-
ine, however, a 32-bit address space (4 GB in size); a typical program will
only use megabytes of memory, but still would demand that the entire
address space be resident in memory.

16.1 Segmentation: Generalized Base/Bounds

To solve this problem, an idea was born, and it is called segmenta-
tion. It is quite an old idea, going at least as far back as the very early
1960’s [H61, G62]. The idea is simple: instead of having just one base
and bounds pair in our MMU, why not have a base and bounds pair per
logical segment of the address space? A segment is just a contiguous
portion of the address space of a particular length, and in our canonical

141

142 SEGMENTATION

16KB

15KB

14KB

6KB

5KB

4KB

3KB

2KB

1KB

0KB

Program Code

Heap

(free)

Stack

Figure 16.1: An Address Space (Again)

address space, we have three logically-different segments: code, stack,
and heap. What segmentation allows the OS to do is to place each one
of those segments in different parts of physical memory, and thus avoid
filling physical memory with unused virtual address space.

Let’s look at an example. Assume we want to place the address space
from Figure 16.1 into physical memory. With a base and bounds pair per
segment, we can place each segment independently in physical memory.
For example, see Figure 16.2; there you see a 64-KB physical memory
with those three segments within it (and 16KB reserved for the OS).

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SEGMENTATION 143

64KB

48KB

32KB

16KB

0KB

(not in use)

(not in use)

(not in use)

Operating System

Stack

Code
Heap

Figure 16.2: Placing Segments In Physical Memory

As you can see in the diagram, only used memory is allocated space
in physical memory, and thus large address spaces with large amounts of
unused address space (which we sometimes call sparse address spaces)
can be accommodated.

The hardware structure in our MMU required to support segmenta-
tion is just what you’d expect: in this case, a set of three base and bounds
register pairs. Table 16.1 below shows the register values for the example
above; each bounds register holds the size of a segment.

Segment Base Size
Code 32K 2K
Heap 34K 2K
Stack 28K 2K

Table 16.1: Segment Register Values

You can see from the table that the code segment is placed at physical
address 32KB and has a size of 2KB and the heap segment is placed at
34KB and also has a size of 2KB.

Let’s do an example translation, using the address space in Figure 16.1.
Assume a reference is made to virtual address 100 (which is in the code
segment). When the reference takes place (say, on an instruction fetch),
the hardware will add the base value to the offset into this segment (100 in
this case) to arrive at the desired physical address: 100 + 32KB, or 32868.
It will then check that the address is within bounds (100 is less than 2KB),
find that it is, and issue the reference to physical memory address 32868.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

144 SEGMENTATION

ASIDE: THE SEGMENTATION FAULT

The term segmentation fault or violation arises from a memory access
on a segmented machine to an illegal address. Humorously, the term
persists, even on machines with no support for segmentation at all. Or
not so humorously, if you can’t figure why your code keeps faulting.

Now let’s look at an address in the heap, virtual address 4200 (again
refer to Figure 16.1). If we just add the virtual address 4200 to the base
of the heap (34KB), we get a physical address of 39016, which is not the
correct physical address. What we need to first do is extract the offset into
the heap, i.e., which byte(s) in this segment the address refers to. Because
the heap starts at virtual address 4KB (4096), the offset of 4200 is actually
4200 – 4096 or 104. We then take this offset (104) and add it to the base
register physical address (34K or 34816) to get the desired result: 34920.

What if we tried to refer to an illegal address, such as 7KB which is be-
yond the end of the heap? You can imagine what will happen: the hard-
ware detects that the address is out of bounds, traps into the OS, likely
leading to the termination of the offending process. And now you know
the origin of the famous term that all C programmers learn to dread: the
segmentation violation or segmentation fault.

16.2 Which Segment Are We Referring To?

The hardware uses segment registers during translation. How does it
know the offset into a segment, and to which segment an address refers?

One common approach, sometimes referred to as an explicit approach,
is to chop up the address space into segments based on the top few bits
of the virtual address; this technique was used in the VAX/VMS system
[LL82]. In our example above, we have three segments; thus we need two
bits to accomplish our task. If we use the top two bits of our 14-bit virtual
address to select the segment, our virtual address looks like this:

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Segment Offset

In our example, then, if the top two bits are 00, the hardware knows
the virtual address is in the code segment, and thus uses the code base
and bounds pair to relocate the address to the correct physical location.
If the top two bits are 01, the hardware knows the address is in the heap,
and thus uses the heap base and bounds. Let’s take our example heap
virtual address from above (4200) and translate it, just to make sure this
is clear. The virtual address 4200, in binary form, can be seen here:

13

0

12

1

11

0

10

0

9

0

8

0

7

0

6

1

5

1

4

0

3

1

2

0

1

0

0

0

Segment Offset

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SEGMENTATION 145

As you can see from the picture, the top two bits (01) tell the hardware
which segment we are referring to. The bottom 12 bits are the offset into
the segment: 0000 0110 1000, or hex 0x068, or 104 in decimal. Thus, the
hardware simply takes the first two bits to determine which segment reg-
ister to use, and then takes the next 12 bits as the offset into the segment.
By adding the base register to the offset, the hardware arrives at the fi-
nal physical address. Note the offset eases the bounds check too: we can
simply check if the offset is less than the bounds; if not, the address is ille-
gal. Thus, if base and bounds were arrays (with one entry per segment),
the hardware would be doing something like this to obtain the desired
physical address:

1 // get top 2 bits of 14-bit VA

2 Segment = (VirtualAddress & SEG_MASK) >> SEG_SHIFT

3 // now get offset

4 Offset = VirtualAddress & OFFSET_MASK

5 if (Offset >= Bounds[Segment])

6 RaiseException(PROTECTION_FAULT)

7 else

8 PhysAddr = Base[Segment] + Offset

9 Register = AccessMemory(PhysAddr)

In our running example, we can fill in values for the constants above.
Specifically, SEG MASK would be set to 0x3000, SEG SHIFT to 12, and
OFFSET MASK to 0xFFF.

You may also have noticed that when we use the top two bits, and we
only have three segments (code, heap, stack), one segment of the address
space goes unused. Thus, some systems put code in the same segment as
the heap and thus use only one bit to select which segment to use [LL82].

There are other ways for the hardware to determine which segment
a particular address is in. In the implicit approach, the hardware deter-
mines the segment by noticing how the address was formed. If, for ex-
ample, the address was generated from the program counter (i.e., it was
an instruction fetch), then the address is within the code segment; if the
address is based off of the stack or base pointer, it must be in the stack
segment; any other address must be in the heap.

16.3 What About The Stack?

Thus far, we’ve left out one important component of the address space:
the stack. The stack has been relocated to physical address 28KB in the di-
agram above, but with one critical difference: it grows backwards – in phys-
ical memory, it starts at 28KB and grows back to 26KB, corresponding to
virtual addresses 16KB to 14KB; translation has to proceed differently.

The first thing we need is a little extra hardware support. Instead of
just base and bounds values, the hardware also needs to know which way
the segment grows (a bit, for example, that is set to 1 when the segment
grows in the positive direction, and 0 for negative). Our updated view of
what the hardware tracks is seen in Table 16.2.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

146 SEGMENTATION

Segment Base Size Grows Positive?
Code 32K 2K 1
Heap 34K 2K 1
Stack 28K 2K 0

Table 16.2: Segment Registers (With Negative-Growth Support)

With the hardware understanding that segments can grow in the neg-
ative direction, the hardware must now translate such virtual addresses
slightly differently. Let’s take an example stack virtual address and trans-
late it to understand the process.

In this example, assume we wish to access virtual address 15KB, which
should map to physical address 27KB. Our virtual address, in binary
form, thus looks like this: 11 1100 0000 0000 (hex 0x3C00). The hard-
ware uses the top two bits (11) to designate the segment, but then we
are left with an offset of 3KB. To obtain the correct negative offset, we
must subtract the maximum segment size from 3KB: in this example, a
segment can be 4KB, and thus the correct negative offset is 3KB - 4KB
which equals -1KB. We simply add the negative offset (-1KB) to the base
(28KB) to arrive at the correct physical address: 27KB. The bounds check
can be calculated by ensuring the absolute value of the negative offset is
less than the segment’s size.

16.4 Support for Sharing

As support for segmentation grew, system designers soon realized that
they could realize new types of efficiencies with a little more hardware
support. Specifically, to save memory, sometimes it is useful to share
certain memory segments between address spaces. In particular, code
sharing is common and still in use in systems today.

To support sharing, we need a little extra support from the hardware,
in the form of protection bits. Basic support adds a few bits per segment,
indicating whether or not a program can read or write a segment, or per-
haps execute code that lies within the segment. By setting a code segment
to read-only, the same code can be shared across multiple processes, with-
out worry of harming isolation; while each process still thinks that it is ac-
cessing its own private memory, the OS is secretly sharing memory which
cannot be modified by the process, and thus the illusion is preserved.

An example of the additional information tracked by the hardware
(and OS) is shown in Figure 16.3. As you can see, the code segment is
set to read and execute, and thus the same physical segment in memory
could be mapped into multiple virtual address spaces.

With protection bits, the hardware algorithm described earlier would
also have to change. In addition to checking whether a virtual address is
within bounds, the hardware also has to check whether a particular ac-
cess is permissible. If a user process tries to write to a read-only page, or
execute from a non-executable page, the hardware should raise an excep-
tion, and thus let the OS deal with the offending process.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SEGMENTATION 147

Segment Base Size Grows Positive? Protection
Code 32K 2K 1 Read-Execute
Heap 34K 2K 1 Read-Write
Stack 28K 2K 0 Read-Write

Table 16.3: Segment Register Values (with Protection)

16.5 Fine-grained vs. Coarse-grained Segmentation

Most of our examples thus far have focused on systems with just a
few segments (i.e., code, stack, heap); we can think of this segmentation
as coarse-grained, as it chops up the address space into relatively large,
coarse chunks. However, some early systems (e.g., Multics [CV65,DD68])
were more flexible and allowed for address spaces to consist of a large
number smaller segments, referred to as fine-grained segmentation.

Supporting many segments requires even further hardware support,
with a segment table of some kind stored in memory. Such segment ta-
bles usually support the creation of a very large number of segments, and
thus enable a system to use segments in more flexible ways than we have
thus far discussed. For example, early machines like the Burroughs B5000
had support for thousands of segments, and expected a compiler to chop
code and data into separate segments which the OS and hardware would
then support [RK68]. The thinking at the time was that by having fine-
grained segments, the OS could better learn about which segments are in
use and which are not and thus utilize main memory more effectively.

16.6 OS Support

You now should have a basic idea as to how segmentation works.
Pieces of the address space are relocated into physical memory as the
system runs, and thus a huge savings of physical memory is achieved
relative to our simpler approach with just a single base/bounds pair for
the entire address space. Specifically, all the unused space between the
stack and the heap need not be allocated in physical memory, allowing
us to fit more address spaces into physical memory.

However, segmentation raises a number of new issues. We’ll first de-
scribe the new OS issues that must be addressed. The first is an old one:
what should the OS do on a context switch? You should have a good
guess by now: the segment registers must be saved and restored. Clearly,
each process has its own virtual address space, and the OS must make
sure to set up these registers correctly before letting the process run again.

The second, and more important, issue is managing free space in phys-
ical memory. When a new address space is created, the OS has to be
able to find space in physical memory for its segments. Previously, we
assumed that each address space was the same size, and thus physical
memory could be thought of as a bunch of slots where processes would
fit in. Now, we have a number of segments per process, and each segment
might be a different size.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

148 SEGMENTATION

64KB

56KB

48KB

40KB

32KB

24KB

16KB

8KB

0KB

Operating System

Not Compacted

(not in use)

(not in use)

(not in use)

Allocated

Allocated

Allocated

64KB

56KB

48KB

40KB

32KB

24KB

16KB

8KB

0KB

(not in use)

Allocated

Operating System

Compacted

Figure 16.3: Non-compacted and Compacted Memory

The general problem that arises is that physical memory quickly be-
comes full of little holes of free space, making it difficult to allocate new
segments, or to grow existing ones. We call this problem external frag-
mentation [R69]; see Figure 16.3 (left).

In the example, a process comes along and wishes to allocate a 20KB
segment. In that example, there is 24KB free, but not in one contiguous
segment (rather, in three non-contiguous chunks). Thus, the OS cannot
satisfy the 20KB request.

One solution to this problem would be to compact physical memory
by rearranging the existing segments. For example, the OS could stop
whichever processes are running, copy their data to one contiguous re-
gion of memory, change their segment register values to point to the
new physical locations, and thus have a large free extent of memory with
which to work. By doing so, the OS enables the new allocation request
to succeed. However, compaction is expensive, as copying segments is
memory-intensive and thus would use a fair amount of processor time.
See Figure 16.3 (right) for a diagram of compacted physical memory.

A simpler approach is to use a free-list management algorithm that
tries to keep large extents of memory available for allocation. There are
literally hundreds of approaches that people have taken, including clas-
sic algorithms like best-fit (which keeps a list of free spaces and returns
the one closest in size that satisfies the desired allocation to the requester),
worst-fit, first-fit, and more complex schemes like buddy algorithm [K68].
An excellent survey by Wilson et al. is a good place to start if you want to
learn more about such algorithms [W+95], or you can wait until we cover
some of the basics ourselves in a later chapter. Unfortunately, though, no
matter how smart the algorithm, external fragmentation will still exist;
thus, a good algorithm simply attempts to minimize it.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SEGMENTATION 149

TIP: IF 1000 SOLUTIONS EXIST, NO GREAT ONE DOES

The fact that so many different algorithms exist to try to minimize exter-
nal fragmentation is indicative of a stronger underlying truth: there is no
one “best” way to solve the problem. Thus, we settle for something rea-
sonable and hope it is good enough. The only real solution (as we will
see in forthcoming chapters) is to avoid the problem altogether, by never
allocating memory in variable-sized chunks.

16.7 Summary

Segmentation solves a number of problems, and helps us build a more
effective virtualization of memory. Beyond just dynamic relocation, seg-
mentation can better support sparse address spaces, by avoiding the huge
potential waste of memory between logical segments of the address space.
It is also fast, as doing the arithmetic segmentation requires in hardware
is easy and well-suited to hardware; the overheads of translation are min-
imal. A fringe benefit arises too: code sharing. If code is placed within
a separate segment, such a segment could potentially be shared across
multiple running programs.

However, as we learned, allocating variable-sized segments in mem-
ory leads to some problems that we’d like to overcome. The first, as dis-
cussed above, is external fragmentation. Because segments are variable-
sized, free memory gets chopped up into odd-sized pieces, and thus sat-
isfying a memory-allocation request can be difficult. One can try to use
smart algorithms [W+95] or periodically compact memory, but the prob-
lem is fundamental and hard to avoid.

The second and perhaps more important problem is that segmentation
still isn’t flexible enough to support our fully generalized, sparse address
space. For example, if we have a large but sparsely-used heap all in one
logical segment, the entire heap must still reside in memory in order to be
accessed. In other words, if our model of how the address space is being
used doesn’t exactly match how the underlying segmentation has been
designed to support it, segmentation doesn’t work very well. We thus
need to find some new solutions. Ready to find them?

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

150 SEGMENTATION

References

[CV65] “Introduction and Overview of the Multics System”
F. J. Corbato and V. A. Vyssotsky
Fall Joint Computer Conference, 1965
One of five papers presented on Multics at the Fall Joint Computer Conference; oh to be a fly on the wall
in that room that day!

[DD68] “Virtual Memory, Processes, and Sharing in Multics”
Robert C. Daley and Jack B. Dennis
Communications of the ACM, Volume 11, Issue 5, May 1968
An early paper on how to perform dynamic linking in Multics, which was way ahead of its time. Dy-
namic linking finally found its way back into systems about 20 years later, as the large X-windows
libraries demanded it. Some say that these large X11 libraries were MIT’s revenge for removing support
for dynamic linking in early versions of UNIX!

[G62] “Fact Segmentation”
M. N. Greenfield
Proceedings of the SJCC, Volume 21, May 1962
Another early paper on segmentation; so early that it has no references to other work.

[H61] “Program Organization and Record Keeping for Dynamic Storage”
A. W. Holt
Communications of the ACM, Volume 4, Issue 10, October 1961
An incredibly early and difficult to read paper about segmentation and some of its uses.

[I09] “Intel 64 and IA-32 Architectures Software Developer’s Manuals”
Intel, 2009
Available: http://www.intel.com/products/processor/manuals
Try reading about segmentation in here (Chapter 3 in Volume 3a); it’ll hurt your head, at least a little
bit.

[K68] “The Art of Computer Programming: Volume I”
Donald Knuth
Addison-Wesley, 1968
Knuth is famous not only for his early books on the Art of Computer Programming but for his typeset-
ting system TeX which is still a powerhouse typesetting tool used by professionals today, and indeed to
typeset this very book. His tomes on algorithms are a great early reference to many of the algorithms
that underly computing systems today.

[L83] “Hints for Computer Systems Design”
Butler Lampson
ACM Operating Systems Review, 15:5, October 1983
A treasure-trove of sage advice on how to build systems. Hard to read in one sitting; take it in a little at
a time, like a fine wine, or a reference manual.

[LL82] “Virtual Memory Management in the VAX/VMS Operating System”
Henry M. Levy and Peter H. Lipman
IEEE Computer, Volume 15, Number 3 (March 1982)
A classic memory management system, with lots of common sense in its design. We’ll study it in more
detail in a later chapter.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SEGMENTATION 151

[RK68] “Dynamic Storage Allocation Systems”
B. Randell and C.J. Kuehner
Communications of the ACM
Volume 11(5), pages 297-306, May 1968
A nice overview of the differences between paging and segmentation, with some historical discussion of
various machines.

[R69] “A note on storage fragmentation and program segmentation”
Brian Randell
Communications of the ACM
Volume 12(7), pages 365-372, July 1969
One of the earliest papers to discuss fragmentation.

[W+95] “Dynamic Storage Allocation: A Survey and Critical Review”
Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles
In International Workshop on Memory Management
Scotland, United Kingdom, September 1995
A great survey paper on memory allocators.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

152 SEGMENTATION

Homework

This program allows you to see how address translations are performed
in a system with segmentation. See the README for details.

Questions

• First let’s use a tiny address space to translate some addresses. Here’s
a simple set of parameters with a few different random seeds; can
you translate the addresses?

segmentation.py -a 128 -p 512 -b 0 -l 20 -B 512 -L 20 -s 0

segmentation.py -a 128 -p 512 -b 0 -l 20 -B 512 -L 20 -s 1

segmentation.py -a 128 -p 512 -b 0 -l 20 -B 512 -L 20 -s 2

• Now, let’s see if we understand this tiny address space we’ve con-
structed (using the parameters from the question above). What is
the highest legal virtual address in segment 0? What about the low-
est legal virtual address in segment 1? What are the lowest and
highest illegal addresses in this entire address space? Finally, how
would you run segmentation.py with the -A flag to test if you
are right?

• Let’s say we have a tiny 16-byte address space in a 128-byte physical
memory. What base and bounds would you set up so as to get
the simulator to generate the following translation results for the
specified address stream: valid, valid, violation, ..., violation, valid,
valid? Assume the following parameters:

segmentation.py -a 16 -p 128

-A 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

--b0 ? --l0 ? --b1 ? --l1 ?

• Assuming we want to generate a problem where roughly 90% of the
randomly-generated virtual addresses are valid (i.e., not segmenta-
tion violations). How should you configure the simulator to do so?
Which parameters are important?

• Can you run the simulator such that no virtual addresses are valid?
How?

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

17

Free-Space Management

In this chapter, we take a small detour from our discussion of virtual-
izing memory to discuss a fundamental aspect of any memory manage-
ment system, whether it be a malloc library (managing pages of a pro-
cess’s heap) or the OS itself (managing portions of the address space of a
process). Specifically, we will discuss the issues surrounding free-space
management.

Let us make the problem more specific. Managing free space can cer-
tainly be easy, as we will see when we discuss the concept of paging. It is
easy when the space you are managing is divided into fixed-sized units;
in such a case, you just keep a list of these fixed-sized units; when a client
requests one of them, return the first entry.

Where free-space management becomes more difficult (and interest-
ing) is when the free space you are managing consists of variable-sized
units; this arises in a user-level memory-allocation library (as in malloc()
and free()) and in an OS managing physical memory when using seg-
mentation to implement virtual memory. In either case, the problem that
exists is known as external fragmentation: the free space gets chopped
into little pieces of different sizes and is thus fragmented; subsequent re-
quests may fail because there is no single contiguous space that can sat-
isfy the request, even though the total amount of free space exceeds the
size of the request.

free used free
0 10 20 30

The figure shows an example of this problem. In this case, the total
free space available is 20 bytes; unfortunately, it is fragmented into two
chunks of size 10 each. As a result, a request for 15 bytes will fail even
though there are 20 bytes free. And thus we arrive at the problem ad-
dressed in this chapter.

153

154 FREE-SPACE MANAGEMENT

CRUX: HOW TO MANAGE FREE SPACE

How should free space be managed, when satisfying variable-sized re-
quests? What strategies can be used to minimize fragmentation? What
are the time and space overheads of alternate approaches?

17.1 Assumptions

Most of this discussion will focus on the great history of allocators
found in user-level memory-allocation libraries. We draw on Wilson’s
excellent survey [W+95] but encourage interested readers to go to the

source document itself for more details1.
We assume a basic interface such as that provided by malloc() and

free(). Specifically, void *malloc(size t size) takes a single pa-
rameter, size, which is the number of bytes requested by the applica-
tion; it hands back a pointer (of no particular type, or a void pointer in
C lingo) to a region of that size (or greater). The complementary routine
void free(void *ptr) takes a pointer and frees the corresponding
chunk. Note the implication of the interface: the user, when freeing the
space, does not inform the library of its size; thus, the library must be able
to figure out how big a chunk of memory is when handed just a pointer
to it. We’ll discuss how to do this a bit later on in the chapter.

The space that this library manages is known historically as the heap,
and the generic data structure used to manage free space in the heap is
some kind of free list. This structure contains references to all of the free
chunks of space in the managed region of memory. Of course, this data
structure need not be a list per se, but just some kind of data structure to
track free space.

We further assume that primarily we are concerned with external frag-
mentation, as described above. Allocators could of course also have the
problem of internal fragmentation; if an allocator hands out chunks of
memory bigger than that requested, any unasked for (and thus unused)
space in such a chunk is considered internal fragmentation (because the
waste occurs inside the allocated unit) and is another example of space
waste. However, for the sake of simplicity, and because it is the more in-
teresting of the two types of fragmentation, we’ll mostly focus on external
fragmentation.

We’ll also assume that once memory is handed out to a client, it cannot
be relocated to another location in memory. For example, if a program
calls malloc() and is given a pointer to some space within the heap,
that memory region is essentially “owned” by the program (and cannot
be moved by the library) until the program returns it via a correspond-
ing call to free(). Thus, no compaction of free space is possible, which

1It is nearly 80 pages long; thus, you really have to be interested!

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

FREE-SPACE MANAGEMENT 155

would be useful to combat fragmentation2. Compaction could, however,
be used in the OS to deal with fragmentation when implementing seg-
mentation; see the chapter on segmentation for details.

Finally, we’ll assume that the allocator manages a contiguous region
of bytes. In some cases, an allocator could ask for that region to grow;
for example, a user-level memory-allocation library might call into the
kernel to grow the heap (via a system call such as sbrk) when it runs out
of space. However, for simplicity, we’ll just assume that the region is a
single fixed size throughout its life.

17.2 Low-level Mechanisms

Before delving into some policy details, we’ll first cover some com-
mon mechanisms used in most allocators. First, we’ll discuss the basics of
splitting and coalescing, common techniques in most any allocator. Sec-
ond, we’ll show how one can track the size of allocated regions quickly
and with relative ease. Finally, we’ll discuss how to build a simple list
inside the free space to keep track of what is free and what isn’t.

Splitting and Coalescing

A free list contains a set of elements that describe the free space still re-
maining in the heap. Thus, assume the following 30-byte heap:

free used free
0 10 20 30

The free list for this heap would have two elements on it. One entry de-
scribes the first 10-byte free segment (bytes 0-9), and one entry describes
the other free segment (bytes 20-29):

head
addr:0
len:10

addr:20
len:10

NULL

As described above, a request for anything greater than 10 bytes will
fail (returning NULL); there just isn’t a single contiguous chunk of mem-
ory of that size available. A request for exactly that size (10 bytes) could
be satisfied easily by either of the free chunks. But what happens if the
request is for something smaller than 10 bytes?

Assume we have a request for just a single byte of memory. In this
case, the allocator will perform an action known as splitting: it will find

2Once you hand a pointer to a chunk of memory to a C program, it is generally difficult
to determine all references (pointers) to that region, which may be stored in other variables
or even in registers at a given point in execution. This may not be the case in more strongly-
typed, garbage-collected languages, which would thus enable compaction as a technique to
combat fragmentation.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

156 FREE-SPACE MANAGEMENT

a free chunk of memory that can satisfy the request and split it into two.
The first chunk it will return to the caller; the second chunk will remain
on the list. Thus, in our example above, if a request for 1 byte were made,
and the allocator decided to use the second of the two elements on the list
to satisfy the request, the call to malloc() would return 20 (the address of
the 1-byte allocated region) and the list would end up looking like this:

head
addr:0
len:10

addr:21
len:9

NULL

In the picture, you can see the list basically stays intact; the only change
is that the free region now starts at 21 instead of 20, and the length of that

free region is now just 93. Thus, the split is commonly used in allocators
when requests are smaller than the size of any particular free chunk.

A corollary mechanism found in many allocators is known as coalesc-
ing of free space. Take our example from above once more (free 10 bytes,
used 10 bytes, and another free 10 bytes).

Given this (tiny) heap, what happens when an application calls free(10),
thus returning the space in the middle of the heap? If we simply add this
free space back into our list without too much thinking, we might end up
with a list that looks like this:

head
addr:10
len:10

addr:0
len:10

addr:20
len:10

NULL

Note the problem: while the entire heap is now free, it is seemingly
divided into three chunks of 10 bytes each. Thus, if a user requests 20
bytes, a simple list traversal will not find such a free chunk, and return
failure.

What allocators do in order to avoid this problem is coalesce free space
when a chunk of memory is freed. The idea is simple: when returning a
free chunk in memory, look carefully at the addresses of the chunk you
are returning as well as the nearby chunks of free space; if the newly-
freed space sits right next to one (or two, as in this example) existing free
chunks, merge them into a single larger free chunk. Thus, with coalesc-
ing, our final list should look like this:

head
addr:0
len:30

NULL

Indeed, this is what the heap list looked like at first, before any allo-
cations were made. With coalescing, an allocator can better ensure that
large free extents are available for the application.

3This discussion assumes that there are no headers, an unrealistic but simplifying assump-
tion we make for now.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

FREE-SPACE MANAGEMENT 157

ptr

The header used by malloc library

The 20 bytes returned to caller

Figure 17.1: An Allocated Region Plus Header

size: 20

magic: 1234567

hptr

ptr

The 20 bytes returned to caller

Figure 17.2: Specific Contents Of The Header

Tracking The Size Of Allocated Regions

You might have noticed that the interface to free(void *ptr) does
not take a size parameter; thus it is assumed that given a pointer, the
malloc library can quickly determine the size of the region of memory
being freed and thus incorporate the space back into the free list.

To accomplish this task, most allocators store a little bit of extra infor-
mation in a header block which is kept in memory, usually just before
the handed-out chunk of memory. Let’s look at an example again (Fig-
ure 17.1). In this example, we are examining an allocated block of size 20
bytes, pointed to by ptr; imagine the user called malloc() and stored
the results in ptr, e.g., ptr = malloc(20);.

The header minimally contains the size of the allocated region (in this
case, 20); it may also contain additional pointers to speed up dealloca-
tion, a magic number to provide additional integrity checking, and other
information. Let’s assume a simple header which contains the size of the
region and a magic number, like this:

typedef struct __header_t {

int size;

int magic;

} header_t;

The example above would look like what you see in Figure 17.2. When

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

158 FREE-SPACE MANAGEMENT

the user calls free(ptr), the library then uses simple pointer arithmetic
to figure out where the header begins:

void free(void *ptr) {

header_t *hptr = (void *)ptr - sizeof(header_t);

}

After obtaining such a pointer to the header, the library can easily de-
termine whether the magic number matches the expected value as a san-
ity check (assert(hptr->magic == 1234567)) and calculate the to-
tal size of the newly-freed region via simple math (i.e., adding the size of
the header to size of the region). Note the small but critical detail in the
last sentence: the size of the free region is the size of the header plus the
size of the space allocated to the user. Thus, when a user requests N bytes
of memory, the library does not search for a free chunk of size N ; rather,
it searches for a free chunk of size N plus the size of the header.

Embedding A Free List

Thus far we have treated our simple free list as a conceptual entity; it is
just a list describing the free chunks of memory in the heap. But how do
we build such a list inside the free space itself?

In a more typical list, when allocating a new node, you would just call
malloc() when you need space for the node. Unfortunately, within the
memory-allocation library, you can’t do this! Instead, you need to build
the list inside the free space itself. Don’t worry if this sounds a little weird;
it is, but not so weird that you can’t do it!

Assume we have a 4096-byte chunk of memory to manage (i.e., the
heap is 4KB). To manage this as a free list, we first have to initialize said
list; initially, the list should have one entry, of size 4096 (minus the header
size). Here is the description of a node of the list:

typedef struct __node_t {

int size;

struct __node_t *next;

} node_t;

Now let’s look at some code that initializes the heap and puts the first
element of the free list inside that space. We are assuming that the heap is
built within some free space acquired via a call to the system call mmap();
this is not the only way to build such a heap but serves us well in this
example. Here is the code:

// mmap() returns a pointer to a chunk of free space

node_t *head = mmap(NULL, 4096, PROT_READ|PROT_WRITE,

MAP_ANON|MAP_PRIVATE, -1, 0);

head->size = 4096 - sizeof(node_t);

head->next = NULL;

After running this code, the status of the list is that it has a single entry,
of size 4088. Yes, this is a tiny heap, but it serves as a fine example for us

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

FREE-SPACE MANAGEMENT 159

size: 4088

next: 0

...

head [virtual address: 16KB]
header: size field

header: next field (NULL is 0)

the rest of the 4KB chunk

Figure 17.3: A Heap With One Free Chunk

size: 100

magic: 1234567

. . .

size: 3980

next: 0

. . .

ptr

[virtual address: 16KB]

head

The 100 bytes now allocated

The free 3980 byte chunk

Figure 17.4: A Heap: After One Allocation

here. The head pointer contains the beginning address of this range; let’s
assume it is 16KB (though any virtual address would be fine). Visually,
the heap thus looks like what you see in Figure 17.3.

Now, let’s imagine that a chunk of memory is requested, say of size
100 bytes. To service this request, the library will first find a chunk that is
large enough to accommodate the request; because there is only one free
chunk (size: 4088), this chunk will be chosen. Then, the chunk will be
split into two: one chunk big enough to service the request (and header,
as described above), and the remaining free chunk. Assuming an 8-byte
header (an integer size and an integer magic number), the space in the
heap now looks like what you see in Figure 17.4.

Thus, upon the request for 100 bytes, the library allocated 108 bytes
out of the existing one free chunk, returns a pointer (marked ptr in the
figure above) to it, stashes the header information immediately before the

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

160 FREE-SPACE MANAGEMENT

size: 100

magic: 1234567

. . .

size: 100

magic: 1234567

. . .

size: 100

magic: 1234567

. . .

size: 3764

next: 0

. . .

sptr

[virtual address: 16KB]

head

100 bytes still allocated

100 bytes still allocated
 (but about to be freed)

100-bytes still allocated

The free 3764-byte chunk

Figure 17.5: Free Space With Three Chunks Allocated

allocated space for later use upon free(), and shrinks the one free node
in the list to 3980 bytes (4088 minus 108).

Now let’s look at the heap when there are three allocated regions, each
of 100 bytes (or 108 including the header). A visualization of this heap is
shown in Figure 17.5.

As you can see therein, the first 324 bytes of the heap are now allo-
cated, and thus we see three headers in that space as well as three 100-
byte regions being used by the calling program. The free list remains
uninteresting: just a single node (pointed to by head), but now only 3764
bytes in size after the three splits. But what happens when the calling
program returns some memory via free()?

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

FREE-SPACE MANAGEMENT 161

size: 100

magic: 1234567

. . .

size: 100

next: 16708

. . .

size: 100

magic: 1234567

. . .

size: 3764

next: 0

. . .

[virtual address: 16KB]

head

sptr

100 bytes still allocated

(now a free chunk of memory)

100-bytes still allocated

The free 3764-byte chunk

Figure 17.6: Free Space With Two Chunks Allocated

In this example, the application returns the middle chunk of allocated
memory, by calling free(16500) (the value 16500 is arrived upon by
adding the start of the memory region, 16384, to the 108 of the previous
chunk and the 8 bytes of the header for this chunk). This value is shown
in the previous diagram by the pointer sptr.

The library immediately figures out the size of the free region, and
then adds the free chunk back onto the free list. Assuming we insert at
the head of the free list, the space now looks like this (Figure 17.6).

And now we have a list that starts with a small free chunk (100 bytes,
pointed to by the head of the list) and a large free chunk (3764 bytes).

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

162 FREE-SPACE MANAGEMENT

size: 100

next: 16492

. . .

size: 100

next: 16708

. . .

size: 100

next: 16384

. . .

size: 3764

next: 0

. . .

[virtual address: 16KB]

head

(now free)

(now free)

(now free)

The free 3764-byte chunk

Figure 17.7: A Non-Coalesced Free List

Our list finally has more than one element on it! And yes, the free space
is fragmented, an unfortunate but common occurrence.

One last example: let’s assume now that the last two in-use chunks are
freed. Without coalescing, you might end up with a free list that is highly
fragmented (see Figure 17.7).

As you can see from the figure, we now have a big mess! Why? Simple,
we forgot to coalesce the list. Although all of the memory is free, it is
chopped up into pieces, thus appearing as a fragmented memory despite
not being one. The solution is simple: go through the list and merge
neighboring chunks; when finished, the heap will be whole again.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

FREE-SPACE MANAGEMENT 163

Growing The Heap

We should discuss one last mechanism found within many allocation li-
braries. Specifically, what should you do if the heap runs out of space?
The simplest approach is just to fail. In some cases this is the only option,
and thus returning NULL is an honorable approach. Don’t feel bad! You
tried, and though you failed, you fought the good fight.

Most traditional allocators start with a small-sized heap and then re-
quest more memory from the OS when they run out. Typically, this means
they make some kind of system call (e.g., sbrk in most UNIX systems) to
grow the heap, and then allocate the new chunks from there. To service
the sbrk request, the OS finds free physical pages, maps them into the
address space of the requesting process, and then returns the value of
the end of the new heap; at that point, a larger heap is available, and the
request can be successfully serviced.

17.3 Basic Strategies

Now that we have some machinery under our belt, let’s go over some
basic strategies for managing free space. These approaches are mostly
based on pretty simple policies that you could think up yourself; try it
before reading and see if you come up with all of the alternatives (or
maybe some new ones!).

The ideal allocator is both fast and minimizes fragmentation. Unfortu-
nately, because the stream of allocation and free requests can be arbitrary
(after all, they are determined by the programmer), any particular strat-
egy can do quite badly given the wrong set of inputs. Thus, we will not
describe a “best” approach, but rather talk about some basics and discuss
their pros and cons.

Best Fit

The best fit strategy is quite simple: first, search through the free list and
find chunks of free memory that are as big or bigger than the requested
size. Then, return the one that is the smallest in that group of candidates;
this is the so called best-fit chunk (it could be called smallest fit too). One
pass through the free list is enough to find the correct block to return.

The intuition behind best fit is simple: by returning a block that is close
to what the user asks, best fit tries to reduce wasted space. However, there
is a cost; naive implementations pay a heavy performance penalty when
performing an exhaustive search for the correct free block.

Worst Fit

The worst fit approach is the opposite of best fit; find the largest chunk
and return the requested amount; keep the remaining (large) chunk on
the free list. Worst fit tries to thus leave big chunks free instead of lots of

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

164 FREE-SPACE MANAGEMENT

small chunks that can arise from a best-fit approach. Once again, how-
ever, a full search of free space is required, and thus this approach can be
costly. Worse, most studies show that it performs badly, leading to excess
fragmentation while still having high overheads.

First Fit

The first fit method simply finds the first block that is big enough and
returns the requested amount to the user. As before, the remaining free
space is kept free for subsequent requests.

First fit has the advantage of speed – no exhaustive search of all the
free spaces are necessary – but sometimes pollutes the beginning of the
free list with a small objects. Thus, how the allocator manages the free
list’s order becomes an issue. One approach is to use address-based or-
dering; by keeping the list ordered by the address of the free space, coa-
lescing becomes easier, and fragmentation tends to be reduced.

Next Fit

Instead of always beginning the first-fit search at the beginning of the list,
the next fit algorithm keeps an extra pointer to the location within the
list where one was looking last. The idea is to spread the searches for
free space throughout the list more uniformly, thus avoiding splintering
of the beginning of the list. The performance of such an approach is quite
similar to first fit, as an exhaustive search is once again avoided.

Examples

Here are a few examples of the above strategies. Envision a free list with
three elements on it, of sizes 10, 30, and 20 (we’ll ignore headers and other
details here, instead just focusing on how strategies operate):

head 10 30 20 NULL

Assume an allocation request of size 15. A best-fit approach would
search the entire list and find that 20 was the best fit, as it is the smallest
free space that can accommodate the request. The resulting free list:

head 10 30 5 NULL

As happens in this example, and often happens with a best-fit ap-
proach, a small free chunk is now left over. A worst-fit approach is similar
but instead finds the largest chunk, in this example 30. The resulting list:

head 10 15 20 NULL

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

FREE-SPACE MANAGEMENT 165

The first-fit strategy, in this example, does the same thing as worst-fit,
also finding the first free block that can satisfy the request. The difference
is in the search cost; both best-fit and worst-fit look through the entire list;
first-fit only examines free chunks until it finds one that fits, thus reducing
search cost.

These examples just scratch the surface of allocation policies. More
detailed analysis with real workloads and more complex allocator behav-
iors (e.g., coalescing) are required for a deeper understanding. Perhaps
something for a homework section, you say?

17.4 Other Approaches

Beyond the basic approaches described above, there have been a host
of suggested techniques and algorithms to improve memory allocation in
some way. We list a few of them here for your consideration (i.e., to make
you think about a little more than just best-fit allocation).

Segregated Lists

One interesting approach that has been around for some time is the use
of segregated lists. The basic idea is simple: if a particular application
has one (or a few) popular-sized request that it makes, keep a separate
list just to manage objects of that size; all other requests are forwarded to
a more general memory allocator.

The benefits of such an approach are obvious. By having a chunk of
memory dedicated for one particular size of requests, fragmentation is
much less of a concern; moreover, allocation and free requests can be
served quite quickly when they are of the right size, as no complicated
search of a list is required.

Just like any good idea, this approach introduces new complications
into a system as well. For example, how much memory should one ded-
icate to the pool of memory that serves specialized requests of a given
size, as opposed to the general pool? One particular allocator, the slab
allocator by uber-engineer Jeff Bonwick (which was designed for use in
the Solaris kernel), handles this issue in a rather nice way [B94].

Specifically, when the kernel boots up, it allocates a number of object
caches for kernel objects that are likely to be requested frequently (such as
locks, file-system inodes, etc.); the object caches thus are each segregated
free lists of a given size and serve memory allocation and free requests
quickly. When a given cache is running low on free space, it requests
some slabs of memory from a more general memory allocator (the to-
tal amount requested being a multiple of the page size and the object in
question). Conversely, when the reference counts of the objects within
a given slab all go to zero, the general allocator can reclaim them from
the specialized allocator, which is often done when the VM system needs
more memory.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

166 FREE-SPACE MANAGEMENT

ASIDE: GREAT ENGINEERS ARE REALLY GREAT

Engineers like Jeff Bonwick (who not only wrote the slab allocator men-
tioned herein but also was the lead of an amazing file system, ZFS) are
the heart of Silicon Valley. Behind almost any great product or technol-
ogy is a human (or small group of humans) who are way above average
in their talents, abilities, and dedication. As Mark Zuckerberg (of Face-
book) says: “Someone who is exceptional in their role is not just a little
better than someone who is pretty good. They are 100 times better.” This
is why, still today, one or two people can start a company that changes
the face of the world forever (think Google, Apple, or Facebook). Work
hard and you might become such a “100x” person as well. Failing that,
work with such a person; you’ll learn more in day than most learn in a
month. Failing that, feel sad.

The slab allocator also goes beyond most segregated list approaches
by keeping free objects on the lists in a pre-initialized state. Bonwick
shows that initialization and destruction of data structures is costly [B94];
by keeping freed objects in a particular list in their initialized state, the
slab allocator thus avoids frequent initialization and destruction cycles
per object and thus lowers overheads noticeably.

Buddy Allocation

Because coalescing is critical for an allocator, some approaches have been
designed around making coalescing simple. One good example is found
in the binary buddy allocator [K65].

In such a system, free memory is first conceptually thought of as one

big space of size 2N . When a request for memory is made, the search for
free space recursively divides free space by two until a block that is big
enough to accommodate the request is found (and a further split into two
would result in a space that is too small). At this point, the requested
block is returned to the user. Here is an example of a 64KB free space
getting divided in the search for a 7KB block:

64 KB

32 KB 32 KB

16 KB 16 KB

8 KB 8 KB

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

FREE-SPACE MANAGEMENT 167

In the example, the leftmost 8KB block is allocated (as indicated by the
darker shade of gray) and returned to the user; note that this scheme can
suffer from internal fragmentation, as you are only allowed to give out
power-of-two-sized blocks.

The beauty of buddy allocation is found in what happens when that
block is freed. When returning the 8KB block to the free list, the allocator
checks whether the “buddy” 8KB is free; if so, it coalesces the two blocks
into a 16KB block. The allocator then checks if the buddy of the 16KB
block is still free; if so, it coalesces those two blocks. This recursive coa-
lescing process continues up the tree, either restoring the entire free space
or stopping when a buddy is found to be in use.

The reason buddy allocation works so well is that it is simple to de-
termine the buddy of a particular block. How, you ask? Think about the
addresses of the blocks in the free space above. If you think carefully
enough, you’ll see that the address of each buddy pair only differs by
a single bit; which bit is determined by the level in the buddy tree. And
thus you have a basic idea of how binary buddy allocation schemes work.
For more detail, as always, see the Wilson survey [W+95].

Other Ideas

One major problem with many of the approaches described above is their
lack of scaling. Specifically, searching lists can be quite slow. Thus,
advanced allocators use more complex data structures to address these
costs, trading simplicity for performance. Examples include balanced bi-
nary trees, splay trees, or partially-ordered trees [W+95].

Given that modern systems often have multiple processors and run
multi-threaded workloads (something you’ll learn about in great detail
in the section of the book on Concurrency), it is not surprising that a lot
of effort has been spent making allocators work well on multiprocessor-
based systems. Two wonderful examples are found in Berger et al. [B+00]
and Evans [E06]; check them out for the details.

These are but two of the thousands of ideas people have had over time
about memory allocators. Read on your own if you are curious.

17.5 Summary

In this chapter, we’ve discussed the most rudimentary forms of mem-
ory allocators. Such allocators exist everywhere, linked into every C pro-
gram you write, as well as in the underlying OS which is managing mem-
ory for its own data structures. As with many systems, there are many
trade-offs to be made in building such a system, and the more you know
about the exact workload presented to an allocator, the more you could do
to tune it to work better for that workload. Making a fast, space-efficient,
scalable allocator that works well for a broad range of workloads remains
an on-going challenge in modern computer systems.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

168 FREE-SPACE MANAGEMENT

References

[B+00] “Hoard: A Scalable Memory Allocator for Multithreaded Applications”
Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson
ASPLOS-IX, November 2000
Berger and company’s excellent allocator for multiprocessor systems. Beyond just being a fun paper,
also used in practice!

[B94] “The Slab Allocator: An Object-Caching Kernel Memory Allocator”
Jeff Bonwick
USENIX ’94
A cool paper about how to build an allocator for an operating system kernel, and a great example of how
to specialize for particular common object sizes.

[E06] “A Scalable Concurrent malloc(3) Implementation for FreeBSD”
Jason Evans
http://people.freebsd.org/˜jasone/jemalloc/bsdcan2006/jemalloc.pdf
April 2006
A detailed look at how to build a real modern allocator for use in multiprocessors. The “jemalloc”
allocator is in widespread use today, within FreeBSD, NetBSD, Mozilla Firefox, and within Facebook.

[K65] “A Fast Storage Allocator”
Kenneth C. Knowlton
Communications of the ACM, Volume 8, Number 10, October 1965
The common reference for buddy allocation. Random strange fact: Knuth gives credit for the idea to not
to Knowlton but to Harry Markowitz, a Nobel-prize winning economist. Another strange fact: Knuth
communicates all of his emails via a secretary; he doesn’t send email himself, rather he tells his secretary
what email to send and then the secretary does the work of emailing. Last Knuth fact: he created TeX,

the tool used to typeset this book. It is an amazing piece of software4.

[W+95] “Dynamic Storage Allocation: A Survey and Critical Review”
Paul R. Wilson, Mark S. Johnstone, Michael Neely, David Boles
International Workshop on Memory Management
Kinross, Scotland, September 1995
An excellent and far-reaching survey of many facets of memory allocation. Far too much detail to go
into in this tiny chapter!

4Actually we use LaTeX, which is based on Lamport’s additions to TeX, but close enough.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

18

Paging: Introduction

Remember our goal: to virtualize memory. Segmentation (a generaliza-
tion of dynamic relocation) helped us do this, but has some problems; in
particular, managing free space becomes quite a pain as memory becomes
fragmented and segmentation is not as flexible as we might like. Is there
a better solution?

THE CRUX:
HOW TO VIRTUALIZE MEMORY WITHOUT SEGMENTS

How can we virtualize memory in a way as to avoid the problems of
segmentation? What are the basic techniques? How do we make those
techniques work well?

Thus comes along the idea of paging, which goes back to the earliest
of computer systems, namely the Atlas [KE+62,L78]. Instead of splitting
up our address space into three logical segments (each of variable size),
we split up our address space into fixed-sized units we call a page. Here
in Figure 18.1 an example of a tiny address space, only 64 bytes total in
size, with 16 byte pages (real address spaces are much bigger, of course,
commonly 32 bits and thus 4-GB of address space, or even 64 bits). We’ll
use tiny examples to make them easier to digest (at first).

64

48

32

16

0

(page 3)

(page 2)

(page 1)

(page 0 of the address space)

Figure 18.1: A Simple 64-byte Address Space

169

170 PAGING: INTRODUCTION

128

112

96

80

64

48

32

16

0

page frame 7

page frame 6

page frame 5

page frame 4

page frame 3

page frame 2

page frame 1

page frame 0 of physical memoryreserved for OS

(unused)

page 3 of AS

page 0 of AS

(unused)

page 2 of AS

(unused)

page 1 of AS

Figure 18.2: 64-Byte Address Space Placed In Physical Memory

Thus, we have an address space that is split into four pages (0 through
3). With paging, physical memory is also split into some number of pages
as well; we sometimes will call each page of physical memory a page
frame. For an example, let’s examine Figure 18.2.

Paging, as we will see, has a number of advantages over our previous
approaches. Probably the most important improvement will be flexibility:
with a fully-developed paging approach, the system will be able to sup-
port the abstraction of an address space effectively, regardless of how the
processes uses the address space; we won’t, for example, have to make
assumptions about how the heap and stack grow and how they are used.

Another advantage is the simplicity of free-space management that pag-
ing affords. For example, when the OS wishes to place our tiny 64-byte
address space from above into our 8-page physical memory, it simply
finds four free pages; perhaps the OS keeps a free list of all free pages for
this, and just grabs the first four free pages off of this list. In the exam-
ple above, the OS has placed virtual page 0 of the address space (AS) in
physical page 3, virtual page 1 of the AS on physical page 7, page 2 on
page 5, and page 3 on page 2.

To record where each virtual page of the address space is placed in
physical memory, the operating system keeps a per-process data structure
known as a page table. The major role of the page table is to store address
translations for each of the virtual pages of the address space, thus letting
us know where in physical memory they live. For our simple example
above (Figure 18.2), the page table would thus have the following entries:
(Virtual Page 0 → Physical Frame 3), (VP 1 → PF 7), (VP 2 → PF 5), and
(VP 3 → PF 2).

It is important to remember that this page table is a per-process data
structure (most page table structures we discuss are per-process struc-
tures; an exception we’ll touch on is the inverted page table). If another

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

PAGING: INTRODUCTION 171

process were to run in our example above, the OS would have to manage
a different page table for it, as its virtual pages obviously map to different
physical pages (modulo any sharing going on).

Now, we know enough to perform an address-translation example.
Let’s imagine the process with that tiny address space (64 bytes) is per-
forming a memory access:

movl <virtual address>, %eax

Specifically, let’s pay attention to the explicit load of the data at <virtual
address> into the registereax (and thus ignore the instruction fetch that
must have happened prior).

To translate this virtual address that the process generated, we have to
first split it into two components: the virtual page number (VPN), and
the offset within the page. For this example, because the virtual address
space of the process is 64 bytes, we need 6 bits total for our virtual address
(26 = 64). Thus, our virtual address:

Va5 Va4 Va3 Va2 Va1 Va0

where Va5 is the highest-order bit of the virtual address, and Va0 the
lowest order bit. Because we know the page size (16 bytes), we can further
divide the virtual address as follows:

Va5 Va4 Va3 Va2 Va1 Va0

VPN offset

The page size is 16 bytes in a 64-byte address space; thus we need to
be able to select 4 pages, and the top 2 bits of the address do just that.
Thus, we have a 2-bit virtual page number (VPN). The remaining bits tell
us which byte of the page we are interested in, 4 bits in this case; we call
this the offset.

When a process generates a virtual address, the OS and hardware
must combine to translate it into a meaningful physical address. For ex-
ample, let us assume the load above was to virtual address 21:

movl 21, %eax

Turning “21” into binary form, we get “010101”, and thus we can ex-
amine this virtual address and see how it breaks down into a virtual page
number (VPN) and offset:

0 1 0 1 0 1

VPN offset

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

172 PAGING: INTRODUCTION

0 1 0 1 0 1

VPN offset

1 1 1 0 1 0 1

Address
Translation

PFN offset

Virtual

Address

Physical

Address

Figure 18.3: The Address Translation Process

Thus, the virtual address “21” is on the 5th (“0101”th) byte of vir-
tual page “01” (or 1). With our virtual page number, we can now index
our page table and find which physical page that virtual page 1 resides
within. In the page table above the physical page number (PPN) (a.k.a.
physical frame number or PFN) is 7 (binary 111). Thus, we can translate
this virtual address by replacing the VPN with the PFN and then issue
the load to physical memory (Figure 18.3).

Note the offset stays the same (i.e., it is not translated), because the
offset just tells us which byte within the page we want. Our final physical
address is 1110101 (117 in decimal), and is exactly where we want our
load to fetch data from (Figure 18.2).

18.1 Where Are Page Tables Stored?

Page tables can get awfully large, much bigger than the small segment
table or base/bounds pair we have discussed previously. For example,
imagine a typical 32-bit address space, with 4-KB pages. This virtual ad-
dress splits into a 20-bit VPN and 12-bit offset (recall that 10 bits would
be needed for a 1-KB page size, and just add two more to get to 4 KB).

A 20-bit VPN implies that there are 220 translations that the OS would
have to manage for each process (that’s roughly a million); assuming we
need 4 bytes per page table entry (PTE) to hold the physical translation
plus any other useful stuff, we get an immense 4MB of memory needed
for each page table! That is pretty big. Now imagine there are 100 pro-
cesses running: this means the OS would need 400MB of memory just for
all those address translations! Even in the modern era, where machines
have gigabytes of memory, it seems a little crazy to use a large chunk of
if just for translations, no?

Because page tables are so big, we don’t keep any special on-chip hard-
ware in the MMU to store the page table of the currently-running process.
Instead, we store the page table for each process in memory somewhere.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

PAGING: INTRODUCTION 173

128

112

96

80

64

48

32

16

0

page frame 7

page frame 6

page frame 5

page frame 4

page frame 3

page frame 2

page frame 1

page frame 0 of physical memory

(unused)

page 3 of AS

page 0 of AS

(unused)

page 2 of AS

(unused)

page 1 of AS

page table:

3 7 5 2

Figure 18.4: Example: Page Table in Kernel Physical Memory

Let’s assume for now that the page tables live in physical memory that
the OS manages. In Figure 18.4 is a picture of what that might look like.

18.2 What’s Actually In The Page Table?

Let’s talk a little about page table organization. The page table is just a
data structure that is used to map virtual addresses (or really, virtual page
numbers) to physical addresses (physical page numbers). Thus, any data
structure could work. The simplest form is called a linear page table,
which is just an array. The OS indexes the array by the VPN, and looks up
the page-table entry (PTE) at that index in order to find the desired PFN.
For now, we will assume this simple linear structure; in later chapters,
we will make use of more advanced data structures to help solve some
problems with paging.

As for the contents of each PTE, we have a number of different bits
in there worth understanding at some level. A valid bit is common to
indicate whether the particular translation is valid; for example, when
a program starts running, it will have code and heap at one end of its
address space, and the stack at the other. All the unused space in-between
will be marked invalid, and if the process tries to access such memory, it
will generate a trap to the OS which will likely terminate the process.
Thus, the valid bit is crucial for supporting a sparse address space; by
simply marking all the unused pages in the address space invalid, we
remove the need to allocate physical frames for those pages and thus save
a great deal of memory.

We also might have protection bits, indicating whether the page could
be read from, written to, or executed from. Again, accessing a page in a
way not allowed by these bits will generate a trap to the OS.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

174 PAGING: INTRODUCTION

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PFN G

P
A

T

D A

P
C

D

P
W

T

U
/S

R
/W P

Figure 18.5: An x86 Page Table Entry (PTE)

There are a couple of other bits that are important but we won’t talk
about much for now. A present bit indicates whether this page is in phys-
ical memory or on disk (swapped out); we will understand this in more
detail when we study how to move parts of the address space to disk
and back in order to support address spaces that are larger than physical
memory and allow for the pages of processes that aren’t actively being
run to be swapped out. A dirty bit is also common, indicating whether
the page has been modified since it was brought into memory.

A reference bit (a.k.a. accessed bit) is sometimes used to track whether
a page has been accessed, and is useful in determining which pages are
popular and thus should be kept in memory; such knowledge is critical
during page replacement, a topic we will study in great detail in subse-
quent chapters.

Figure 18.5 shows an example page table entry from the x86 architec-
ture [I09]. It contains a present bit (P); a read/write bit (R/W) which
determines if writes are allowed to this page; a user/supervisor bit (U/S)
which determines if user-mode processes can access the page; a few bits
(PWT, PCD, PAT, and G) that determine how hardware caching works for
these pages; an accessed bit (A) and a dirty bit (D); and finally, the page
frame number (PFN) itself.

Read the Intel Architecture Manuals [I09] for more details on x86 pag-
ing support. Be forewarned, however; reading manuals such as these,
while quite informative (and certainly necessary for those who write code
to use such page tables in the OS), can be challenging at first. A little pa-
tience, and a lot of desire, is required.

18.3 Paging: Also Too Slow

With page tables in memory, we already know that they might be too
big. Turns out they can slow things down too. For example, take our
simple instruction:

movl 21, %eax

Again, let’s just examine the explicit reference to address 21 and not
worry about the instruction fetch. In this example, we will assume the
hardware performs the translation for us. To fetch the desired data, the
system must first translate the virtual address (21) into the correct physi-
cal address (117). Thus, before issuing the load to address 117, the system
must first fetch the proper page table entry from the process’s page ta-
ble, perform the translation, and then finally get the desired data from
physical memory.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

PAGING: INTRODUCTION 175

To do so, the hardware must know where the page table is for the
currently-running process. Let’s assume for now that a single page-table
base register contains the physical address of the starting location of the
page table. To find the location of the desired PTE, the hardware will thus
perform the following functions:

VPN = (VirtualAddress & VPN_MASK) >> SHIFT

PTEAddr = PageTableBaseRegister + (VPN * sizeof(PTE))

In our example, VPN MASK would be set to 0x30 (hex 30, or binary
110000) which picks out the VPN bits from the full virtual address; SHIFT
is set to 4 (the number of bits in the offset), such that we move the VPN
bits down to form the correct integer virtual page number. For exam-
ple, with virtual address 21 (010101), and masking turns this value into
010000; the shift turns it into 01, or virtual page 1, as desired. We then use
this value as an index into the array of PTEs pointed to by the page table
base register.

Once this physical address is known, the hardware can fetch the PTE
from memory, extract the PFN, and concatenate it with the offset from
the virtual address to form the desired physical address. Specifically, you
can think of the PFN being left-shifted by SHIFT, and then logically OR’d
with the offset to form the final address as follows:

offset = VirtualAddress & OFFSET_MASK

PhysAddr = (PFN << SHIFT) | offset

1 // Extract the VPN from the virtual address

2 VPN = (VirtualAddress & VPN_MASK) >> SHIFT

3

4 // Form the address of the page-table entry (PTE)

5 PTEAddr = PTBR + (VPN * sizeof(PTE))

6

7 // Fetch the PTE

8 PTE = AccessMemory(PTEAddr)

9

10 // Check if process can access the page

11 if (PTE.Valid == False)

12 RaiseException(SEGMENTATION_FAULT)

13 else if (CanAccess(PTE.ProtectBits) == False)

14 RaiseException(PROTECTION_FAULT)

15 else

16 // Access is OK: form physical address and fetch it

17 offset = VirtualAddress & OFFSET_MASK

18 PhysAddr = (PTE.PFN << PFN_SHIFT) | offset

19 Register = AccessMemory(PhysAddr)

Figure 18.6: Accessing Memory With Paging

Finally, the hardware can fetch the desired data from memory and put
it into register eax. The program has now succeeded at loading a value
from memory!

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

176 PAGING: INTRODUCTION

ASIDE: DATA STRUCTURE – THE PAGE TABLE

One of the most important data structures in the memory management
subsystem of a modern OS is the page table. In general, a page table
stores virtual-to-physical address translations, thus letting the system
know where each page of an address space actually resides in physical
memory. Because each address space requires such translations, in gen-
eral there is one page table per process in the system. The exact structure
of the page table is either determined by the hardware (older systems) or
can be more flexibly managed by the OS (modern systems).

To summarize, we now describe the initial protocol for what happens
on each memory reference. Figure 18.6 shows the basic approach. For
every memory reference (whether an instruction fetch or an explicit load
or store), paging requires us to perform one extra memory reference in
order to first fetch the translation from the page table. That is a lot of
work! Extra memory references are costly, and in this case will likely
slow down the process by a factor of two or more.

And now you can hopefully see that there are two real problems that
we must solve. Without careful design of both hardware and software,
page tables will cause the system to run too slowly, as well as take up
too much memory. While seemingly a great solution for our memory
virtualization needs, these two crucial problems must first be overcome.

18.4 A Memory Trace

Before closing, we now trace through a simple memory access exam-
ple to demonstrate all of the resulting memory accesses that occur when
using paging. The code snippet (in C, in a file called array.c) that are
interested in is as follows:

int array[1000];

...

for (i = 0; i < 1000; i++)

array[i] = 0;

We could then compile array.c and run it with the following com-
mands:

prompt> gcc -o array array.c -Wall -O

prompt> ./array

Of course, to truly understand what memory accesses this code snip-
pet (which simply initializes an array) will make, we’ll have to know (or
assume) a few more things. First, we’ll have to disassemble the result-
ing binary (using objdump on Linux, or otool on a Mac) to see what
assembly instructions are used to initialize the array in a loop. Here it the
resulting assembly code:

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

PAGING: INTRODUCTION 177

0x1024 movl $0x0,(%edi,%eax,4)

0x1028 incl %eax

0x102c cmpl $0x03e8,%eax

0x1030 jne 0x1024

The code, if you know a little x86, is actually quite easy to understand.
The first instruction moves the value zero (shown as $0x0) into the vir-
tual memory address of the location of the array; this address is computed
by taking the contents of %edi and adding %eax multiplied by four to it.
Thus, %edi holds the base address of the array, whereas %eax holds the
array index (i); we multiply by four because the array is an array of inte-
gers, each size four bytes (note we are cheating a little bit here, assuming
each instruction is four bytes in size for simplicity; in actuality, x86 in-
structions are variable-sized).

The second instruction increments the array index held in %eax, and
the third instruction compares the contents of that register to the hex
value 0x03e8, or decimal 1000. If the comparison shows that that two
values are not yet equal (which is what the jne instruction tests), the
fourth instruction jumps back to the top of the loop.

To understand which memory accesses this instruction sequence makes
(at both the virtual and physical levels), we’ll have assume something
about where in virtual memory the code snippet and array are found, as
well as the contents and location of the page table.

For this example, we assume a virtual address space of size 64 KB
(unrealistically small). We also assume a page size of 1 KB.

All we need to know now are the contents of the page table, and its
location in physical memory. Let’s assume we have a linear (array-based)
page table and that it is located at physical address 1 KB (1024).

As for its contents, there are just a few virtual pages we need to worry
about having mapped for this example. First, there is the virtual page the
code lives on. Because the page size is 1 KB, virtual address 1024 resides
on the the second page of the virtual address space (VPN=1, as VPN=0 is
the first page). Let’s assume this virtual page maps to physical frame 4
(VPN 1 → PFN 4).

Next, there is the array itself. Its size is 4000 bytes (1000 integers), and
it lives at virtual addresses 40000 through 44000 (not including the last
byte). The virtual pages for this decimal range is VPN=39 ... VPN=42.
Thus, we need mappings for these pages. Let’s assume these virtual-to-
physical mappings for the example: (VPN 39 → PFN 7), (VPN 40 → PFN 8),
(VPN 41 → PFN 9), (VPN 42 → PFN 10).

We are now ready to trace the memory references of the program.
When it runs, each instruction fetch will generate two memory references:
one to the page table to find the physical frame that the instruction resides
within, and one to the instruction itself to fetch it to the CPU for process-
ing. In addition, there is one explicit memory reference in the form of
the mov instruction; this adds another page table access first (to translate
the array virtual address to the correct physical one) and then the array
access itself.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

178 PAGING: INTRODUCTION

0 10 20 30 40 50
1024

1074

1124

Memory Access

C
o

d
e

 (
V

A
)

40000

40050

40100

A
rr

a
y
 (

V
A

)

1024

1074

1124

1174

1224

P
a

g
e

 T
a

b
le

 (
P

A
)

4096

4146

4196

C
o

d
e

 (
P

A
)

7232

7282

7132

A
rr

a
y
 (

P
A

)

m
o
v

in
c

c
m

p
jn

e

m
o
v

PageTable[1]

PageTable[39]

Figure 18.7: A Virtual (And Physical) Memory Trace

The entire process, for the first five loop iterations, is depicted in Fig-
ure 18.7. The bottom most graph shows the instruction memory refer-
ences on the y-axis in black (with virtual addresses on the left, and the
actual physical addresses on the right); the middle graph shows array
accesses in dark gray (again with virtual on left and physical on right); fi-
nally, the topmost graph shows page table memory accesses in light gray
(just physical, as the page table in this example resides in physical mem-
ory). The x-axis, for the entire trace, shows memory accesses across the
first five iterations of the loop (there are 10 memory accesses per loop,
which includes four instruction fetches, one explicit update of memory,
and five page table accesses to translate those four fetches and one explicit
update).

See if you can make sense of the patterns that show up in this visu-
alization. In particular, what will change as the loop continues to run
beyond these first five iterations? Which new memory locations will be
accessed? Can you figure it out?

This has just been the simplest of examples (only a few lines of C code),
and yet you might already be able to sense the complexity of understand-
ing the actual memory behavior of real applications. Don’t worry: it defi-
nitely gets worse, because the mechanisms we are about to introduce only
complicate this already complex machinery. Sorry!

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

PAGING: INTRODUCTION 179

18.5 Summary

We have introduced the concept of paging as a solution to our chal-
lenge of virtualizing memory. Paging has many advantages over previ-
ous approaches (such as segmentation). First, it does not lead to external
fragmentation, as paging (by design) divides memory into fixed-sized
units. Second, it is quite flexible, enabling the sparse use of virtual ad-
dress spaces.

However, implementing paging support without care will lead to a
slower machine (with many extra memory accesses to access the page
table) as well as memory waste (with memory filled with page tables in-
stead of useful application data). We’ll thus have to think a little harder
to come up with a paging system that not only works, but works well.
The next two chapters, fortunately, will show us how to do so.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

180 PAGING: INTRODUCTION

References

[KE+62] “One-level Storage System”
T. Kilburn, and D.B.G. Edwards and M.J. Lanigan and F.H. Sumner
IRE Trans. EC-11, 2 (1962), pp. 223-235
(Reprinted in Bell and Newell, “Computer Structures: Readings and Examples” McGraw-Hill,
New York, 1971).
The Atlas pioneered the idea of dividing memory into fixed-sized pages and in many senses was an early
form of the memory-management ideas we see in modern computer systems.

[I09] “Intel 64 and IA-32 Architectures Software Developer’s Manuals”
Intel, 2009
Available: http://www.intel.com/products/processor/manuals
In particular, pay attention to “Volume 3A: System Programming Guide Part 1” and “Volume 3B:
System Programming Guide Part 2”

[L78] “The Manchester Mark I and atlas: a historical perspective”
S. H. Lavington
Communications of the ACM archive
Volume 21, Issue 1 (January 1978), pp. 4-12
Special issue on computer architecture
This paper is a great retrospective of some of the history of the development of some important computer
systems. As we sometimes forget in the US, many of these new ideas came from overseas.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

PAGING: INTRODUCTION 181

Homework

In this homework, you will use a simple program, which is known as
paging-linear-translate.py, to see if you understand how simple
virtual-to-physical address translation works with linear page tables. See
the README for details.

Questions

• Before doing any translations, let’s use the simulator to study how
linear page tables change size given different parameters. Compute
the size of linear page tables as different parameters change. Some
suggested inputs are below; by using the -v flag, you can see
how many page-table entries are filled.
First, to understand how linear page table size changes as the ad-
dress space grows:

paging-linear-translate.py -P 1k -a 1m -p 512m -v -n 0

paging-linear-translate.py -P 1k -a 2m -p 512m -v -n 0

paging-linear-translate.py -P 1k -a 4m -p 512m -v -n 0

Then, to understand how linear page table size changes as page size
grows:

paging-linear-translate.py -P 1k -a 1m -p 512m -v -n 0

paging-linear-translate.py -P 2k -a 1m -p 512m -v -n 0

paging-linear-translate.py -P 4k -a 1m -p 512m -v -n 0

Before running any of these, try to think about the expected trends.
How should page-table size change as the address space grows? As
the page size grows? Why shouldn’t we just use really big pages in
general?

• Now let’s do some translations. Start with some small examples,
and change the number of pages that are allocated to the address
space with the -u flag. For example:

paging-linear-translate.py -P 1k -a 16k -p 32k -v -u 0

paging-linear-translate.py -P 1k -a 16k -p 32k -v -u 25

paging-linear-translate.py -P 1k -a 16k -p 32k -v -u 50

paging-linear-translate.py -P 1k -a 16k -p 32k -v -u 75

paging-linear-translate.py -P 1k -a 16k -p 32k -v -u 100

What happens as you increase the percentage of pages that are al-
located in each address space?

• Now let’s try some different random seeds, and some different (and
sometimes quite crazy) address-space parameters, for variety:

paging-linear-translate.py -P 8 -a 32 -p 1024 -v -s 1

paging-linear-translate.py -P 8k -a 32k -p 1m -v -s 2

paging-linear-translate.py -P 1m -a 256m -p 512m -v -s 3

Which of these parameter combinations are unrealistic? Why?

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

182 PAGING: INTRODUCTION

• Use the program to try out some other problems. Can you find the
limits of where the program doesn’t work anymore? For example,
what happens if the address-space size is bigger than physical mem-
ory?

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

19

Paging: Faster Translations (TLBs)

Using paging as the core mechanism to support virtual memory can lead
to high performance overheads. By chopping the address space into small,
fixed-sized units (i.e., pages), paging requires a large amount of mapping
information. Because that mapping information is generally stored in
physical memory, paging logically requires an extra memory lookup for
each virtual address generated by the program. Going to memory for
translation information before every instruction fetch or explicit load or
store is prohibitively slow. And thus our problem:

THE CRUX:
HOW TO SPEED UP ADDRESS TRANSLATION

How can we speed up address translation, and generally avoid the
extra memory reference that paging seems to require? What hardware
support is required? What OS involvement is needed?

When we want to make things fast, the OS usually needs some help.
And help often comes from the OS’s old friend: the hardware. To speed
address translation, we are going to add what is called (for historical rea-
sons [CP78]) a translation-lookaside buffer, or TLB [C68, C95]. A TLB
is part of the chip’s memory-management unit (MMU), and is simply a
hardware cache of popular virtual-to-physical address translations; thus,
a better name would be an address-translation cache. Upon each virtual
memory reference, the hardware first checks the TLB to see if the desired
translation is held therein; if so, the translation is performed (quickly)
without having to consult the page table (which has all translations). Be-
cause of their tremendous performance impact, TLBs in a real sense make
virtual memory possible [C95].

19.1 TLB Basic Algorithm

Figure 19.1 shows a rough sketch of how hardware might handle a
virtual address translation, assuming a simple linear page table (i.e., the
page table is an array) and a hardware-managed TLB (i.e., the hardware
handles much of the responsibility of page table accesses; we’ll explain
more about this below).

183

184 PAGING: FASTER TRANSLATIONS (TLBS)

1 VPN = (VirtualAddress & VPN_MASK) >> SHIFT

2 (Success, TlbEntry) = TLB_Lookup(VPN)

3 if (Success == True) // TLB Hit

4 if (CanAccess(TlbEntry.ProtectBits) == True)

5 Offset = VirtualAddress & OFFSET_MASK

6 PhysAddr = (TlbEntry.PFN << SHIFT) | Offset

7 AccessMemory(PhysAddr)

8 else

9 RaiseException(PROTECTION_FAULT)

10 else // TLB Miss

11 PTEAddr = PTBR + (VPN * sizeof(PTE))

12 PTE = AccessMemory(PTEAddr)

13 if (PTE.Valid == False)

14 RaiseException(SEGMENTATION_FAULT)

15 else if (CanAccess(PTE.ProtectBits) == False)

16 RaiseException(PROTECTION_FAULT)

17 else

18 TLB_Insert(VPN, PTE.PFN, PTE.ProtectBits)

19 RetryInstruction()

Figure 19.1: TLB Control Flow Algorithm

The algorithm the hardware follows works like this: first, extract the
virtual page number (VPN) from the virtual address (Line 1 in Figure 19.1),
and check if the TLB holds the translation for this VPN (Line 2). If it does,
we have a TLB hit, which means the TLB holds the translation. Success!
We can now extract the page frame number (PFN) from the relevant TLB
entry, concatenate that onto the offset from the original virtual address,
and form the desired physical address (PA), and access memory (Lines
5–7), assuming protection checks do not fail (Line 4).

If the CPU does not find the translation in the TLB (a TLB miss), we
have some more work to do. In this example, the hardware accesses the
page table to find the translation (Lines 11–12), and, assuming that the
virtual memory reference generated by the process is valid and accessi-
ble (Lines 13, 15), updates the TLB with the translation (Line 18). These
set of actions are costly, primarily because of the extra memory reference
needed to access the page table (Line 12). Finally, once the TLB is up-
dated, the hardware retries the instruction; this time, the translation is
found in the TLB, and the memory reference is processed quickly.

The TLB, like all caches, is built on the premise that in the common
case, translations are found in the cache (i.e., are hits). If so, little over-
head is added, as the TLB is found near the processing core and is de-
signed to be quite fast. When a miss occurs, the high cost of paging is
incurred; the page table must be accessed to find the translation, and an
extra memory reference (or more, with more complex page tables) results.
If this happens often, the program will likely run noticeably more slowly;
memory accesses, relative to most CPU instructions, are quite costly, and
TLB misses lead to more memory accesses. Thus, it is our hope to avoid
TLB misses as much as we can.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

PAGING: FASTER TRANSLATIONS (TLBS) 185

VPN = 15

VPN = 14

VPN = 13

VPN = 12

VPN = 11

VPN = 10

VPN = 09

VPN = 08

VPN = 07

VPN = 06

VPN = 05

VPN = 04

VPN = 03

VPN = 02

VPN = 01

VPN = 00

00 04 08 12 16
Offset

a[0] a[1] a[2]

a[3] a[4] a[5] a[6]

a[7] a[8] a[9]

Figure 19.2: Example: An Array In A Tiny Address Space

19.2 Example: Accessing An Array

To make clear the operation of a TLB, let’s examine a simple virtual
address trace and see how a TLB can improve its performance. In this
example, let’s assume we have an array of 10 4-byte integers in memory,
starting at virtual address 100. Assume further that we have a small 8-bit
virtual address space, with 16-byte pages; thus, a virtual address breaks
down into a 4-bit VPN (there are 16 virtual pages) and a 4-bit offset (there
are 16 bytes on each of those pages).

Figure 19.2 shows the array laid out on the 16 16-byte pages of the sys-
tem. As you can see, the array’s first entry (a[0]) begins on (VPN=06, off-
set=04); only three 4-byte integers fit onto that page. The array continues
onto the next page (VPN=07), where the next four entries (a[3] ... a[6])
are found. Finally, the last three entries of the 10-entry array (a[7] ...a[9])
are located on the next page of the address space (VPN=08).

Now let’s consider a simple loop that accesses each array element,
something that would look like this in C:

int sum = 0;

for (i = 0; i < 10; i++) {

sum += a[i];

}

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

186 PAGING: FASTER TRANSLATIONS (TLBS)

For the sake of simplicity, we will pretend that the only memory ac-
cesses the loop generates are to the array (ignoring the variables i and
sum, as well as the instructions themselves). When the first array element
(a[0]) is accessed, the CPU will see a load to virtual address 100. The
hardware extracts the VPN from this (VPN=06), and uses that to check
the TLB for a valid translation. Assuming this is the first time the pro-
gram accesses the array, the result will be a TLB miss.

The next access is to a[1], and there is some good news here: a TLB
hit! Because the second element of the array is packed next to the first, it
lives on the same page; because we’ve already accessed this page when
accessing the first element of the array, the translation is already loaded
into the TLB. And hence the reason for our success. Access to a[2] en-
counters similar success (another hit), because it too lives on the same
page as a[0] and a[1].

Unfortunately, when the program accesses a[3], we encounter an-
other TLB miss. However, once again, the next entries (a[4] ... a[6])
will hit in the TLB, as they all reside on the same page in memory.

Finally, access to a[7] causes one last TLB miss. The hardware once
again consults the page table to figure out the location of this virtual page
in physical memory, and updates the TLB accordingly. The final two ac-
cesses (a[8] and a[9]) receive the benefits of this TLB update; when the
hardware looks in the TLB for their translations, two more hits result.

Let us summarize TLB activity during our ten accesses to the array:
miss, hit, hit, miss, hit, hit, hit, miss, hit, hit. Thus, our TLB hit rate,
which is the number of hits divided by the total number of accesses, is
70%. Although this is not too high (indeed, we desire hit rates that ap-
proach 100%), it is non-zero, which may be a surprise. Even though this
is the first time the program accesses the array, TLB performance gains
benefit from spatial locality. The elements of the array are packed tightly
into pages (i.e., they are close to one another in space), and thus only the
first access to an element on a page yields a TLB miss.

Also note the role that page size plays in this example. If the page size
had simply been twice as big (32 bytes, not 16), the array access would
suffer even fewer misses. As typical page sizes are more like 4KB, these
types of dense, array-based accesses achieve excellent TLB performance,
encountering only a single miss per page of accesses.

One last point about TLB performance: if the program, soon after this
loop completes, accesses the array again, we’d likely see an even bet-
ter result, assuming that we have a big enough TLB to cache the needed
translations: hit, hit, hit, hit, hit, hit, hit, hit, hit, hit. In this case, the
TLB hit rate would be high because of temporal locality, i.e., the quick
re-referencing of memory items in time. Like any cache, TLBs rely upon
both spatial and temporal locality for success, which are program proper-
ties. If the program of interest exhibits such locality (and many programs
do), the TLB hit rate will likely be high.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

PAGING: FASTER TRANSLATIONS (TLBS) 187

TIP: USE CACHING WHEN POSSIBLE

Caching is one of the most fundamental performance techniques in com-
puter systems, one that is used again and again to make the “common-
case fast” [HP06]. The idea behind hardware caches is to take advantage
of locality in instruction and data references. There are usually two types
of locality: temporal locality and spatial locality. With temporal locality,
the idea is that an instruction or data item that has been recently accessed
will likely be re-accessed soon in the future. Think of loop variables or in-
structions in a loop; they are accessed repeatedly over time. With spatial
locality, the idea is that if a program accesses memory at address x, it will
likely soon access memory near x. Imagine here streaming through an
array of some kind, accessing one element and then the next. Of course,
these properties depend on the exact nature of the program, and thus are
not hard-and-fast laws but more like rules of thumb.

Hardware caches, whether for instructions, data, or address translations
(as in our TLB) take advantage of locality by keeping copies of memory in
small, fast on-chip memory. Instead of having to go to a (slow) memory
to satisfy a request, the processor can first check if a nearby copy exists
in a cache; if it does, the processor can access it quickly (i.e., in a few cy-
cles) and avoid spending the costly time it takes to access memory (many
nanoseconds).

You might be wondering: if caches (like the TLB) are so great, why don’t
we just make bigger caches and keep all of our data in them? Unfor-
tunately, this is where we run into more fundamental laws like those of
physics. If you want a fast cache, it has to be small, as issues like the
speed-of-light and other physical constraints become relevant. Any large
cache by definition is slow, and thus defeats the purpose. Thus, we are
stuck with small, fast caches; the question that remains is how to best use
them to improve performance.

19.3 Who Handles The TLB Miss?

One question that we must answer: who handles a TLB miss? Two an-
swers are possible: the hardware, or the software (OS). In the olden days,
the hardware had complex instruction sets (sometimes called CISC, for
complex-instruction set computers) and the people who built the hard-
ware didn’t much trust those sneaky OS people. Thus, the hardware
would handle the TLB miss entirely. To do this, the hardware has to
know exactly where the page tables are located in memory (via a page-
table base register, used in Line 11 in Figure 19.1), as well as their exact
format; on a miss, the hardware would “walk” the page table, find the cor-
rect page-table entry and extract the desired translation, update the TLB
with the translation, and retry the instruction. An example of an “older”
architecture that has hardware-managed TLBs is the Intel x86 architec-
ture, which uses a fixed multi-level page table (see the next chapter for
details); the current page table is pointed to by the CR3 register [I09].

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

188 PAGING: FASTER TRANSLATIONS (TLBS)

1 VPN = (VirtualAddress & VPN_MASK) >> SHIFT

2 (Success, TlbEntry) = TLB_Lookup(VPN)

3 if (Success == True) // TLB Hit

4 if (CanAccess(TlbEntry.ProtectBits) == True)

5 Offset = VirtualAddress & OFFSET_MASK

6 PhysAddr = (TlbEntry.PFN << SHIFT) | Offset

7 Register = AccessMemory(PhysAddr)

8 else

9 RaiseException(PROTECTION_FAULT)

10 else // TLB Miss

11 RaiseException(TLB_MISS)

Figure 19.3: TLB Control Flow Algorithm (OS Handled)

More modern architectures (e.g., MIPS R10k [H93] or Sun’s SPARC v9
[WG00], both RISC or reduced-instruction set computers) have what is
known as a software-managed TLB. On a TLB miss, the hardware sim-
ply raises an exception (line 11 in Figure 19.3), which pauses the current
instruction stream, raises the privilege level to kernel mode, and jumps
to a trap handler. As you might guess, this trap handler is code within
the OS that is written with the express purpose of handling TLB misses.
When run, the code will lookup the translation in the page table, use spe-
cial “privileged” instructions to update the TLB, and return from the trap;
at this point, the hardware retries the instruction (resulting in a TLB hit).

Let’s discuss a couple of important details. First, the return-from-trap
instruction needs to be a little different than the return-from-trap we saw
before when servicing a system call. In the latter case, the return-from-
trap should resume execution at the instruction after the trap into the OS,
just as a return from a procedure call returns to the instruction imme-
diately following the call into the procedure. In the former case, when
returning from a TLB miss-handling trap, the hardware must resume ex-
ecution at the instruction that caused the trap; this retry thus lets the in-
struction run again, this time resulting in a TLB hit. Thus, depending on
how a trap or exception was caused, the hardware must save a different
PC when trapping into the OS, in order to resume properly when the time
to do so arrives.

Second, when running the TLB miss-handling code, the OS needs to be
extra careful not to cause an infinite chain of TLB misses to occur. Many
solutions exist; for example, you could keep TLB miss handlers in physi-
cal memory (where they are unmapped and not subject to address trans-
lation), or reserve some entries in the TLB for permanently-valid transla-
tions and use some of those permanent translation slots for the handler
code itself; these wired translations always hit in the TLB.

The primary advantage of the software-managed approach is flexibil-
ity: the OS can use any data structure it wants to implement the page
table, without necessitating hardware change. Another advantage is sim-
plicity; as you can see in the TLB control flow (line 11 in Figure 19.3, in
contrast to lines 11–19 in Figure 19.1), the hardware doesn’t have to do
much on a miss; it raises an exception, and the OS TLB miss handler does
the rest.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

PAGING: FASTER TRANSLATIONS (TLBS) 189

ASIDE: RISC VS. CISC
In the 1980’s, a great battle took place in the computer architecture com-
munity. On one side was the CISC camp, which stood for Complex
Instruction Set Computing; on the other side was RISC, for Reduced
Instruction Set Computing [PS81]. The RISC side was spear-headed by
David Patterson at Berkeley and John Hennessy at Stanford (who are also
co-authors of some famous books [HP06]), although later John Cocke was
recognized with a Turing award for his earliest work on RISC [CM00].
CISC instruction sets tend to have a lot of instructions in them, and each
instruction is relatively powerful. For example, you might see a string
copy, which takes two pointers and a length and copies bytes from source
to destination. The idea behind CISC was that instructions should be
high-level primitives, to make the assembly language itself easier to use,
and to make code more compact.
RISC instruction sets are exactly the opposite. A key observation behind
RISC is that instruction sets are really compiler targets, and all compil-
ers really want are a few simple primitives that they can use to gener-
ate high-performance code. Thus, RISC proponents argued, let’s rip out
as much from the hardware as possible (especially the microcode), and
make what’s left simple, uniform, and fast.
In the early days, RISC chips made a huge impact, as they were noticeably
faster [BC91]; many papers were written; a few companies were formed
(e.g., MIPS and Sun). However, as time progressed, CISC manufacturers
such as Intel incorporated many RISC techniques into the core of their
processors, for example by adding early pipeline stages that transformed
complex instructions into micro-instructions which could then be pro-
cessed in a RISC-like manner. These innovations, plus a growing number
of transistors on each chip, allowed CISC to remain competitive. The end
result is that the debate died down, and today both types of processors
can be made to run fast.

19.4 TLB Contents: What’s In There?

Let’s look at the contents of the hardware TLB in more detail. A typical
TLB might have 32, 64, or 128 entries and be what is called fully associa-
tive. Basically, this just means that any given translation can be anywhere
in the TLB, and that the hardware will search the entire TLB in parallel to
find the desired translation. A typical TLB entry might look like this:

VPN PFN other bits

Note that both the VPN and PFN are present in each entry, as a trans-
lation could end up in any of these locations (in hardware terms, the TLB
is known as a fully-associative cache). The hardware searches the entries
in parallel to see if there is a match.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

190 PAGING: FASTER TRANSLATIONS (TLBS)

ASIDE: TLB VALID BIT 6= PAGE TABLE VALID BIT

A common mistake is to confuse the valid bits found in a TLB with
those found in a page table. In a page table, when a page-table entry
(PTE) is marked invalid, it means that the page has not been allocated by
the process, and should not be accessed by a correctly-working program.
The usual response when an invalid page is accessed is to trap to the OS,
which will respond by killing the process.

A TLB valid bit, in contrast, simply refers to whether a TLB entry has a
valid translation within it. When a system boots, for example, a common
initial state for each TLB entry is to be set to invalid, because no address
translations are yet cached there. Once virtual memory is enabled, and
once programs start running and accessing their virtual address spaces,
the TLB is slowly populated, and thus valid entries soon fill the TLB.

The TLB valid bit is quite useful when performing a context switch too,
as we’ll discuss further below. By setting all TLB entries to invalid, the
system can ensure that the about-to-be-run process does not accidentally
use a virtual-to-physical translation from a previous process.

More interesting are the “other bits”. For example, the TLB commonly
has a valid bit, which says whether the entry has a valid translation or
not. Also common are protection bits, which determine how a page can
be accessed (as in the page table). For example, code pages might be
marked read and execute, whereas heap pages might be marked read and
write. There may also be a few other fields, including an address-space
identifier, a dirty bit, and so forth; see below for more information.

19.5 TLB Issue: Context Switches

With TLBs, some new issues arise when switching between processes
(and hence address spaces). Specifically, the TLB contains virtual-to-physical
translations that are only valid for the currently running process; these
translations are not meaningful for other processes. As a result, when
switching from one process to another, the hardware or OS (or both) must
be careful to ensure that the about-to-be-run process does not accidentally
use translations from some previously run process.

To understand this situation better, let’s look at an example. When one
process (P1) is running, it assumes the TLB might be caching translations
that are valid for it, i.e., that come from P1’s page table. Assume, for this
example, that the 10th virtual page of P1 is mapped to physical frame 100.

In this example, assume another process (P2) exists, and the OS soon
might decide to perform a context switch and run it. Assume here that
the 10th virtual page of P2 is mapped to physical frame 170. If entries for
both processes were in the TLB, the contents of the TLB would be:

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

PAGING: FASTER TRANSLATIONS (TLBS) 191

VPN PFN valid prot
10 100 1 rwx
— — 0 —
10 170 1 rwx
— — 0 —

In the TLB above, we clearly have a problem: VPN 10 translates to
either PFN 100 (P1) or PFN 170 (P2), but the hardware can’t distinguish
which entry is meant for which process. Thus, we need to do some more
work in order for the TLB to correctly and efficiently support virtualiza-
tion across multiple processes. And thus, a crux:

THE CRUX:
HOW TO MANAGE TLB CONTENTS ON A CONTEXT SWITCH

When context-switching between processes, the translations in the TLB
for the last process are not meaningful to the about-to-be-run process.
What should the hardware or OS do in order to solve this problem?

There are a number of possible solutions to this problem. One ap-
proach is to simply flush the TLB on context switches, thus emptying
it before running the next process. On a software-based system, this
can be accomplished with an explicit (and privileged) hardware instruc-
tion; with a hardware-managed TLB, the flush could be enacted when the
page-table base register is changed (note the OS must change the PTBR
on a context switch anyhow). In either case, the flush operation simply
sets all valid bits to 0, essentially clearing the contents of the TLB.

By flushing the TLB on each context switch, we now have a working
solution, as a process will never accidentally encounter the wrong trans-
lations in the TLB. However, there is a cost: each time a process runs, it
must incur TLB misses as it touches its data and code pages. If the OS
switches between processes frequently, this cost may be high.

To reduce this overhead, some systems add hardware support to en-
able sharing of the TLB across context switches. In particular, some hard-
ware systems provide an address space identifier (ASID) field in the
TLB. You can think of the ASID as a process identifier (PID), but usu-
ally it has fewer bits (e.g., 8 bits for the ASID versus 32 bits for a PID).

If we take our example TLB from above and add ASIDs, it is clear
processes can readily share the TLB: only the ASID field is needed to dif-
ferentiate otherwise identical translations. Here is a depiction of a TLB
with the added ASID field:

VPN PFN valid prot ASID
10 100 1 rwx 1
— — 0 — —
10 170 1 rwx 2
— — 0 — —

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

192 PAGING: FASTER TRANSLATIONS (TLBS)

Thus, with address-space identifiers, the TLB can hold translations
from different processes at the same time without any confusion. Of
course, the hardware also needs to know which process is currently run-
ning in order to perform translations, and thus the OS must, on a context
switch, set some privileged register to the ASID of the current process.

As an aside, you may also have thought of another case where two
entries of the TLB are remarkably similar. In this example, there are two
entries for two different processes with two different VPNs that point to
the same physical page:

VPN PFN valid prot ASID
10 101 1 r-x 1
— — 0 — —
50 101 1 r-x 2
— — 0 — —

This situation might arise, for example, when two processes share a
page (a code page, for example). In the example above, Process 1 is shar-
ing physical page 101 with Process 2; P1 maps this page into the 10th
page of its address space, whereas P2 maps it to the 50th page of its ad-
dress space. Sharing of code pages (in binaries, or shared libraries) is
useful as it reduces the number of physical pages in use, thus reducing
memory overheads.

19.6 Issue: Replacement Policy

As with any cache, and thus also with the TLB, one more issue that we
must consider is cache replacement. Specifically, when we are installing
a new entry in the TLB, we have to replace an old one, and thus the
question: which one to replace?

THE CRUX: HOW TO DESIGN TLB REPLACEMENT POLICY

Which TLB entry should be replaced when we add a new TLB entry?
The goal, of course, being to minimize the miss rate (or increase hit rate)
and thus improve performance.

We will study such policies in some detail when we tackle the problem
of swapping pages to disk in a virtual memory system; here we’ll just
highlight a few of typical policies. One common approach is to evict the
least-recently-used or LRU entry. The idea here is to take advantage of
locality in the memory-reference stream; thus, it is likely that an entry that
has not recently been used is a good candidate for eviction as (perhaps)
it won’t soon be referenced again. Another typical approach is to use a
random policy. Randomness sometimes makes a bad decision but has the
nice property that there are not any weird corner case behaviors that can
cause pessimal behavior, e.g., think of a loop accessing n+1 pages, a TLB
of size n, and an LRU replacement policy.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

PAGING: FASTER TRANSLATIONS (TLBS) 193

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

VPN G ASID

PFN C D V

Figure 19.4: A MIPS TLB Entry

19.7 A Real TLB Entry

Finally, let’s briefly look at a real TLB. This example is from the MIPS
R4000 [H93], a modern system that uses software-managed TLBs. All 64
bits of this TLB entry can be seen in Figure 19.4.

The MIPS R4000 supports a 32-bit address space with 4KB pages. Thus,
we would expect a 20-bit VPN and 12-bit offset in our typical virtual ad-
dress. However, as you can see in the TLB, there are only 19 bits for the
VPN; as it turns out, user addresses will only come from half the address
space (the rest reserved for the kernel) and hence only 19 bits of VPN
are needed. The VPN translates to up to a 24-bit physical frame number
(PFN), and hence can support systems with up to 64GB of (physical) main
memory (224 4KB pages).

There are a few other interesting bits in the MIPS TLB. We see a global
bit (G), which is used for pages that are globally-shared among processes.
Thus, if the global bit is set, the ASID is ignored. We also see the 8-bit
ASID, which the OS can use to distinguish between address spaces (as
described above). One question for you: what should the OS do if there
are more than 256 (28) processes running at a time? Finally, we see 3
Coherence (C) bits, which determine how a page is cached by the hardware
(a bit beyond the scope of these notes); a dirty bit which is marked when
the page has been written to (we’ll see the use of this later); a valid bit
which tells the hardware if there is a valid translation present in the entry.
There is also a page mask field (not shown), which supports multiple page
sizes; we’ll see later why having larger pages might be useful. Finally,
some of the 64 bits are unused (shaded gray in the diagram).

MIPS TLBs usually have 32 or 64 of these entries, most of which are
used by user processes as they run. However, a few are reserved for the
OS. A wired register can be set by the OS to tell the hardware how many
slots of the TLB to reserve for the OS; the OS uses these reserved map-
pings for code and data that it wants to access during critical times, where
a TLB miss would be problematic (e.g., in the TLB miss handler).

Because the MIPS TLB is software managed, there needs to be instruc-
tions to update the TLB. The MIPS provides four such instructions: TLBP,
which probes the TLB to see if a particular translation is in there; TLBR,
which reads the contents of a TLB entry into registers; TLBWI, which re-
places a specific TLB entry; and TLBWR, which replaces a random TLB
entry. The OS uses these instructions to manage the TLB’s contents. It is
of course critical that these instructions are privileged; imagine what a
user process could do if it could modify the contents of the TLB (hint: just
about anything, including take over the machine, run its own malicious
“OS”, or even make the Sun disappear).

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

194 PAGING: FASTER TRANSLATIONS (TLBS)

TIP: RAM ISN’T ALWAYS RAM (CULLER’S LAW)
The term random-access memory, or RAM, implies that you can access
any part of RAM just as quickly as another. While it is generally good to
think of RAM in this way, because of hardware/OS features such as the
TLB, accessing a particular page of memory may be costly, particularly if
that page isn’t currently mapped by your TLB. Thus, it is always good to
remember the implementation tip: RAM isn’t always RAM. Sometimes
randomly accessing your address space, particular if the number of pages
accessed exceeds the TLB coverage, can lead to severe performance penal-
ties. Because one of our advisors, David Culler, used to always point to
the TLB as the source of many performance problems, we name this law
in his honor: Culler’s Law.

19.8 Summary

We have seen how hardware can help us make address translation
faster. By providing a small, dedicated on-chip TLB as an address-translation
cache, most memory references will hopefully be handled without having
to access the page table in main memory. Thus, in the common case,
the performance of the program will be almost as if memory isn’t being
virtualized at all, an excellent achievement for an operating system, and
certainly essential to the use of paging in modern systems.

However, TLBs do not make the world rosy for every program that
exists. In particular, if the number of pages a program accesses in a short
period of time exceeds the number of pages that fit into the TLB, the pro-
gram will generate a large number of TLB misses, and thus run quite a
bit more slowly. We refer to this phenomenon as exceeding the TLB cov-
erage, and it can be quite a problem for certain programs. One solution,
as we’ll discuss in the next chapter, is to include support for larger page
sizes; by mapping key data structures into regions of the program’s ad-
dress space that are mapped by larger pages, the effective coverage of the
TLB can be increased. Support for large pages is often exploited by pro-
grams such as a database management system (a DBMS), which have
certain data structures that are both large and randomly-accessed.

One other TLB issue worth mentioning: TLB access can easily be-
come a bottleneck in the CPU pipeline, in particular with what is called a
physically-indexed cache. With such a cache, address translation has to
take place before the cache is accessed, which can slow things down quite
a bit. Because of this potential problem, people have looked into all sorts
of clever ways to access caches with virtual addresses, thus avoiding the
expensive step of translation in the case of a cache hit. Such a virtually-
indexed cache solves some performance problems, but introduces new
issues into hardware design as well. See Wiggins’s fine survey for more
details [W03].

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

PAGING: FASTER TRANSLATIONS (TLBS) 195

References

[BC91] “Performance from Architecture: Comparing a RISC and a CISC
with Similar Hardware Organization”
D. Bhandarkar and Douglas W. Clark
Communications of the ACM, September 1991
A great and fair comparison between RISC and CISC. The bottom line: on similar hardware, RISC was
about a factor of three better in performance.

[CM00] “The evolution of RISC technology at IBM”
John Cocke and V. Markstein
IBM Journal of Research and Development, 44:1/2
A summary of the ideas and work behind the IBM 801, which many consider the first true RISC micro-
processor.

[C95] “The Core of the Black Canyon Computer Corporation”
John Couleur
IEEE Annals of History of Computing, 17:4, 1995
In this fascinating historical note, Couleur talks about how he invented the TLB in 1964 while working
for GE, and the fortuitous collaboration that thus ensued with the Project MAC folks at MIT.

[CG68] “Shared-access Data Processing System”
John F. Couleur and Edward L. Glaser
Patent 3412382, November 1968
The patent that contains the idea for an associative memory to store address translations. The idea,
according to Couleur, came in 1964.

[CP78] “The architecture of the IBM System/370”
R.P. Case and A. Padegs
Communications of the ACM. 21:1, 73-96, January 1978
Perhaps the first paper to use the term translation lookaside buffer. The name arises from the his-
torical name for a cache, which was a lookaside buffer as called by those developing the Atlas system
at the University of Manchester; a cache of address translations thus became a translation lookaside
buffer. Even though the term lookaside buffer fell out of favor, TLB seems to have stuck, for whatever
reason.

[H93] “MIPS R4000 Microprocessor User’s Manual”.
Joe Heinrich, Prentice-Hall, June 1993
Available: http://cag.csail.mit.edu/raw/
documents/R4400 Uman book Ed2.pdf

[HP06] “Computer Architecture: A Quantitative Approach”
John Hennessy and David Patterson
Morgan-Kaufmann, 2006
A great book about computer architecture. We have a particular attachment to the classic first edition.

[I09] “Intel 64 and IA-32 Architectures Software Developer’s Manuals”
Intel, 2009
Available: http://www.intel.com/products/processor/manuals
In particular, pay attention to “Volume 3A: System Programming Guide Part 1” and “Volume 3B:
System Programming Guide Part 2”

[PS81] “RISC-I: A Reduced Instruction Set VLSI Computer”
D.A. Patterson and C.H. Sequin
ISCA ’81, Minneapolis, May 1981
The paper that introduced the term RISC, and started the avalanche of research into simplifying com-
puter chips for performance.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

196 PAGING: FASTER TRANSLATIONS (TLBS)

[SB92] “CPU Performance Evaluation and Execution Time Prediction
Using Narrow Spectrum Benchmarking”
Rafael H. Saavedra-Barrera
EECS Department, University of California, Berkeley
Technical Report No. UCB/CSD-92-684, February 1992
www.eecs.berkeley.edu/Pubs/TechRpts/1992/CSD-92-684.pdf
A great dissertation about how to predict execution time of applications by breaking them down into
constituent pieces and knowing the cost of each piece. Probably the most interesting part that comes out
of this work is the tool to measure details of the cache hierarchy (described in Chapter 5). Make sure to
check out the wonderful diagrams therein.

[W03] “A Survey on the Interaction Between Caching, Translation and Protection”
Adam Wiggins
University of New South Wales TR UNSW-CSE-TR-0321, August, 2003
An excellent survey of how TLBs interact with other parts of the CPU pipeline, namely hardware caches.

[WG00] “The SPARC Architecture Manual: Version 9”
David L. Weaver and Tom Germond, September 2000
SPARC International, San Jose, California
Available: http://www.sparc.org/standards/SPARCV9.pdf

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

PAGING: FASTER TRANSLATIONS (TLBS) 197

Homework (Measurement)

In this homework, you are to measure the size and cost of accessing
a TLB. The idea is based on work by Saavedra-Barrera [SB92], who de-
veloped a simple but beautiful method to measure numerous aspects of
cache hierarchies, all with a very simple user-level program. Read his
work for more details.

The basic idea is to access some number of pages within large data
structure (e.g., an array) and to time those accesses. For example, let’s say
the TLB size of a machine happens to be 4 (which would be very small,
but useful for the purposes of this discussion). If you write a program
that touches 4 or fewer pages, each access should be a TLB hit, and thus
relatively fast. However, once you touch 5 pages or more, repeatedly in a
loop, each access will suddenly jump in cost, to that of a TLB miss.

The basic code to loop through an array once should look like this:

int jump = PAGESIZE / sizeof(int);

for (i = 0; i < NUMPAGES * jump; i += jump) {

a[i] += 1;

}

In this loop, one integer per page of the the array a is updated, up
to the number of pages specified by NUMPAGES. By timing such a loop
repeatedly (say, a few hundred million times in another loop around this
one, or however many loops are needed to run for a few seconds), you
can time how long each access takes (on average). By looking for jumps
in cost as NUMPAGES increases, you can roughly determine how big the
first-level TLB is, determine whether a second-level TLB exists (and how
big it is if it does), and in general get a good sense of how TLB hits and
misses can affect performance.

Here is an example graph:
As you can see in the graph, when just a few pages are accessed (8

or fewer), the average access time is roughly 5 nanoseconds. When 16
or more pages are accessed, there is a sudden jump to about 20 nanosec-
onds per access. A final jump in cost occurs at around 1024 pages, at
which point each access takes around 70 nanoseconds. From this data,
we can conclude that there is a two-level TLB hierarchy; the first is quite
small (probably holding between 8 and 16 entries); the second is larger
but slower (holding roughly 512 entries). The overall difference between
hits in the first-level TLB and misses is quite large, roughly a factor of
fourteen. TLB performance matters!

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

198 PAGING: FASTER TRANSLATIONS (TLBS)

1 4 16 64 256 1024
0

20

40

60

80
TLB Size Measurement

Number Of Pages

T
im

e
 P

e
r

A
c
c
e
s
s
 (

n
s
)

Figure 19.5: Discovering TLB Sizes and Miss Costs

Questions

• For timing, you’ll need to use a timer such as that made available
by gettimeofday(). How precise is such a timer? How long
does an operation have to take in order for you to time it precisely?
(this will help determine how many times, in a loop, you’ll have to
repeat a page access in order to time it successfully)

• Write the program, called tlb.c, that can roughly measure the cost
of accessing each page. Inputs to the program should be: the num-
ber of pages to touch and the number of trials.

• Now write a script in your favorite scripting language (csh, python,
etc.) to run this program, while varying the number of pages ac-
cessed from 1 up to a few thousand, perhaps incrementing by a
factor of two per iteration. Run the script on different machines
and gather some data. How many trials are needed to get reliable
measurements?

• Next, graph the results, making a graph that looks similar to the
one above. Use a good tool like ploticus. Visualization usually
makes the data much easier to digest; why do you think that is?

• One thing to watch out for is compiler optimzation. Compilers do
all sorts of clever things, including removing loops which incre-
ment values that no other part of the program subsequently uses.
How can you ensure the compiler does not remove the main loop
above from your TLB size estimator?

• Another thing to watch out for is the fact that most systems today
ship with multiple CPUs, and each CPU, of course, has its own TLB
hierarchy. To really get good measurements, you have to run your

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

PAGING: FASTER TRANSLATIONS (TLBS) 199

code on just one CPU, instead of letting the scheduler bounce it
from one CPU to the next. How can you do that? (hint: look up
“pinning a thread” on Google for some clues) What will happen if
you don’t do this, and the code moves from one CPU to the other?

• Another issue that might arise relates to initialization. If you don’t
initialize the array a above before accessing it, the first time you
access it will be very expensive, due to initial access costs such as
demand zeroing. Will this affect your code and its timing? What
can you do to counterbalance these potential costs?

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

20

Paging: Smaller Tables

We now tackle the second problem that paging introduces: page tables
are too big and thus consume too much memory. Let’s start out with

a linear page table. As you might recall1, linear page tables get pretty
big. Assume again a 32-bit address space (232 bytes), with 4KB (212 byte)
pages and a 4-byte page-table entry. An address space thus has roughly

one million virtual pages in it (232

212
); multiply by the page-table size and

you see that our page table is 4MB in size. Recall also: we usually have
one page table for every process in the system! With a hundred active pro-
cesses (not uncommon on a modern system), we will be allocating hun-
dreds of megabytes of memory just for page tables! As a result, we are in
search of some techniques to reduce this heavy burden. There are a lot of
them, so let’s get going. But not before our crux:

CRUX: HOW TO MAKE PAGE TABLES SMALLER?
Simple array-based page tables (usually called linear page tables) are

too big, taking up far too much memory on typical systems. How can we
make page tables smaller? What are the key ideas? What inefficiencies
arise as a result of these new data structures?

20.1 Simple Solution: Bigger Pages

We could reduce the size of the page table in one simple way: use
bigger pages. Take our 32-bit address space again, but this time assume
16KB pages. We would thus have an 18-bit VPN plus a 14-bit offset. As-
suming the same size for each PTE (4 bytes), we now have 218 entries in
our linear page table and thus a total size of 1MB per page table, a factor

1Or indeed, you might not; this paging thing is getting out of control, no? That said,
always make sure you understand the problem you are solving before moving onto the solution;
indeed, if you understand the problem, you can often derive the solution yourself. Here, the
problem should be clear: simple linear (array-based) page tables are too big.

201

202 PAGING: SMALLER TABLES

ASIDE: MULTIPLE PAGE SIZES

As an aside, do note that many architectures (e.g., MIPS, SPARC, x86-64)
now support multiple page sizes. Usually, a small (4KB or 8KB) page
size is used. However, if a “smart” application requests it, a single large
page (e.g., of size 4MB) can be used for a specific portion of the address
space, enabling such applications to place a frequently-used (and large)
data structure in such a space while consuming only a single TLB en-
try. This type of large page usage is common in database management
systems and other high-end commercial applications. The main reason
for multiple page sizes is not to save page table space, however; it is to
reduce pressure on the TLB, enabling a program to access more of its ad-
dress space without suffering from too many TLB misses. However, as
researchers have shown [N+02], using multiple page sizes makes the OS
virtual memory manager notably more complex, and thus large pages
are sometimes most easily used simply by exporting a new interface to
applications to request large pages directly.

of four reduction in size of the page table (not surprisingly, the reduction
exactly mirrors the factor of four increase in page size).

The major problem with this approach, however, is that big pages lead
to waste within each page, a problem known as internal fragmentation
(as the waste is internal to the unit of allocation). Applications thus end
up allocating pages but only using little bits and pieces of each, and mem-
ory quickly fills up with these overly-large pages. Thus, most systems use
relatively small page sizes in the common case: 4KB (as in x86) or 8KB (as
in SPARCv9). Our problem will not be solved so simply, alas.

20.2 Hybrid Approach: Paging and Segments

Whenever you have two reasonable but different approaches to some-
thing in life, you should always examine the combination of the two to
see if you can obtain the best of both worlds. We call such a combination a
hybrid. For example, why eat just chocolate or plain peanut butter when
you can instead combine the two in a lovely hybrid known as the Reese’s
Peanut Butter Cup [M28]?

Years ago, the creators of Multics (in particular Jack Dennis) chanced
upon such an idea in the construction of the Multics virtual memory sys-
tem [M07]. Specifically, Dennis had the idea of combining paging and
segmentation in order to reduce the memory overhead of page tables.
We can see why this might work by examining a typical linear page ta-
ble in more detail. Assume we have an address space in which the used
portions of the heap and stack are small. For the example, we use a tiny
16KB address space with 1KB pages (Figure 20.1); the page table for this
address space is in Table 20.1.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

PAGING: SMALLER TABLES 203

code

heap

stack

Virtual Address Space Physical Memory

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Figure 20.1: A 16-KB Address Space With 1-KB Pages

This example assumes the single code page (VPN 0) is mapped to
physical page 10, the single heap page (VPN 4) to physical page 23, and
the two stack pages at the other end of the address space (VPNs 14 and
15) are mapped to physical pages 28 and 4, respectively. As you can see
from the picture, most of the page table is unused, full of invalid entries.
What a waste! And this is for a tiny 16KB address space. Imagine the
page table of a 32-bit address space and all the potential wasted space in
there! Actually, don’t imagine such a thing; it’s far too gruesome.

PFN valid prot present dirty
10 1 r-x 1 0

- 0 — - -
- 0 — - -
- 0 — - -

23 1 rw- 1 1
- 0 — - -
- 0 — - -
- 0 — - -
- 0 — - -
- 0 — - -
- 0 — - -
- 0 — - -
- 0 — - -
- 0 — - -

28 1 rw- 1 1
4 1 rw- 1 1

Table 20.1: A Page Table For 16-KB Address Space

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

204 PAGING: SMALLER TABLES

Thus, our hybrid approach: instead of having a single page table for
the entire address space of the process, why not have one per logical seg-
ment? In this example, we might thus have three page tables, one for the
code, heap, and stack parts of the address space.

Now, remember with segmentation, we had a base register that told
us where each segment lived in physical memory, and a bound or limit
register that told us the size of said segment. In our hybrid, we still have
those structures in the MMU; here, we use the base not to point to the
segment itself but rather to hold the physical address of the page table of that
segment. The bounds register is used to indicate the end of the page table
(i.e., how many valid pages it has).

Let’s do a simple example to clarify. Assume a 32-bit virtual address
space with 4KB pages, and an address space split into four segments.
We’ll only use three segments for this example: one for code, one for
heap, and one for stack.

To determine which segment an address refers to, we’ll use the top
two bits of the address space. Let’s assume 00 is the unused segment,
with 01 for code, 10 for the heap, and 11 for the stack. Thus, a virtual
address looks like this:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Seg VPN Offset

In the hardware, assume that there are thus three base/bounds pairs,
one each for code, heap, and stack. When a process is running, the base
register for each of these segments contains the physical address of a lin-
ear page table for that segment; thus, each process in the system now has
three page tables associated with it. On a context switch, these registers
must be changed to reflect the location of the page tables of the newly-
running process.

On a TLB miss (assuming a hardware-managed TLB, i.e., where the
hardware is responsible for handling TLB misses), the hardware uses the
segment bits (SN) to determine which base and bounds pair to use. The
hardware then takes the physical address therein and combines it with
the VPN as follows to form the address of the page table entry (PTE):

SN = (VirtualAddress & SEG_MASK) >> SN_SHIFT

VPN = (VirtualAddress & VPN_MASK) >> VPN_SHIFT

AddressOfPTE = Base[SN] + (VPN * sizeof(PTE))

This sequence should look familiar; it is virtually identical to what we
saw before with linear page tables. The only difference, of course, is the
use of one of three segment base registers instead of the single page table
base register.

The critical difference in our hybrid scheme is the presence of a bounds
register per segment; each bounds register holds the value of the maxi-
mum valid page in the segment. For example, if the code segment is
using its first three pages (0, 1, and 2), the code segment page table will
only have three entries allocated to it and the bounds register will be set

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

PAGING: SMALLER TABLES 205

TIP: USE HYBRIDS

When you have two good and seemingly opposing ideas, you should
always see if you can combine them into a hybrid that manages to achieve
the best of both worlds. Hybrid corn species, for example, are known to
be more robust than any naturally-occurring species. Of course, not all
hybrids are a good idea; see the Zeedonk (or Zonkey), which is a cross of
a Zebra and a Donkey. If you don’t believe such a creature exists, look it
up, and prepare to be amazed.

to 3; memory accesses beyond the end of the segment will generate an ex-
ception and likely lead to the termination of the process. In this manner,
our hybrid approach realizes a significant memory savings compared to
the linear page table; unallocated pages between the stack and the heap
no longer take up space in a page table (just to mark them as not valid).

However, as you might notice, this approach is not without problems.
First, it still requires us to use segmentation; as we discussed before, seg-
mentation is not quite as flexible as we would like, as it assumes a certain
usage pattern of the address space; if we have a large but sparsely-used
heap, for example, we can still end up with a lot of page table waste.
Second, this hybrid causes external fragmentation to arise again. While
most of memory is managed in page-sized units, page tables now can be
of arbitrary size (in multiples of PTEs). Thus, finding free space for them
in memory is more complicated. For these reasons, people continued to
look for better approaches to implementing smaller page tables.

20.3 Multi-level Page Tables

A different approach doesn’t rely on segmentation but attacks the same
problem: how to get rid of all those invalid regions in the page table in-
stead of keeping them all in memory? We call this approach a multi-level
page table, as it turns the linear page table into something like a tree. This
approach is so effective that many modern systems employ it (e.g., x86
[BOH10]). We now describe this approach in detail.

The basic idea behind a multi-level page table is simple. First, chop up
the page table into page-sized units; then, if an entire page of page-table
entries (PTEs) is invalid, don’t allocate that page of the page table at all.
To track whether a page of the page table is valid (and if valid, where it
is in memory), use a new structure, called the page directory. The page
directory thus either can be used to tell you where a page of the page
table is, or that the entire page of the page table contains no valid pages.

Figure 20.2 shows an example. On the left of the figure is the classic
linear page table; even though most of the middle regions of the address
space are not valid, we still have to have page-table space allocated for
those regions (i.e., the middle two pages of the page table). On the right
is a multi-level page table. The page directory marks just two pages of

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

206 PAGING: SMALLER TABLES

v
a

lid

p
ro

t

PFN
1 rx 12

1 rx 13

0 - -

1 rw 100

0 - -

0 - -

0 - -

0 - -

0 - -

0 - -

0 - -

0 - -

0 - -

0 - -

1 rw 86

1 rw 15

Linear Page Table

PTBR 201

P
F

N
 2

0
1

P
F

N
 2

0
2

P
F

N
 2

0
3

P
F

N
 2

0
4

v
a

lid

p
ro

t

PFN
1 rx 12

1 rx 13

0 - -

1 rw 100

0 - -

0 - -

1 rw 86

1 rw 15

[Page 1 of PT: Not Allocated]

[Page 2 of PT: Not Allocated]

P
F

N
 2

0
1

P
F

N
 2

0
4

Multi-level Page Table

PDBR 200

v
a

lid

PFN
1 201

0 -

0 -

1 204

P
F

N
 2

0
0

The Page Directory

Figure 20.2: Linear (Left) And Multi-Level (Right) Page Tables

the page table as valid (the first and last); thus, just those two pages of the
page table reside in memory. And thus you can see one way to visualize
what a multi-level table is doing: it just makes parts of the linear page
table disappear (freeing those frames for other uses), and tracks which
pages of the page table are allocated with the page directory.

The page directory, in a simple two-level table, contains one entry per
page of the page table. It consists of a number of page directory entries
(PDE). A PDE (minimally) has a valid bit and a page frame number
(PFN), similar to a PTE. However, as hinted at above, the meaning of
this valid bit is slightly different: if the PDE entry is valid, it means that
at least one of the pages of the page table that the entry points to (via the
PFN) is valid, i.e., in at least one PTE on that page pointed to by this PDE,
the valid bit in that PTE is set to one. If the PDE entry is not valid (i.e.,
equal to zero), the rest of the PDE is not defined.

Multi-level page tables have some obvious advantages over approaches
we’ve seen thus far. First, and perhaps most obviously, the multi-level ta-
ble only allocates page-table space in proportion to the amount of address
space you are using; thus it is generally compact and supports sparse ad-
dress spaces.

Second, if carefully constructed, each portion of the page table fits
neatly within a page, making it easier to manage memory; the OS can
simply grab the next free page when it needs to allocate or grow a page

table. Contrast this to a simple (non-paged) linear page table2, which
is just an array of PTEs indexed by VPN; with such a structure, the en-
tire linear page table must reside contiguously in physical memory. For
a large page table (say 4MB), finding such a large chunk of unused con-
tiguous free physical memory can be quite a challenge. With a multi-level

2We are making some assumptions here, i.e., that all page tables reside in their entirety in
physical memory (i.e., they are not swapped to disk); we’ll soon relax this assumption.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

PAGING: SMALLER TABLES 207

TIP: UNDERSTAND TIME-SPACE TRADE-OFFS

When building a data structure, one should always consider time-space
trade-offs in its construction. Usually, if you wish to make access to a par-
ticular data structure faster, you will have to pay a space-usage penalty
for the structure.

structure, we add a level of indirection through use of the page directory,
which points to pieces of the page table; that indirection allows us to place
page-table pages wherever we would like in physical memory.

It should be noted that there is a cost to multi-level tables; on a TLB
miss, two loads from memory will be required to get the right translation
information from the page table (one for the page directory, and one for
the PTE itself), in contrast to just one load with a linear page table. Thus,
the multi-level table is a small example of a time-space trade-off. We
wanted smaller tables (and got them), but not for free; although in the
common case (TLB hit), performance is obviously identical, a TLB miss
suffers from a higher cost with this smaller table.

Another obvious negative is complexity. Whether it is the hardware or
OS handling the page-table lookup (on a TLB miss), doing so is undoubt-
edly more involved than a simple linear page-table lookup. Often we are
willing to increase complexity in order to improve performance or reduce
overheads; in the case of a multi-level table, we make page-table lookups
more complicated in order to save valuable memory.

A Detailed Multi-Level Example

To understand the idea behind multi-level page tables better, let’s do an
example. Imagine a small address space of size 16 KB, with 64-byte pages.
Thus, we have a 14-bit virtual address space, with 8 bits for the VPN and
6 bits for the offset. A linear page table would have 28 (256) entries, even
if only a small portion of the address space is in use. Figure 20.3 presents
one example of such an address space.

stack

stack

(free)

(free)

... all free ...

(free)

(free)

heap

heap

(free)

(free)

code

code

1111 1111

1111 1110

1111 1101

1111 1100

0000 0111

0000 0110

0000 0101

0000 0100

0000 0011

0000 0010

0000 0001

0000 0000

................

Figure 20.3: A 16-KB Address Space With 64-byte Pages

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

208 PAGING: SMALLER TABLES

TIP: BE WARY OF COMPLEXITY

System designers should be wary of adding complexity into their sys-
tem. What a good systems builder does is implement the least complex
system that achieves the task at hand. For example, if disk space is abun-
dant, you shouldn’t design a file system that works hard to use as few
bytes as possible; similarly, if processors are fast, it is better to write a
clean and understandable module within the OS than perhaps the most
CPU-optimized, hand-assembled code for the task at hand. Be wary of
needless complexity, in prematurely-optimized code or other forms; such
approaches make systems harder to understand, maintain, and debug.
As Antoine de Saint-Exupery famously wrote: “Perfection is finally at-
tained not when there is no longer anything to add, but when there is no
longer anything to take away.” What he didn’t write: “It’s a lot easier to
say something about perfection than to actually achieve it.”

In this example, virtual pages 0 and 1 are for code, virtual pages 4 and
5 for the heap, and virtual pages 254 and 255 for the stack; the rest of the
pages of the address space are unused.

To build a two-level page table for this address space, we start with
our full linear page table and break it up into page-sized units. Recall our
full table (in this example) has 256 entries; assume each PTE is 4 bytes in
size. Thus, our page table is 1KB (256 × 4 bytes) in size. Given that we
have 64-byte pages, the 1-KB page table can be divided into 16 64-byte
pages; each page can hold 16 PTEs.

What we need to understand now is how to take a VPN and use it to
index first into the page directory and then into the page of the page table.
Remember that each is an array of entries; thus, all we need to figure out
is how to construct the index for each from pieces of the VPN.

Let’s first index into the page directory. Our page table in this example
is small: 256 entries, spread across 16 pages. The page directory needs one
entry per page of the page table; thus, it has 16 entries. As a result, we
need four bits of the VPN to index into the directory; we use the top four
bits of the VPN, as follows:

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN offset

Page Directory Index

Once we extract the page-directory index (PDIndex for short) from
the VPN, we can use it to find the address of the page-directory entry
(PDE) with a simple calculation: PDEAddr = PageDirBase + (PDIndex

* sizeof(PDE)). This results in our page directory, which we now ex-
amine to make further progress in our translation.

If the page-directory entry is marked invalid, we know that the access
is invalid, and thus raise an exception. If, however, the PDE is valid,

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

PAGING: SMALLER TABLES 209

we have more work to do. Specifically, we now have to fetch the page-
table entry (PTE) from the page of the page table pointed to by this page-
directory entry. To find this PTE, we have to index into the portion of the
page table using the remaining bits of the VPN:

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN offset

Page Directory Index Page Table Index

This page-table index (PTIndex for short) can then be used to index
into the page table itself, giving us the address of our PTE:
PTEAddr = (PDE.PFN << SHIFT) + (PTIndex * sizeof(PTE))

Note that the page-frame number (PFN) obtained from the page-directory
entry must be left-shifted into place before combining it with the page-
table index to form the address of the PTE.

To see if this all makes sense, we’ll now fill in a multi-level page ta-
ble with some actual values, and translate a single virtual address. Let’s
begin with the page directory for this example (left side of Table 20.2).

In the figure, you can see that each page directory entry (PDE) de-
scribes something about a page of the page table for the address space.
In this example, we have two valid regions in the address space (at the
beginning and end), and a number of invalid mappings in-between.

In physical page 100 (the physical frame number of the 0th page of the
page table), we have the first page of 16 page table entries for the first 16
VPNs in the address space. See Table 20.2 (middle part) for the contents
of this portion of the page table.

Page Directory Page of PT (@PFN:100) Page of PT (@PFN:101)
PFN valid? PFN valid prot PFN valid prot
100 1 10 1 r-x – 0 —

—— 0 23 1 r-x – 0 —
—— 0 – 0 — – 0 —
—— 0 – 0 — – 0 —
—— 0 80 1 rw- – 0 —
—— 0 59 1 rw- – 0 —
—— 0 – 0 — – 0 —
—— 0 – 0 — – 0 —
—— 0 – 0 — – 0 —
—— 0 – 0 — – 0 —
—— 0 – 0 — – 0 —
—— 0 – 0 — – 0 —
—— 0 – 0 — – 0 —
—— 0 – 0 — – 0 —
—— 0 – 0 — 55 1 rw-
101 1 – 0 — 45 1 rw-

Table 20.2: A Page Directory, And Pieces Of Page Table

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

210 PAGING: SMALLER TABLES

This page of the page table contains the mappings for the first 16
VPNs; in our example, VPNs 0 and 1 are valid (the code segment), as
are 4 and 5 (the heap). Thus, the table has mapping information for each
of those pages. The rest of the entries are marked invalid.

The other valid page of page table is found inside PFN 101. This page
contains mappings for the last 16 VPNs of the address space; see Table
20.2 (right) for details.

In the example, VPNs 254 and 255 (the stack) have valid mappings.
Hopefully, what we can see from this example is how much space savings
are possible with a multi-level indexed structure. In this example, instead
of allocating the full sixteen pages for a linear page table, we allocate only
three: one for the page directory, and two for the chunks of the page table
that have valid mappings. The savings for large (32-bit or 64-bit) address
spaces could obviously be much greater.

Finally, let’s use this information in order to perform a translation.
Here is an address that refers to the 0th byte of VPN 254: 0x3F80, or
11 1111 1000 0000 in binary.

Recall that we will use the top 4 bits of the VPN to index into the
page directory. Thus, 1111 will choose the last (15th, if you start at the
0th) entry of the page directory above. This points us to a valid page
of the page table located at address 101. We then use the next 4 bits
of the VPN (1110) to index into that page of the page table and find
the desired PTE. 1110 is the next-to-last (14th) entry on the page, and
tells us that page 254 of our virtual address space is mapped at physi-
cal page 55. By concatenating PFN=55 (or hex 0x37) with offset=000000,
we can thus form our desired physical address and issue the request to
the memory system: PhysAddr = (PTE.PFN << SHIFT) + offset

= 00 1101 1100 0000 = 0x0DC0.
You should now have some idea of how to construct a two-level page

table, using a page directory which points to pages of the page table. Un-
fortunately, however, our work is not done. As we’ll now discuss, some-
times two levels of page table is not enough!

More Than Two Levels

In our example thus far, we’ve assumed that multi-level page tables only
have two levels: a page directory and then pieces of the page table. In
some cases, a deeper tree is possible (and indeed, needed).

Let’s take a simple example and use it to show why a deeper multi-
level table can be useful. In this example, assume we have a 30-bit virtual
address space, and a small (512 byte) page. Thus our virtual address has
a 21-bit virtual page number component and a 9-bit offset.

Remember our goal in constructing a multi-level page table: to make
each piece of the page table fit within a single page. Thus far, we’ve only
considered the page table itself; however, what if the page directory gets
too big?

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

PAGING: SMALLER TABLES 211

To determine how many levels are needed in a multi-level table to
make all pieces of the page table fit within a page, we start by determining
how many page-table entries fit within a page. Given our page size of 512
bytes, and assuming a PTE size of 4 bytes, you should see that you can fit
128 PTEs on a single page. When we index into a page of the page table,
we can thus conclude we’ll need the least significant 7 bits (log2128) of
the VPN as an index:

29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN offset

Page Directory Index Page Table Index

What you also might notice from the diagram above is how many bits
are left into the (large) page directory: 14. If our page directory has 214

entries, it spans not one page but 128, and thus our goal of making every
piece of the multi-level page table fit into a page vanishes.

To remedy this problem, we build a further level of the tree, by split-
ting the page directory itself into multiple pages, and then adding another
page directory on top of that, to point to the pages of the page directory.
We can thus split up our virtual address as follows:

29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN offset

PD Index 0 PD Index 1 Page Table Index

Now, when indexing the upper-level page directory, we use the very
top bits of the virtual address (PD Index 0 in the diagram); this index
can be used to fetch the page-directory entry from the top-level page di-
rectory. If valid, the second level of the page directory is consulted by
combining the physical frame number from the top-level PDE and the
next part of the VPN (PD Index 1). Finally, if valid, the PTE address
can be formed by using the page-table index combined with the address
from the second-level PDE. Whew! That’s a lot of work. And all just to
look something up in a multi-level table.

The Translation Process: Remember the TLB

To summarize the entire process of address translation using a two-level
page table, we once again present the control flow in algorithmic form
(Figure 20.4). The figure shows what happens in hardware (assuming a
hardware-managed TLB) upon every memory reference.

As you can see from the figure, before any of the complicated multi-
level page table access occurs, the hardware first checks the TLB; upon

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

212 PAGING: SMALLER TABLES

1 VPN = (VirtualAddress & VPN_MASK) >> SHIFT

2 (Success, TlbEntry) = TLB_Lookup(VPN)

3 if (Success == True) // TLB Hit

4 if (CanAccess(TlbEntry.ProtectBits) == True)

5 Offset = VirtualAddress & OFFSET_MASK

6 PhysAddr = (TlbEntry.PFN << SHIFT) | Offset

7 Register = AccessMemory(PhysAddr)

8 else

9 RaiseException(PROTECTION_FAULT)

10 else // TLB Miss

11 // first, get page directory entry

12 PDIndex = (VPN & PD_MASK) >> PD_SHIFT

13 PDEAddr = PDBR + (PDIndex * sizeof(PDE))

14 PDE = AccessMemory(PDEAddr)

15 if (PDE.Valid == False)

16 RaiseException(SEGMENTATION_FAULT)

17 else

18 // PDE is valid: now fetch PTE from page table

19 PTIndex = (VPN & PT_MASK) >> PT_SHIFT

20 PTEAddr = (PDE.PFN << SHIFT) + (PTIndex * sizeof(PTE))

21 PTE = AccessMemory(PTEAddr)

22 if (PTE.Valid == False)

23 RaiseException(SEGMENTATION_FAULT)

24 else if (CanAccess(PTE.ProtectBits) == False)

25 RaiseException(PROTECTION_FAULT)

26 else

27 TLB_Insert(VPN, PTE.PFN, PTE.ProtectBits)

28 RetryInstruction()

Figure 20.4: Multi-level Page Table Control Flow

a hit, the physical address is formed directly without accessing the page
table at all, as before. Only upon a TLB miss does the hardware need to
perform the full multi-level lookup. On this path, you can see the cost of
our traditional two-level page table: two additional memory accesses to
look up a valid translation.

20.4 Inverted Page Tables

An even more extreme space savings in the world of page tables is
found with inverted page tables. Here, instead of having many page
tables (one per process of the system), we keep a single page table that
has an entry for each physical page of the system. The entry tells us which
process is using this page, and which virtual page of that process maps to
this physical page.

Finding the correct entry is now a matter of searching through this
data structure. A linear scan would be expensive, and thus a hash table is
often built over the base structure to speed lookups. The PowerPC is one
example of such an architecture [JM98].

More generally, inverted page tables illustrate what we’ve said from
the beginning: page tables are just data structures. You can do lots of
crazy things with data structures, making them smaller or bigger, making
them slower or faster. Multi-level and inverted page tables are just two
examples of the many things one could do.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

PAGING: SMALLER TABLES 213

20.5 Swapping the Page Tables to Disk

Finally, we discuss the relaxation of one final assumption. Thus far,
we have assumed that page tables reside in kernel-owned physical mem-
ory. Even with our many tricks to reduce the size of page tables, it is still
possible, however, that they may be too big to fit into memory all at once.
Thus, some systems place such page tables in kernel virtual memory,
thereby allowing the system to swap some of these page tables to disk
when memory pressure gets a little tight. We’ll talk more about this in
a future chapter (namely, the case study on VAX/VMS), once we under-
stand how to move pages in and out of memory in more detail.

20.6 Summary

We have now seen how real page tables are built; not necessarily just
as linear arrays but as more complex data structures. The trade-offs such
tables present are in time and space – the bigger the table, the faster a TLB
miss can be serviced, as well as the converse – and thus the right choice of
structure depends strongly on the constraints of the given environment.

In a memory-constrained system (like many older systems), small struc-
tures make sense; in a system with a reasonable amount of memory and
with workloads that actively use a large number of pages, a bigger ta-
ble that speeds up TLB misses might be the right choice. With software-
managed TLBs, the entire space of data structures opens up to the delight
of the operating system innovator (hint: that’s you). What new struc-
tures can you come up with? What problems do they solve? Think of
these questions as you fall asleep, and dream the big dreams that only
operating-system developers can dream.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

214 PAGING: SMALLER TABLES

References

[BOH10] “Computer Systems: A Programmer’s Perspective”
Randal E. Bryant and David R. O’Hallaron
Addison-Wesley, 2010
We have yet to find a good first reference to the multi-level page table. However, this great textbook by
Bryant and O’Hallaron dives into the details of x86, which at least is an early system that used such
structures. It’s also just a great book to have.

[JM98] “Virtual Memory: Issues of Implementation”
Bruce Jacob and Trevor Mudge
IEEE Computer, June 1998
An excellent survey of a number of different systems and their approach to virtualizing memory. Plenty
of details on x86, PowerPC, MIPS, and other architectures.

[LL82] “Virtual Memory Management in the VAX/VMS Operating System”
Hank Levy and P. Lipman
IEEE Computer, Vol. 15, No. 3, March 1982
A terrific paper about a real virtual memory manager in a classic operating system, VMS. So terrific, in
fact, that we’ll use it to review everything we’ve learned about virtual memory thus far a few chapters
from now.

[M28] “Reese’s Peanut Butter Cups”
Mars Candy Corporation.
Apparently these fine confections were invented in 1928 by Harry Burnett Reese, a former dairy farmer
and shipping foreman for one Milton S. Hershey. At least, that is what it says on Wikipedia. If true,
Hershey and Reese probably hated each other’s guts, as any two chocolate barons should.

[N+02] “Practical, Transparent Operating System Support for Superpages”
Juan Navarro, Sitaram Iyer, Peter Druschel, Alan Cox
OSDI ’02, Boston, Massachusetts, October 2002
A nice paper showing all the details you have to get right to incorporate large pages, or superpages,
into a modern OS. Not as easy as you might think, alas.

[M07] “Multics: History”
Available: http://www.multicians.org/history.html
This amazing web site provides a huge amount of history on the Multics system, certainly one of the
most influential systems in OS history. The quote from therein: “Jack Dennis of MIT contributed
influential architectural ideas to the beginning of Multics, especially the idea of combining paging and
segmentation.” (from Section 1.2.1)

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

PAGING: SMALLER TABLES 215

Homework

This fun little homework tests if you understand how a multi-level
page table works. And yes, there is some debate over the use of the term
“fun” in the previous sentence. The program is called, perhaps unsur-
prisingly: paging-multilevel-translate.py; see the README for
details.

Questions

• With a linear page table, you need a single register to locate the
page table, assuming that hardware does the lookup upon a TLB
miss. How many registers do you need to locate a two-level page
table? A three-level table?

• Use the simulator to perform translations given random seeds 0,
1, and 2, and check your answers using the -c flag. How many
memory references are needed to perform each lookup?

• Given your understanding of how cache memory works, how do
you think memory references to the page table will behave in the
cache? Will they lead to lots of cache hits (and thus fast accesses?)
Or lots of misses (and thus slow accesses)?

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

21

Beyond Physical Memory: Mechanisms

Thus far, we’ve assumed that an address space is unrealistically small
and fits into physical memory. In fact, we’ve been assuming that every
address space of every running process fits into memory. We will now
relax these big assumptions, and assume that we wish to support many
concurrently-running large address spaces.

To do so, we require an additional level in the memory hierarchy.
Thus far, we have assumed that all pages reside in physical memory.
However, to support large address spaces, the OS will need a place to
stash away portions of address spaces that currently aren’t in great de-
mand. In general, the characteristics of such a location are that it should
have more capacity than memory; as a result, it is generally slower (if it
were faster, we would just use it as memory, no?). In modern systems,
this role is usually served by a hard disk drive. Thus, in our memory
hierarchy, big and slow hard drives sit at the bottom, with memory just
above. And thus we arrive at the crux of the problem:

THE CRUX: HOW TO GO BEYOND PHYSICAL MEMORY

How can the OS make use of a larger, slower device to transparently pro-
vide the illusion of a large virtual address space?

One question you might have: why do we want to support a single
large address space for a process? Once again, the answer is convenience
and ease of use. With a large address space, you don’t have to worry
about if there is room enough in memory for your program’s data struc-
tures; rather, you just write the program naturally, allocating memory as
needed. It is a powerful illusion that the OS provides, and makes your
life vastly simpler. You’re welcome! A contrast is found in older systems
that used memory overlays, which required programmers to manually
move pieces of code or data in and out of memory as they were needed
[D97]. Try imagining what this would be like: before calling a function or
accessing some data, you need to first arrange for the code or data to be
in memory; yuck!

217

218 BEYOND PHYSICAL MEMORY: MECHANISMS

ASIDE: STORAGE TECHNOLOGIES

We’ll delve much more deeply into how I/O devices actually work later
(see the chapter on I/O devices). So be patient! And of course the slower
device need not be a hard disk, but could be something more modern
such as a Flash-based SSD. We’ll talk about those things too. For now,
just assume we have a big and relatively-slow device which we can use
to help us build the illusion of a very large virtual memory, even bigger
than physical memory itself.

Beyond just a single process, the addition of swap space allows the OS
to support the illusion of a large virtual memory for multiple concurrently-
running processes. The invention of multiprogramming (running multi-
ple programs “at once”, to better utilize the machine) almost demanded
the ability to swap out some pages, as early machines clearly could not
hold all the pages needed by all processes at once. Thus, the combina-
tion of multiprogramming and ease-of-use leads us to want to support
using more memory than is physically available. It is something that all
modern VM systems do; it is now something we will learn more about.

21.1 Swap Space

The first thing we will need to do is to reserve some space on the disk
for moving pages back and forth. In operating systems, we generally refer
to such space as swap space, because we swap pages out of memory to it
and swap pages into memory from it. Thus, we will simply assume that
the OS can read from and write to the swap space, in page-sized units. To
do so, the OS will need to remember the disk address of a given page.

The size of the swap space is important, as ultimately it determines
the maximum number of memory pages that can be in use by a system at
a given time. Let us assume for simplicity that it is very large for now.

In the tiny example (Figure 21.1), you can see a little example of a 4-
page physical memory and an 8-page swap space. In the example, three
processes (Proc 0, Proc 1, and Proc 2) are actively sharing physical mem-
ory; each of the three, however, only have some of their valid pages in
memory, with the rest located in swap space on disk. A fourth process
(Proc 3) has all of its pages swapped out to disk, and thus clearly isn’t
currently running. One block of swap remains free. Even from this tiny
example, hopefully you can see how using swap space allows the system
to pretend that memory is larger than it actually is.

We should note that swap space is not the only on-disk location for
swapping traffic. For example, assume you are running a program binary
(e.g., ls, or your own compiledmain program). The code pages from this
binary are initially found on disk, and when the program runs, they are
loaded into memory (either all at once when the program starts execution,

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

BEYOND PHYSICAL MEMORY: MECHANISMS 219

Physical
Memory

PFN 0

Proc 0
[VPN 0]

PFN 1

Proc 1
[VPN 2]

PFN 2

Proc 1
[VPN 3]

PFN 3

Proc 2
[VPN 0]

Swap
Space

Proc 0
[VPN 1]

Block 0

Proc 0
[VPN 2]

Block 1

[Free]

Block 2

Proc 1
[VPN 0]

Block 3

Proc 1
[VPN 1]

Block 4

Proc 3
[VPN 0]

Block 5

Proc 2
[VPN 1]

Block 6

Proc 3
[VPN 1]

Block 7

Figure 21.1: Physical Memory and Swap Space

or, as in modern systems, one page at a time when needed). However, if
the system needs to make room in physical memory for other needs, it
can safely re-use the memory space for these code pages, knowing that it
can later swap them in again from the on-disk binary in the file system.

21.2 The Present Bit

Now that we have some space on the disk, we need to add some ma-
chinery higher up in the system in order to support swapping pages to
and from the disk. Let us assume, for simplicity, that we have a system
with a hardware-managed TLB.

Recall first what happens on a memory reference. The running pro-
cess generates virtual memory references (for instruction fetches, or data
accesses), and, in this case, the hardware translates them into physical
addresses before fetching the desired data from memory.

Remember that the hardware first extracts the VPN from the virtual
address, checks the TLB for a match (a TLB hit), and if a hit, produces the
resulting physical address and fetches it from memory. This is hopefully
the common case, as it is fast (requiring no additional memory accesses).

If the VPN is not found in the TLB (i.e., a TLB miss), the hardware
locates the page table in memory (using the page table base register)
and looks up the page table entry (PTE) for this page using the VPN
as an index. If the page is valid and present in physical memory, the
hardware extracts the PFN from the PTE, installs it in the TLB, and retries
the instruction, this time generating a TLB hit; so far, so good.

If we wish to allow pages to be swapped to disk, however, we must
add even more machinery. Specifically, when the hardware looks in the
PTE, it may find that the page is not present in physical memory. The way
the hardware (or the OS, in a software-managed TLB approach) deter-
mines this is through a new piece of information in each page-table entry,
known as the present bit. If the present bit is set to one, it means the
page is present in physical memory and everything proceeds as above; if
it is set to zero, the page is not in memory but rather on disk somewhere.
The act of accessing a page that is not in physical memory is commonly
referred to as a page fault.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

220 BEYOND PHYSICAL MEMORY: MECHANISMS

ASIDE: SWAPPING TERMINOLOGY AND OTHER THINGS

Terminology in virtual memory systems can be a little confusing and vari-
able across machines and operating systems. For example, a page fault
more generally could refer to any reference to a page table that generates
a fault of some kind: this could include the type of fault we are discussing
here, i.e., a page-not-present fault, but sometimes can refer to illegal mem-
ory accesses. Indeed, it is odd that we call what is definitely a legal access
(to a page mapped into the virtual address space of a process, but simply
not in physical memory at the time) a “fault” at all; really, it should be
called a page miss. But often, when people say a program is “page fault-
ing”, they mean that it is accessing parts of its virtual address space that
the OS has swapped out to disk.

We suspect the reason that this behavior became known as a “fault” re-
lates to the machinery in the operating system to handle it. When some-
thing unusual happens, i.e., when something the hardware doesn’t know
how to handle occurs, the hardware simply transfers control to the OS,
hoping it can make things better. In this case, a page that a process wants
to access is missing from memory; the hardware does the only thing it
can, which is raise an exception, and the OS takes over from there. As
this is identical to what happens when a process does something illegal,
it is perhaps not surprising that we term the activity a “fault.”

Upon a page fault, the OS is invoked to service the page fault. A partic-
ular piece of code, known as a page-fault handler, runs, and must service
the page fault, as we now describe.

21.3 The Page Fault

Recall that with TLB misses, we have two types of systems: hardware-
managed TLBs (where the hardware looks in the page table to find the
desired translation) and software-managed TLBs (where the OS does). In
either type of system, if a page is not present, the OS is put in charge to
handle the page fault. The appropriately-named OS page-fault handler
runs to determine what to do. Virtually all systems handle page faults in
software; even with a hardware-managed TLB, the hardware trusts the
OS to manage this important duty.

If a page is not present and has been swapped to disk, the OS will need
to swap the page into memory in order to service the page fault. Thus, a
question arises: how will the OS know where to find the desired page? In
many systems, the page table is a natural place to store such information.
Thus, the OS could use the bits in the PTE normally used for data such as
the PFN of the page for a disk address. When the OS receives a page fault
for a page, it looks in the PTE to find the address, and issues the request
to disk to fetch the page into memory.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

BEYOND PHYSICAL MEMORY: MECHANISMS 221

ASIDE: WHY HARDWARE DOESN’T HANDLE PAGE FAULTS

We know from our experience with the TLB that hardware designers are
loathe to trust the OS to do much of anything. So why do they trust the
OS to handle a page fault? There are a few main reasons. First, page
faults to disk are slow; even if the OS takes a long time to handle a fault,
executing tons of instructions, the disk operation itself is traditionally so
slow that the extra overheads of running software are minimal. Second,
to be able to handle a page fault, the hardware would have to understand
swap space, how to issue I/Os to the disk, and a lot of other details which
it currently doesn’t know much about. Thus, for both reasons of perfor-
mance and simplicity, the OS handles page faults, and even hardware
types can be happy.

When the disk I/O completes, the OS will then update the page table
to mark the page as present, update the PFN field of the page-table entry
(PTE) to record the in-memory location of the newly-fetched page, and
retry the instruction. This next attempt may generate a TLB miss, which
would then be serviced and update the TLB with the translation (one
could alternately update the TLB upon when servicing the page fault,
to avoid this step). Finally, a last restart would find the translation in
the TLB and thus proceed to fetch the desired data or instruction from
memory at the translated physical address.

Note that while the I/O is in flight, the process will be in the blocked
state. Thus, the OS will be free to run other ready processes while the
page fault is being serviced. Because I/O is expensive, this overlap of
the I/O (page fault) of one process and the execution of another is yet
another way a multiprogrammed system can make the most effective use
of its hardware.

21.4 What If Memory Is Full?

In the process described above, you may notice that we assumed there
is plenty of free memory in which to page in a page from swap space.
Of course, this may not be the case; memory may be full (or close to it).
Thus, the OS might like to first page out one or more pages to make room
for the new page(s) the OS is about to bring in. The process of picking a
page to kick out, or replace is known as the page-replacement policy.

As it turns out, a lot of thought has been put into creating a good page-
replacement policy, as kicking out the wrong page can exact a great cost
on program performance. Making the wrong decision can cause a pro-
gram to run at disk-like speeds instead of memory-like speeds; in cur-
rent technology that means a program could run 10,000 or 100,000 times
slower. Thus, such a policy is something we should study in some detail;
indeed, that is exactly what we will do in the next chapter. For now, it is
good enough to understand that such a policy exists, built on top of the
mechanisms described here.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

222 BEYOND PHYSICAL MEMORY: MECHANISMS

1 VPN = (VirtualAddress & VPN_MASK) >> SHIFT

2 (Success, TlbEntry) = TLB_Lookup(VPN)

3 if (Success == True) // TLB Hit

4 if (CanAccess(TlbEntry.ProtectBits) == True)

5 Offset = VirtualAddress & OFFSET_MASK

6 PhysAddr = (TlbEntry.PFN << SHIFT) | Offset

7 Register = AccessMemory(PhysAddr)

8 else

9 RaiseException(PROTECTION_FAULT)

10 else // TLB Miss

11 PTEAddr = PTBR + (VPN * sizeof(PTE))

12 PTE = AccessMemory(PTEAddr)

13 if (PTE.Valid == False)

14 RaiseException(SEGMENTATION_FAULT)

15 else

16 if (CanAccess(PTE.ProtectBits) == False)

17 RaiseException(PROTECTION_FAULT)

18 else if (PTE.Present == True)

19 // assuming hardware-managed TLB

20 TLB_Insert(VPN, PTE.PFN, PTE.ProtectBits)

21 RetryInstruction()

22 else if (PTE.Present == False)

23 RaiseException(PAGE_FAULT)

Figure 21.2: Page-Fault Control Flow Algorithm (Hardware)

21.5 Page Fault Control Flow

With all of this knowledge in place, we can now roughly sketch the
complete control flow of memory access. In other words, when some-
body asks you “what happens when a program fetches some data from
memory?”, you should have a pretty good idea of all the different pos-
sibilities. See the control flow in Figures 21.2 and 21.3 for more details;
the first figure shows what the hardware does during translation, and the
second what the OS does upon a page fault.

From the hardware control flow diagram in Figure 21.2, notice that
there are now three important cases to understand when a TLB miss oc-
curs. First, that the page was both present and valid (Lines 18–21); in
this case, the TLB miss handler can simply grab the PFN from the PTE,
retry the instruction (this time resulting in a TLB hit), and thus continue
as described (many times) before. In the second case (Lines 22–23), the
page fault handler must be run; although this was a legitimate page for
the process to access (it is valid, after all), it is not present in physical
memory. Third (and finally), the access could be to an invalid page, due
for example to a bug in the program (Lines 13–14). In this case, no other
bits in the PTE really matter; the hardware traps this invalid access, and
the OS trap handler runs, likely terminating the offending process.

From the software control flow in Figure 21.3, we can see what the OS
roughly must do in order to service the page fault. First, the OS must find
a physical frame for the soon-to-be-faulted-in page to reside within; if
there is no such page, we’ll have to wait for the replacement algorithm to
run and kick some pages out of memory, thus freeing them for use here.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

BEYOND PHYSICAL MEMORY: MECHANISMS 223

1 PFN = FindFreePhysicalPage()

2 if (PFN == -1) // no free page found

3 PFN = EvictPage() // run replacement algorithm

4 DiskRead(PTE.DiskAddr, pfn) // sleep (waiting for I/O)

5 PTE.present = True // update page table with present

6 PTE.PFN = PFN // bit and translation (PFN)

7 RetryInstruction() // retry instruction

Figure 21.3: Page-Fault Control Flow Algorithm (Software)

With a physical frame in hand, the handler then issues the I/O request
to read in the page from swap space. Finally, when that slow operation
completes, the OS updates the page table and retries the instruction. The
retry will result in a TLB miss, and then, upon another retry, a TLB hit, at
which point the hardware will be able to access the desired item.

21.6 When Replacements Really Occur

Thus far, the way we’ve described how replacements occur assumes
that the OS waits until memory is entirely full, and only then replaces
(evicts) a page to make room for some other page. As you can imagine,
this is a little bit unrealistic, and there are many reasons for the OS to keep
a small portion of memory free more proactively.

To keep a small amount of memory free, most operating systems thus
have some kind of high watermark (HW) and low watermark (LW) to
help decide when to start evicting pages from memory. How this works is
as follows: when the OS notices that there are fewer than LW pages avail-
able, a background thread that is responsible for freeing memory runs.
The thread evicts pages until there are HW pages available. The back-

ground thread, sometimes called the swap daemon or page daemon1,
then goes to sleep, happy that is has freed some memory for running pro-
cesses and the OS to use.

By performing a number of replacements at once, new performance
optimizations become possible. For example, many systems will cluster
or group a number of pages and write them out at once to the swap parti-
tion, thus increasing the efficiency of the disk [LL82]; as we will see later
when we discuss disks in more detail, such clustering reduces seek and
rotational overheads of a disk and thus increases performance noticeably.

To work with the background paging thread, the control flow in Figure
21.3 should be modified slightly; instead of performing a replacement
directly, the algorithm would instead simply check if there are any free
pages available. If not, it would signal that the background paging thread
that free pages are needed; when the thread frees up some pages, it would
re-awaken the original thread, which could then page in the desired page
and go about its work.

1The word “daemon”, usually pronounced “demon”, is an old term for a background
thread or process that does something useful. Turns out (once again!) that the source of the
term is Multics [CS94].

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

224 BEYOND PHYSICAL MEMORY: MECHANISMS

TIP: DO WORK IN THE BACKGROUND

When you have some work to do, it is often a good idea to do it in the
background to increase efficiency and to allow for grouping of opera-
tions. Operating systems often do work in the background; for example,
many systems buffer file writes in memory before actually writing the
data to disk. Doing so has many possible benefits: increased disk effi-
ciency, as the disk may now receive many writes at once and thus better
be able to schedule them; improved latency of writes, as the application
thinks the writes completed quite quickly; the possibility of work reduc-
tion, as the writes may need never to go to disk (i.e., if the file is deleted);
and better use of idle time, as the background work may possibly be
done when the system is otherwise idle, thus better utilizing the hard-
ware [G+95].

21.7 Summary

In this brief chapter, we have introduced the notion of accessing more
memory than is physically present within a system. To do so requires
more complexity in page-table structures, as a present bit (of some kind)
must be included to tell us whether the page is present in memory or not.
When not, the operating system page-fault handler runs to service the
page fault, and thus arranges for the transfer of the desired page from
disk to memory, perhaps first replacing some pages in memory to make
room for those soon to be swapped in.

Recall, importantly (and amazingly!), that these actions all take place
transparently to the process. As far as the process is concerned, it is just
accessing its own private, contiguous virtual memory. Behind the scenes,
pages are placed in arbitrary (non-contiguous) locations in physical mem-
ory, and sometimes they are not even present in memory, requiring a fetch
from disk. While we hope that in the common case a memory access is
fast, in some cases it will take multiple disk operations to service it; some-
thing as simple as performing a single instruction can, in the worst case,
take many milliseconds to complete.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

BEYOND PHYSICAL MEMORY: MECHANISMS 225

References

[CS94] “Take Our Word For It”
F. Corbato and R. Steinberg
Available: http://www.takeourword.com/TOW146/page4.html
Richard Steinberg writes: “Someone has asked me the origin of the word daemon as it applies to comput-
ing. Best I can tell based on my research, the word was first used by people on your team at Project MAC
using the IBM 7094 in 1963.” Professor Corbato replies: “Our use of the word daemon was inspired
by the Maxwell’s daemon of physics and thermodynamics (my background is in physics). Maxwell’s
daemon was an imaginary agent which helped sort molecules of different speeds and worked tirelessly
in the background. We fancifully began to use the word daemon to describe background processes which
worked tirelessly to perform system chores.”

[D97] “Before Memory Was Virtual”
Peter Denning
From In the Beginning: Recollections of Software Pioneers, Wiley, November 1997
An excellent historical piece by one of the pioneers of virtual memory and working sets.

[G+95] “Idleness is not sloth”
Richard Golding, Peter Bosch, Carl Staelin, Tim Sullivan, John Wilkes
USENIX ATC ’95, New Orleans, Louisiana
A fun and easy-to-read discussion of how idle time can be better used in systems, with lots of good
examples.

[LL82] “Virtual Memory Management in the VAX/VMS Operating System”
Hank Levy and P. Lipman
IEEE Computer, Vol. 15, No. 3, March 1982
Not the first place where such clustering was used, but a clear and simple explanation of how such a
mechanism works.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

22

Beyond Physical Memory: Policies

In a virtual memory manager, life is easy when you have a lot of free
memory. A page fault occurs, you find a free page on the free-page list,
and assign it to the faulting page. Hey, Operating System, congratula-
tions! You did it again.

Unfortunately, things get a little more interesting when little memory
is free. In such a case, this memory pressure forces the OS to start paging
out pages to make room for actively-used pages. Deciding which page
(or pages) to evict is encapsulated within the replacement policy of the
OS; historically, it was one of the most important decisions the early vir-
tual memory systems made, as older systems had little physical memory.
Minimally, it is an interesting set of policies worth knowing a little more
about. And thus our problem:

THE CRUX: HOW TO DECIDE WHICH PAGE TO EVICT

How can the OS decide which page (or pages) to evict from memory?
This decision is made by the replacement policy of the system, which usu-
ally follows some general principles (discussed below) but also includes
certain tweaks to avoid corner-case behaviors.

22.1 Cache Management

Before diving into policies, we first describe the problem we are trying
to solve in more detail. Given that main memory holds some subset of
all the pages in the system, it can rightly be viewed as a cache for virtual
memory pages in the system. Thus, our goal in picking a replacement
policy for this cache is to minimize the number of cache misses; that is,
to minimize the number of times that we have to go to disk to fetch the
desired page. Alternately, one can view our goal as maximizing the num-
ber of cache hits, i.e., the number of times a page that is read or written
is found in memory.

227

228 BEYOND PHYSICAL MEMORY: POLICIES

Knowing the number of cache hits and misses let us calculate the av-
erage memory access time (AMAT) for a program (a metric computer
architects compute for hardware caches [HP06]). Specifically, given these
values, we can compute the AMAT of a program as follows:

AMAT = (Hit% · TM) + (Miss% · TD) (22.1)

where TM represents the cost of accessing memory, and represents TD the
cost of accessing disk.

For example, let us imagine a machine with a (tiny) address space:
4KB, with 256-byte pages. Thus, a virtual address has two components: a
4-bit VPN (the most-significant bits) and an 8-bit offset (the least-significant
bits). Thus, a process in this example can access 24 or 16 total virtual
pages. In this example, the process generates the following memory ref-
erences (i.e., virtual addresses): 0x000, 0x100, 0x200, 0x300, 0x400, 0x500,
0x600, 0x700, 0x800, 0x900. These virtual addresses refer to the first byte
of each of the first ten pages of the address space (the page number being
the first hex digit of each virtual address).

Let us further assume that every page except virtual page 3 are already
in memory. Thus, our sequence of memory references will encounter the
following behavior: hit, hit, hit, miss, hit, hit, hit, hit, hit, hit. We can
compute the hit rate (the percent of references found in memory): 90%,
as 9 out of 10 references are in memory. The miss rate is obviously 10%.

To calculate AMAT, we simply need to know the cost of accessing
memory and the cost of accessing disk. Assuming the cost of access-
ing memory (TM) is around 100 nanoseconds, and the cost of access-
ing disk (TD) is about 10 milliseconds, we have the following AMAT:
0.9 · 100ns + 0.1 · 10ms, which is 90ns + 1ms, or 1.00009 ms, or about
1 millisecond. If our hit rate had instead been 99.9%, the result is quite
different: AMAT is 10.1 microseconds, or roughly 100 times faster. As the
hit rate approaches 100%, AMAT approaches 100 nanoseconds.

Unfortunately, as you can see in this example, the cost of disk access
is so high in modern systems that even a tiny miss rate will quickly dom-
inate the overall AMAT of running programs. Clearly, we need to avoid
as many misses as possible or run slowly, at the rate of the disk. One way
to help with this is to carefully develop a smart policy, as we now do.

22.2 The Optimal Replacement Policy

To better understand how a particular replacement policy works, it
would be nice to compare it to the best possible replacement policy. As it
turns out, such an optimal policy was developed by Belady many years
ago [B66] (he originally called it MIN). The optimal replacement policy
leads to the fewest number of misses overall. Belady showed that a sim-
ple (but, unfortunately, difficult to implement!) approach that replaces
the page that will be accessed furthest in the future is the optimal policy,
resulting in the fewest-possible cache misses.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

BEYOND PHYSICAL MEMORY: POLICIES 229

TIP: COMPARING AGAINST OPTIMAL IS USEFUL

Although optimal is not very practical as a real policy, it is incredibly
useful as a comparison point in simulation or other studies. Saying that
your fancy new algorithm has a 80% hit rate isn’t meaningful in isolation;
saying that optimal achieves an 82% hit rate (and thus your new approach
is quite close to optimal) makes the result more meaningful and gives it
context. Thus, in any study you perform, knowing what the optimal is
lets you perform a better comparison, showing how much improvement
is still possible, and also when you can stop making your policy better,
because it is close enough to the ideal [AD03].

Hopefully, the intuition behind the optimal policy makes sense. Think
about it like this: if you have to throw out some page, why not throw
out the one that is needed the furthest from now? By doing so, you are
essentially saying that all the other pages in the cache are more important
than the one furthest out. The reason this is true is simple: you will refer
to the other pages before you refer to the one furthest out.

Let’s trace through a simple example to understand the decisions the
optimal policy makes. Assume a program accesses the following stream
of virtual pages: 0, 1, 2, 0, 1, 3, 0, 3, 1, 2, 1. Table 22.1 shows the behavior
of optimal, assuming a cache that fits three pages.

In the table, you can see the following actions. Not surprisingly, the
first three accesses are misses, as the cache begins in an empty state; such
a miss is sometimes referred to as a cold-start miss (or compulsory miss).
Then we refer again to pages 0 and 1, which both hit in the cache. Finally,
we reach another miss (to page 3), but this time the cache is full; a re-
placement must take place! Which begs the question: which page should
we replace? With the optimal policy, we examine the future for each page
currently in the cache (0, 1, and 2), and see that 0 is accessed almost imme-
diately, 1 is accessed a little later, and 2 is accessed furthest in the future.
Thus the optimal policy has an easy choice: evict page 2, resulting in
pages 0, 1, and 3 in the cache. The next three references are hits, but then

Resulting
Access Hit/Miss? Evict Cache State

0 Miss 0
1 Miss 0, 1
2 Miss 0, 1, 2
0 Hit 0, 1, 2
1 Hit 0, 1, 2
3 Miss 2 0, 1, 3
0 Hit 0, 1, 3
3 Hit 0, 1, 3
1 Hit 0, 1, 3
2 Miss 3 0, 1, 2
1 Hit 0, 1, 2

Table 22.1: Tracing the Optimal Policy

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

230 BEYOND PHYSICAL MEMORY: POLICIES

ASIDE: TYPES OF CACHE MISSES

In the computer architecture world, architects sometimes find it useful
to characterize misses by type, into one of three categories: compulsory,
capacity, and conflict misses, sometimes called the Three C’s [H87]. A
compulsory miss (or cold-start miss [EF78]) occurs because the cache is
empty to begin with and this is the first reference to the item; in con-
trast, a capacity miss occurs because the cache ran out of space and had
to evict an item to bring a new item into the cache. The third type of
miss (a conflict miss) arises in hardware because of limits on where an
item can be placed in a hardware cache, due to something known as set-
associativity; it does not arise in the OS page cache because such caches
are always fully-associative, i.e., there are no restrictions on where in
memory a page can be placed. See H&P for details [HP06].

we get to page 2, which we evicted long ago, and suffer another miss.
Here the optimal policy again examines the future for each page in the
cache (0, 1, and 3), and sees that as long as it doesn’t evict page 1 (which
is about to be accessed), we’ll be OK. The example shows page 3 getting
evicted, although 0 would have been a fine choice too. Finally, we hit on
page 1 and the trace completes.

We can also calculate the hit rate for the cache: with 6 hits and 5 misses,
the hit rate is Hits

Hits+Misses
which is 6

6+5
or 54.6%. You can also compute

the hit rate modulo compulsory misses (i.e., ignore the first miss to a given
page), resulting in a 85.7% hit rate.

Unfortunately, as we saw before in the development of scheduling
policies, the future is not generally known; you can’t build the optimal

policy for a general-purpose operating system1. Thus, in developing a
real, deployable policy, we will focus on approaches that find some other
way to decide which page to evict. The optimal policy will thus serve
only as a comparison point, to know how close we are to “perfect”.

22.3 A Simple Policy: FIFO

Many early systems avoided the complexity of trying to approach
optimal and employed very simple replacement policies. For example,
some systems used FIFO (first-in, first-out) replacement, where pages
were simply placed in a queue when they enter the system; when a re-
placement occurs, the page on the tail of the queue (the “first-in” page) is
evicted. FIFO has one great strength: it is quite simple to implement.

Let’s examine how FIFO does on our example reference stream (Table
22.2). We again begin our trace with three compulsory misses to pages 0,
1, and 2, and then hit on both 0 and 1. Next, page 3 is referenced, causing
a miss; the replacement decision is easy with FIFO: pick the page that

1If you can, let us know! We can become rich together. Or, like the scientists who “discov-
ered” cold fusion, widely scorned and mocked.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

BEYOND PHYSICAL MEMORY: POLICIES 231

Resulting
Access Hit/Miss? Evict Cache State

0 Miss First-in→ 0
1 Miss First-in→ 0, 1
2 Miss First-in→ 0, 1, 2
0 Hit First-in→ 0, 1, 2
1 Hit First-in→ 0, 1, 2
3 Miss 0 First-in→ 1, 2, 3
0 Miss 1 First-in→ 2, 3, 0
3 Hit First-in→ 2, 3, 0
1 Miss 2 First-in→ 3, 0, 1
2 Miss 3 First-in→ 0, 1, 2
1 Hit First-in→ 0, 1, 2

Table 22.2: Tracing the FIFO Policy

was the “first one” in (the cache state in the table is kept in FIFO order,
with the first-in page on the left), which is page 0. Unfortunately, our next
access is to page 0, causing another miss and replacement (of page 1). We
then hit on page 3, but miss on 1 and 2, and finally hit on 3.

Comparing FIFO to optimal, FIFO does notably worse: a 36.4% hit
rate (or 57.1% excluding compulsory misses). FIFO simply can’t deter-
mine the importance of blocks: even though page 0 had been accessed
a number of times, FIFO still kicks it out, simply because it was the first
one brought into memory.

ASIDE: BELADY’S ANOMALY

Belady (of the optimal policy) and colleagues found an interesting refer-
ence stream that behaved a little unexpectedly [BNS69]. The memory-
reference stream: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5. The replacement policy
they were studying was FIFO. The interesting part: how the cache hit
rate changed when moving from a cache size of 3 to 4 pages.

In general, you would expect the cache hit rate to increase (get better)
when the cache gets larger. But in this case, with FIFO, it gets worse! Cal-
culate the hits and misses yourself and see. This odd behavior is generally
referred to as Belady’s Anomaly (to the chagrin of his co-authors).

Some other policies, such as LRU, don’t suffer from this problem. Can
you guess why? As it turns out, LRU has what is known as a stack prop-
erty [M+70]. For algorithms with this property, a cache of size N + 1
naturally includes the contents of a cache of size N . Thus, when increas-
ing the cache size, hit rate will either stay the same or improve. FIFO and
Random (among others) clearly do not obey the stack property, and thus
are susceptible to anomalous behavior.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

232 BEYOND PHYSICAL MEMORY: POLICIES

Resulting
Access Hit/Miss? Evict Cache State

0 Miss 0
1 Miss 0, 1
2 Miss 0, 1, 2
0 Hit 0, 1, 2
1 Hit 0, 1, 2
3 Miss 0 1, 2, 3
0 Miss 1 2, 3, 0
3 Hit 2, 3, 0
1 Miss 3 2, 0, 1
2 Hit 2, 0, 1
1 Hit 2, 0, 1

Table 22.3: Tracing the Random Policy

22.4 Another Simple Policy: Random

Another similar replacement policy is Random, which simply picks a
random page to replace under memory pressure. Random has properties
similar to FIFO; it is simple to implement, but it doesn’t really try to be
too intelligent in picking which blocks to evict. Let’s look at how Random
does on our famous example reference stream (see Table 22.3).

Of course, how Random does depends entirely upon how lucky (or
unlucky) Random gets in its choices. In the example above, Random does
a little better than FIFO, and a little worse than optimal. In fact, we can
run the Random experiment thousands of times and determine how it
does in general. Figure 22.1 shows how many hits Random achieves over
10,000 trials, each with a different random seed. As you can see, some-
times (just over 40% of the time), Random is as good as optimal, achieving
6 hits on the example trace; sometimes it does much worse, achieving 2
hits or fewer. How Random does depends on the luck of the draw.

0 1 2 3 4 5 6 7
0

10

20

30

40

50

Number of Hits

F
re

q
u
e
n
c
y

Figure 22.1: Random Performance over 10,000 Trials

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

BEYOND PHYSICAL MEMORY: POLICIES 233

Resulting
Access Hit/Miss? Evict Cache State

0 Miss LRU→ 0
1 Miss LRU→ 0, 1
2 Miss LRU→ 0, 1, 2
0 Hit LRU→ 1, 2, 0
1 Hit LRU→ 2, 0, 1
3 Miss 2 LRU→ 0, 1, 3
0 Hit LRU→ 1, 3, 0
3 Hit LRU→ 1, 0, 3
1 Hit LRU→ 0, 3, 1
2 Miss 0 LRU→ 3, 1, 2
1 Hit LRU→ 3, 2, 1

Table 22.4: Tracing the LRU Policy

22.5 Using History: LRU

Unfortunately, any policy as simple as FIFO or Random is likely to
have a common problem: it might kick out an important page, one that
is about to be referenced again. FIFO kicks out the page that was first
brought in; if this happens to be a page with important code or data
structures upon it, it gets thrown out anyhow, even though it will soon be
paged back in. Thus, FIFO, Random, and similar policies are not likely to
approach optimal; something smarter is needed.

As we did with scheduling policy, to improve our guess at the future,
we once again lean on the past and use history as our guide. For example,
if a program has accessed a page in the near past, it is likely to access it
again in the near future.

One type of historical information a page-replacement policy could
use is frequency; if a page has been accessed many times, perhaps it
should not be replaced as it clearly has some value. A more commonly-
used property of a page is its recency of access; the more recently a page
has been accessed, perhaps the more likely it will be accessed again.

This family of policies is based on what people refer to as the prin-
ciple of locality [D70], which basically is just an observation about pro-
grams and their behavior. What this principle says, quite simply, is that
programs tend to access certain code sequences (e.g., in a loop) and data
structures (e.g., an array accessed by the loop) quite frequently; we should
thus try to use history to figure out which pages are important, and keep
those pages in memory when it comes to eviction time.

And thus, a family of simple historically-based algorithms are born.
The Least-Frequently-Used (LFU) policy replaces the least-frequently-
used page when an eviction must take place. Similarly, the Least-Recently-
Used (LRU) policy replaces the least-recently-used page. These algo-
rithms are easy to remember: once you know the name, you know exactly
what it does, which is an excellent property for a name.

To better understand LRU, let’s examine how LRU does on our exam-

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

234 BEYOND PHYSICAL MEMORY: POLICIES

ASIDE: TYPES OF LOCALITY

There are two types of locality that programs tend to exhibit. The first
is known as spatial locality, which states that if a page P is accessed,
it is likely the pages around it (say P − 1 or P + 1) will also likely be
accessed. The second is temporal locality, which states that pages that
have been accessed in the near past are likely to be accessed again in the
near future. The assumption of the presence of these types of locality
plays a large role in the caching hierarchies of hardware systems, which
deploy many levels of instruction, data, and address-translation caching
to help programs run fast when such locality exists.

Of course, the principle of locality, as it is often called, is no hard-and-
fast rule that all programs must obey. Indeed, some programs access
memory (or disk) in rather random fashion and don’t exhibit much or
any locality in their access streams. Thus, while locality is a good thing to
keep in mind while designing caches of any kind (hardware or software),
it does not guarantee success. Rather, it is a heuristic that often proves
useful in the design of computer systems.

ple reference stream. Table 22.4 shows the results. From the table, you
can see how LRU can use history to do better than stateless policies such
as Random or FIFO. In the example, LRU evicts page 2 when it first has
to replace a page, because 0 and 1 have been accessed more recently. It
then replaces page 0 because 1 and 3 have been accessed more recently.
In both cases, LRU’s decision, based on history, turns out to be correct,
and the next references are thus hits. Thus, in our simple example, LRU
does as well as possible, matching optimal in its performance.

We should also note that the opposites of these algorithms exist: Most-
Frequently-Used (MFU) and Most-Recently-Used (MRU). In most cases
(not all!), these policies do not work well, as they ignore the locality most
programs exhibit instead of embracing it.

22.6 Workload Examples

Let’s look at a few more examples in order to better understand how
some of these policies behave. We’ll look at more complex workloads
instead just a small trace of references. However, even these workloads
are greatly simplified; a real study would include application traces.

Our first workload has no locality, which means that each reference
is to a random page within the set of accessed pages. In this simple ex-
ample, the workload accesses 100 unique pages over time, choosing the
next page to refer to at random; overall, 10,000 pages are accessed. In the
experiment, we vary the cache size from very small (1 page) to enough
to hold all the unique pages (100 page), in order to see how each policy
behaves over the range of cache sizes.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

BEYOND PHYSICAL MEMORY: POLICIES 235

0 20 40 60 80 100
0%

20%

40%

60%

80%

100%
The No-Locality Workload

Cache Size (Blocks)

H
it
 R

a
te

OPT
LRU
FIFO
RAND

Figure 22.2: The No-Locality Workload

Figure 22.2 plots the results of the experiment for optimal, LRU, Ran-
dom, and FIFO. The y-axis of the figure shows the hit rate that each policy
achieves; the x-axis varies the cache size as described above.

We can draw a number of conclusions from the graph. First, when
there is no locality in the workload, it doesn’t matter much which realistic
policy you are using; LRU, FIFO, and Random all perform the same, with
the hit rate exactly determined by the size of the cache. Second, when
the cache is large enough to fit the entire workload, it also doesn’t matter
which policy you use; all policies (even optimal) converge to a 100% hit
rate when all the referenced blocks fit in cache. Finally, you can see that
optimal performs noticeably better than the realistic policies; peeking into
the future, if it were possible, does a much better job of replacement.

The next workload we examine is called the “80-20” workload, which
exhibits locality: 80% of the references are made to 20% of the pages (the
“hot” pages); the remaining 20% of the references are made to the re-
maining 80% of the pages (the “cold” pages). In our workload, there are
a total 100 unique pages again; thus, “hot” pages are referred to most of
the time, and “cold” pages the remainder. Figure 22.3 shows how the
policies perform with this workload.

As you can see from the figure, while both random and FIFO do rea-
sonably well, LRU does better, as it is more likely to hold onto the hot
pages; as those pages have been referred to frequently in the past, they
are likely to be referred to again in the near future. Optimal once again
does better, showing that LRU’s historical information is not perfect.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

236 BEYOND PHYSICAL MEMORY: POLICIES

0 20 40 60 80 100
0%

20%

40%

60%

80%

100%
The 80-20 Workload

Cache Size (Blocks)

H
it
 R

a
te

OPT
LRU
FIFO
RAND

Figure 22.3: The 80-20 Workload

You might now be wondering: is LRU’s improvement over Random
and FIFO really that big of a deal? The answer, as usual, is “it depends.” If
each miss is very costly (not uncommon), then even a small increase in hit
rate (reduction in miss rate) can make a huge difference on performance.
If misses are not so costly, then of course the benefits possible with LRU
are not nearly as important.

Let’s look at one final workload. We call this one the “looping sequen-
tial” workload, as in it, we refer to 50 pages in sequence, starting at 0,
then 1, ..., up to page 49, and then we loop, repeating those accesses, for a
total of 10,000 accesses to 50 unique pages. The last graph in Figure 22.4
shows the behavior of the policies under this workload.

This workload, common in many applications (including important
commercial applications such as databases [CD85]), represents a worst-
case for both LRU and FIFO. These algorithms, under a looping-sequential
workload, kick out older pages; unfortunately, due to the looping nature
of the workload, these older pages are going to be accessed sooner than
the pages that the policies prefer to keep in cache. Indeed, even with
a cache of size 49, a looping-sequential workload of 50 pages results in
a 0% hit rate. Interestingly, Random fares notably better, not quite ap-
proaching optimal, but at least achieving a non-zero hit rate. Turns out
that random has some nice properties; one such property is not having
weird corner-case behaviors.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

BEYOND PHYSICAL MEMORY: POLICIES 237

0 20 40 60 80 100
0%

20%

40%

60%

80%

100%
The Looping-Sequential Workload

Cache Size (Blocks)

H
it
 R

a
te

OPT
LRU
FIFO
RAND

Figure 22.4: The Looping Workload

22.7 Implementing Historical Algorithms

As you can see, an algorithm such as LRU can generally do a better
job than simpler policies like FIFO or Random, which may throw out
important pages. Unfortunately, historical policies present us with a new
challenge: how do we implement them?

Let’s take, for example, LRU. To implement it perfectly, we need to
do a lot of work. Specifically, upon each page access (i.e., each memory
access, whether an instruction fetch or a load or store), we must update
some data structure to move this page to the front of the list (i.e., the
MRU side). Contrast this to FIFO, where the FIFO list of pages is only
accessed when a page is evicted (by removing the first-in page) or when
a new page is added to the list (to the last-in side). To keep track of which
pages have been least- and most-recently used, the system has to do some
accounting work on every memory reference. Clearly, without great care,
such accounting could greatly reduce performance.

One method that could help speed this up is to add a little bit of hard-
ware support. For example, a machine could update, on each page access,
a time field in memory (for example, this could be in the per-process page
table, or just in some separate array in memory, with one entry per phys-
ical page of the system). Thus, when a page is accessed, the time field
would be set, by hardware, to the current time. Then, when replacing a
page, the OS could simply scan all the time fields in the system to find the
least-recently-used page.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

238 BEYOND PHYSICAL MEMORY: POLICIES

Unfortunately, as the number of pages in a system grows, scanning a
huge array of times just to find the absolute least-recently-used page is
prohibitively expensive. Imagine a modern machine with 4GB of mem-
ory, chopped into 4KB pages. This machine has 1 million pages, and thus
finding the LRU page will take a long time, even at modern CPU speeds.
Which begs the question: do we really need to find the absolute oldest
page to replace? Can we instead survive with an approximation?

CRUX: HOW TO IMPLEMENT AN LRU REPLACEMENT POLICY

Given that it will be expensive to implement perfect LRU, can we ap-
proximate it in some way, and still obtain the desired behavior?

22.8 Approximating LRU

As it turns out, the answer is yes: approximating LRU is more fea-
sible from a computational-overhead standpoint, and indeed it is what
many modern systems do. The idea requires some hardware support,
in the form of a use bit (sometimes called the reference bit), the first of
which was implemented in the first system with paging, the Atlas one-
level store [KE+62]. There is one use bit per page of the system, and the
use bits live in memory somewhere (they could be in the per-process page
tables, for example, or just in an array somewhere). Whenever a page is
referenced (i.e., read or written), the use bit is set by hardware to 1. The
hardware never clears the bit, though (i.e., sets it to 0); that is the respon-
sibility of the OS.

How does the OS employ the use bit to approximate LRU? Well, there
could be a lot of ways, but with the clock algorithm [C69], one simple
approach was suggested. Imagine all the pages of the system arranged in
a circular list. A clock hand points to some particular page to begin with
(it doesn’t really matter which). When a replacement must occur, the OS
checks if the currently-pointed to page P has a use bit of 1 or 0. If 1, this
implies that page P was recently used and thus is not a good candidate
for replacement. Thus, the clock hand is incremented to the next page
P + 1, and the use bit for P set to 0 (cleared). The algorithm continues
until it finds a use bit that is set to 0, implying this page has not been
recently used (or, in the worst case, that all pages have been and that we
have now searched through the entire set of pages, clearing all the bits).

Note that this approach is not the only way to employ a use bit to
approximate LRU. Indeed, any approach which periodically clears the
use bits and then differentiates between which pages have use bits of 1
versus 0 to decide which to replace would be fine. The clock algorithm of
Corbato’s was just one early approach which met with some success, and
had the nice property of not repeatedly scanning through all of memory
looking for an unused page.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

BEYOND PHYSICAL MEMORY: POLICIES 239

0 20 40 60 80 100
0%

20%

40%

60%

80%

100%
The 80-20 Workload

Cache Size (Blocks)

H
it
 R

a
te

OPT
LRU
FIFO
RAND
Clock

Figure 22.5: The 80-20 Workload With Clock

The behavior of a clock algorithm variant is shown in Figure 22.5. This
variant randomly scans pages when doing a replacement; when it en-
counters a page with a reference bit set to 1, it clears the bit (i.e., sets it
to 0); when it finds a page with the reference bit set to 0, it chooses it as
its victim. As you can see, although it doesn’t do quite as well as perfect
LRU, it does better than approaches that don’t consider history at all.

22.9 Considering Dirty Pages

One small modification to the clock algorithm (also originally sug-
gested by Corbato [C69]) that is commonly made is the additional con-
sideration of whether a page has been modified or not while in memory.
The reason for this: if a page has been modified and is thus dirty, it must
be written back to disk to evict it, which is expensive. If it has not been
modified (and is thus clean), the eviction is free; the physical frame can
simply be reused for other purposes without additional I/O. Thus, some
VM systems prefer to evict clean pages over dirty pages.

To support this behavior, the hardware should include a modified bit
(a.k.a. dirty bit). This bit is set any time a page is written, and thus can be
incorporated into the page-replacement algorithm. The clock algorithm,
for example, could be changed to scan for pages that are both unused
and clean to evict first; failing to find those, then for unused pages that
are dirty; etc.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

240 BEYOND PHYSICAL MEMORY: POLICIES

22.10 Other VM Policies

Page replacement is not the only policy the VM subsystem employs
(though it may be the most important). For example, the OS also has to
decide when to bring a page into memory. This policy, sometimes called
the page selection policy (as it was called by Denning [D70]), presents
the OS with some different options.

For most pages, the OS simply uses demand paging, which means the
OS brings the page into memory when it is accessed, “on demand” as
it were. Of course, the OS could guess that a page is about to be used,
and thus bring it in ahead of time; this behavior is known as prefetching
and should only be done when there is reasonable chance of success. For
example, some systems will assume that if a code page P is brought into
memory, that code page P+1 will likely soon be accessed and thus should
be brought into memory too.

Another policy determines how the OS writes pages out to disk. Of
course, they could simply be written out one at a time; however, many
systems instead collect a number of pending writes together in memory
and write them to disk in one (more efficient) write. This behavior is
usually called clustering or simply grouping of writes, and is effective
because of the nature of disk drives, which perform a single large write
more efficiently than many small ones.

22.11 Thrashing

Before closing, we address one final question: what should the OS do
when memory is simply oversubscribed, and the memory demands of the
set of running processes simply exceeds the available physical memory?
In this case, the system will constantly be paging, a condition sometimes
referred to as thrashing [D70].

Some earlier operating systems had a fairly sophisticated set of mech-
anisms to both detect and cope with thrashing when it took place. For
example, given a set of processes, a system could decide not to run a sub-
set of processes, with the hope that the reduced set of processes working
sets (the pages that they are using actively) fit in memory and thus can
make progress. This approach, generally known as admission control,
states that it is sometimes better to do less work well than to try to do
everything at once poorly, a situation we often encounter in real life as
well as in modern computer systems (sadly).

Some current systems take more a draconian approach to memory
overload. For example, some versions of Linux run an out-of-memory
killer when memory is oversubscribed; this daemon chooses a memory-
intensive process and kills it, thus reducing memory in a none-too-subtle
manner. While successful at reducing memory pressure, this approach
can have problems, if, for example, it kills the X server and thus renders
any applications requiring the display unusable.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

BEYOND PHYSICAL MEMORY: POLICIES 241

22.12 Summary

We have seen the introduction of a number of page-replacement (and
other) policies, which are part of the VM subsystem of all modern operat-
ing systems. Modern systems add some tweaks to straightforward LRU
approximations like clock; for example, scan resistance is an important
part of many modern algorithms, such as ARC [MM03]. Scan-resistant al-
gorithms are usually LRU-like but also try to avoid the worst-case behav-
ior of LRU, which we saw with the looping-sequential workload. Thus,
the evolution of page-replacement algorithms continues.

However, in many cases the importance of said algorithms has de-
creased, as the discrepancy between memory-access and disk-access times
has increased. Because paging to disk is so expensive, the cost of frequent
paging is prohibitive. Thus, the best solution to excessive paging is often
a simple (if intellectually dissatisfying) one: buy more memory.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

242 BEYOND PHYSICAL MEMORY: POLICIES

References

[AD03] “Run-Time Adaptation in River”
Remzi H. Arpaci-Dusseau
ACM TOCS, 21:1, February 2003
A summary of one of the authors’ dissertation work on a system named River. Certainly one place where
he learned that comparison against the ideal is an important technique for system designers.

[B66] “A Study of Replacement Algorithms for Virtual-Storage Computer”
Laszlo A. Belady
IBM Systems Journal 5(2): 78-101, 1966
The paper that introduces the simple way to compute the optimal behavior of a policy (the MIN algo-
rithm).

[BNS69] “An Anomaly in Space-time Characteristics of Certain Programs Running in a Paging
Machine”
L. A. Belady and R. A. Nelson and G. S. Shedler
Communications of the ACM, 12:6, June 1969
Introduction of the little sequence of memory references known as Belady’s Anomaly. How do Nelson
and Shedler feel about this name, we wonder?

[CD85] “An Evaluation of Buffer Management Strategies for Relational Database Systems”
Hong-Tai Chou and David J. DeWitt
VLDB ’85, Stockholm, Sweden, August 1985
A famous database paper on the different buffering strategies you should use under a number of common
database access patterns. The more general lesson: if you know something about a workload, you can
tailor policies to do better than the general-purpose ones usually found in the OS.

[C69] “A Paging Experiment with the Multics System”
F.J. Corbato
Included in a Festschrift published in honor of Prof. P.M. Morse
MIT Press, Cambridge, MA, 1969
The original (and hard to find!) reference to the clock algorithm, though not the first usage of a use bit.
Thanks to H. Balakrishnan of MIT for digging up this paper for us.

[D70] “Virtual Memory”
Peter J. Denning
Computing Surveys, Vol. 2, No. 3, September 1970
Denning’s early and famous survey on virtual memory systems.
[EF78] “Cold-start vs. Warm-start Miss Ratios”
Malcolm C. Easton and Ronald Fagin
Communications of the ACM, 21:10, October 1978
A good discussion of cold-start vs. warm-start misses.

[HP06] “Computer Architecture: A Quantitative Approach”
John Hennessy and David Patterson
Morgan-Kaufmann, 2006
A great and marvelous book about computer architecture. Read it!

[H87] “Aspects of Cache Memory and Instruction Buffer Performance”
Mark D. Hill
Ph.D. Dissertation, U.C. Berkeley, 1987
Mark Hill, in his dissertation work, introduced the Three C’s, which later gained wide popularity with
its inclusion in H&P [HP06]. The quote from therein: “I have found it useful to partition misses ... into
three components intuitively based on the cause of the misses (page 49).”

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

BEYOND PHYSICAL MEMORY: POLICIES 243

[KE+62] “One-level Storage System”
T. Kilburn, and D.B.G. Edwards and M.J. Lanigan and F.H. Sumner
IRE Trans. EC-11:2, 1962
Although Atlas had a use bit, it only had a very small number of pages, and thus the scanning of the
use bits in large memories was not a problem the authors solved.

[M+70] “Evaluation Techniques for Storage Hierarchies”
R. L. Mattson, J. Gecsei, D. R. Slutz, I. L. Traiger
IBM Systems Journal, Volume 9:2, 1970
A paper that is mostly about how to simulate cache hierarchies efficiently; certainly a classic in that
regard, as well for its excellent discussion of some of the properties of various replacement algorithms.
Can you figure out why the stack property might be useful for simulating a lot of different-sized caches
at once?

[MM03] “ARC: A Self-Tuning, Low Overhead Replacement Cache”
Nimrod Megiddo and Dharmendra S. Modha
FAST 2003, February 2003, San Jose, California
An excellent modern paper about replacement algorithms, which includes a new policy, ARC, that is
now used in some systems. Recognized in 2014 as a “Test of Time” award winner by the storage systems
community at the FAST ’14 conference.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

244 BEYOND PHYSICAL MEMORY: POLICIES

Homework

This simulator, paging-policy.py, allows you to play around with
different page-replacement policies. See the README for details.

Questions

• Generate random addresses with the following arguments: -s 0

-n 10, -s 1 -n 10, and -s 2 -n 10. Change the policy from
FIFO, to LRU, to OPT. Compute whether each access in said address
traces are hits or misses.

• For a cache of size 5, generate worst-case address reference streams
for each of the following policies: FIFO, LRU, and MRU (worst-case
reference streams cause the most misses possible. For the worst case
reference streams, how much bigger of a cache is needed to improve
performance dramatically and approach OPT?

• Generate a random trace (use python or perl). How would you
expect the different policies to perform on such a trace?

• Now generate a trace with some locality. How can you generate
such a trace? How does LRU perform on it? How much better than
RAND is LRU? How does CLOCK do? How about CLOCK with
different numbers of clock bits?

• Use a program like valgrind to instrument a real application and
generate a virtual page reference stream. For example, running
valgrind --tool=lackey --trace-mem=yes lswill output
a nearly-complete reference trace of every instruction and data ref-
erence made by the program ls. To make this useful for the sim-
ulator above, you’ll have to first transform each virtual memory
reference into a virtual page-number reference (done by masking
off the offset and shifting the resulting bits downward). How big
of a cache is needed for your application trace in order to satisfy a
large fraction of requests? Plot a graph of its working set as the size
of the cache increases.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

23

The VAX/VMS Virtual Memory System

Before we end our study of virtual memory, let us take a closer look at one
particularly clean and well done virtual memory manager, that found in
the VAX/VMS operating system [LL82]. In this note, we will discuss the
system to illustrate how some of the concepts brought forth in earlier
chapters together in a complete memory manager.

23.1 Background

The VAX-11 minicomputer architecture was introduced in the late 1970’s
by Digital Equipment Corporation (DEC). DEC was a massive player
in the computer industry during the era of the mini-computer; unfortu-
nately, a series of bad decisions and the advent of the PC slowly (but
surely) led to their demise [C03]. The architecture was realized in a num-
ber of implementations, including the VAX-11/780 and the less powerful
VAX-11/750.

The OS for the system was known as VAX/VMS (or just plain VMS),
one of whose primary architects was Dave Cutler, who later led the effort
to develop Microsoft’s Windows NT [C93]. VMS had the general prob-
lem that it would be run on a broad range of machines, including very
inexpensive VAXen (yes, that is the proper plural) to extremely high-end
and powerful machines in the same architecture family. Thus, the OS had
to have mechanisms and policies that worked (and worked well) across
this huge range of systems.

THE CRUX: HOW TO AVOID THE CURSE OF GENERALITY

Operating systems often have a problem known as “the curse of gen-
erality”, where they are tasked with general support for a broad class of
applications and systems. The fundamental result of the curse is that the
OS is not likely to support any one installation very well. In the case of
VMS, the curse was very real, as the VAX-11 architecture was realized in
a number of different implementations. Thus, how can an OS be built so
as to run effectively on a wide range of systems?

245

246 THE VAX/VMS VIRTUAL MEMORY SYSTEM

As an additional issue, VMS is an excellent example of software inno-
vations used to hide some of the inherent flaws of the architecture. Al-
though the OS often relies on the hardware to build efficient abstractions
and illusions, sometimes the hardware designers don’t quite get every-
thing right; in the VAX hardware, we’ll see a few examples of this, and
what the VMS operating system does to build an effective, working sys-
tem despite these hardware flaws.

23.2 Memory Management Hardware

The VAX-11 provided a 32-bit virtual address space per process, di-
vided into 512-byte pages. Thus, a virtual address consisted of a 23-bit
VPN and a 9-bit offset. Further, the upper two bits of the VPN were used
to differentiate which segment the page resided within; thus, the system
was a hybrid of paging and segmentation, as we saw previously.

The lower-half of the address space was known as “process space” and
is unique to each process. In the first half of process space (known as P0),
the user program is found, as well as a heap which grows downward.
In the second half of process space (P1), we find the stack, which grows
upwards. The upper-half of the address space is known as system space
(S), although only half of it is used. Protected OS code and data reside
here, and the OS is in this way shared across processes.

One major concern of the VMS designers was the incredibly small size
of pages in the VAX hardware (512 bytes). This size, chosen for historical
reasons, has the fundamental problem of making simple linear page ta-
bles excessively large. Thus, one of the first goals of the VMS designers
was to make sure that VMS would not overwhelm memory with page
tables.

The system reduced the pressure page tables place on memory in two
ways. First, by segmenting the user address space into two, the VAX-11
provides a page table for each of these regions (P0 and P1) per process;
thus, no page-table space is needed for the unused portion of the address
space between the stack and the heap. The base and bounds registers
are used as you would expect; a base register holds the address of the
page table for that segment, and the bounds holds its size (i.e., number of
page-table entries).

Second, the OS reduces memory pressure even further by placing user
page tables (for P0 and P1, thus two per process) in kernel virtual mem-
ory. Thus, when allocating or growing a page table, the kernel allocates
space out of its own virtual memory, in segment S. If memory comes un-
der severe pressure, the kernel can swap pages of these page tables out to
disk, thus making physical memory available for other uses.

Putting page tables in kernel virtual memory means that address trans-
lation is even further complicated. For example, to translate a virtual ad-
dress in P0 or P1, the hardware has to first try to look up the page-table
entry for that page in its page table (the P0 or P1 page table for that pro-

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

THE VAX/VMS VIRTUAL MEMORY SYSTEM 247

Page 0: Invalid

User Code

User Heap

User Stack

Trap Tables

Kernel Data

Kernel Code

Kernel Heap

Unused

System (S)

User (P1)

User (P0)

0

230

231

232

Figure 23.1: The VAX/VMS Address Space

cess); in doing so, however, the hardware may first have to consult the
system page table (which lives in physical memory); with that transla-
tion complete, the hardware can learn the address of the page of the page
table, and then finally learn the address of the desired memory access.
All of this, fortunately, is made faster by the VAX’s hardware-managed
TLBs, which usually (hopefully) circumvent this laborious lookup.

23.3 A Real Address Space

One neat aspect of studying VMS is that we can see how a real address
space is constructed (Figure 23.1. Thus far, we have assumed a simple
address space of just user code, user data, and user heap, but as we can
see above, a real address space is notably more complex.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

248 THE VAX/VMS VIRTUAL MEMORY SYSTEM

ASIDE: WHY NULL POINTER ACCESSES CAUSE SEG FAULTS

You should now have a good understanding of exactly what happens on
a null-pointer dereference. A process generates a virtual address of 0, by
doing something like this:

int *p = NULL; // set p = 0

*p = 10; // try to store value 10 to virtual address 0

The hardware tries to look up the VPN (also 0 here) in the TLB, and suf-
fers a TLB miss. The page table is consulted, and the entry for VPN 0
is found to be marked invalid. Thus, we have an invalid access, which
transfers control to the OS, which likely terminates the process (on UNIX

systems, processes are sent a signal which allows them to react to such a
fault; if uncaught, however, the process is killed).

For example, the code segment never begins at page 0. This page,
instead, is marked inaccessible, in order to provide some support for de-
tecting null-pointer accesses. Thus, one concern when designing an ad-
dress space is support for debugging, which the inaccessible zero page
provides here in some form.

Perhaps more importantly, the kernel virtual address space (i.e., its
data structures and code) is a part of each user address space. On a con-
text switch, the OS changes the P0 and P1 registers to point to the ap-
propriate page tables of the soon-to-be-run process; however, it does not
change the S base and bound registers, and as a result the “same” kernel
structures are mapped into each user address space.

The kernel is mapped into each address space for a number of reasons.
This construction makes life easier for the kernel; when, for example, the
OS is handed a pointer from a user program (e.g., on a write() system
call), it is easy to copy data from that pointer to its own structures. The
OS is naturally written and compiled, without worry of where the data
it is accessing comes from. If in contrast the kernel were located entirely
in physical memory, it would be quite hard to do things like swap pages
of the page table to disk; if the kernel were given its own address space,
moving data between user applications and the kernel would again be
complicated and painful. With this construction (now used widely), the
kernel appears almost as a library to applications, albeit a protected one.

One last point about this address space relates to protection. Clearly,
the OS does not want user applications reading or writing OS data or
code. Thus, the hardware must support different protection levels for
pages to enable this. The VAX did so by specifying, in protection bits
in the page table, what privilege level the CPU must be at in order to
access a particular page. Thus, system data and code are set to a higher
level of protection than user data and code; an attempted access to such
information from user code will generate a trap into the OS, and (you
guessed it) the likely termination of the offending process.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

THE VAX/VMS VIRTUAL MEMORY SYSTEM 249

23.4 Page Replacement

The page table entry (PTE) in VAX contains the following bits: a valid
bit, a protection field (4 bits), a modify (or dirty) bit, a field reserved for
OS use (5 bits), and finally a physical frame number (PFN) to store the
location of the page in physical memory. The astute reader might note:
no reference bit! Thus, the VMS replacement algorithm must make do
without hardware support for determining which pages are active.

The developers were also concerned about memory hogs, programs
that use a lot of memory and make it hard for other programs to run.
Most of the policies we have looked at thus far are susceptible to such
hogging; for example, LRU is a global policy that doesn’t share memory
fairly among processes.

Segmented FIFO

To address these two problems, the developers came up with the seg-
mented FIFO replacement policy [RL81]. The idea is simple: each pro-
cess has a maximum number of pages it can keep in memory, known as
its resident set size (RSS). Each of these pages is kept on a FIFO list; when
a process exceeds its RSS, the “first-in” page is evicted. FIFO clearly does
not need any support from the hardware, and is thus easy to implement.

Of course, pure FIFO does not perform particularly well, as we saw
earlier. To improve FIFO’s performance, VMS introduced two second-
chance lists where pages are placed before getting evicted from memory,
specifically a global clean-page free list and dirty-page list. When a process
P exceeds its RSS, a page is removed from its per-process FIFO; if clean
(not modified), it is placed on the end of the clean-page list; if dirty (mod-
ified), it is placed on the end of the dirty-page list.

If another process Q needs a free page, it takes the first free page off
of the global clean list. However, if the original process P faults on that
page before it is reclaimed, P reclaims it from the free (or dirty) list, thus
avoiding a costly disk access. The bigger these global second-chance lists
are, the closer the segmented FIFO algorithm performs to LRU [RL81].

Page Clustering

Another optimization used in VMS also helps overcome the small page
size in VMS. Specifically, with such small pages, disk I/O during swap-
ping could be highly inefficient, as disks do better with large transfers.
To make swapping I/O more efficient, VMS adds a number of optimiza-
tions, but most important is clustering. With clustering, VMS groups
large batches of pages together from the global dirty list, and writes them
to disk in one fell swoop (thus making them clean). Clustering is used
in most modern systems, as the freedom to place pages anywhere within
swap space lets the OS group pages, perform fewer and bigger writes,
and thus improve performance.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

250 THE VAX/VMS VIRTUAL MEMORY SYSTEM

ASIDE: EMULATING REFERENCE BITS

As it turns out, you don’t need a hardware reference bit in order to get
some notion of which pages are in use in a system. In fact, in the early
1980’s, Babaoglu and Joy showed that protection bits on the VAX can be
used to emulate reference bits [BJ81]. The basic idea: if you want to gain
some understanding of which pages are actively being used in a system,
mark all of the pages in the page table as inaccessible (but keep around
the information as to which pages are really accessible by the process,
perhaps in the “reserved OS field” portion of the page table entry). When
a process accesses a page, it will generate a trap into the OS; the OS will
then check if the page really should be accessible, and if so, revert the
page to its normal protections (e.g., read-only, or read-write). At the time
of a replacement, the OS can check which pages remain marked inacces-
sible, and thus get an idea of which pages have not been recently used.

The key to this “emulation” of reference bits is reducing overhead while
still obtaining a good idea of page usage. The OS must not be too aggres-
sive in marking pages inaccessible, or overhead would be too high. The
OS also must not be too passive in such marking, or all pages will end up
referenced; the OS will again have no good idea which page to evict.

23.5 Other Neat VM Tricks

VMS had two other now-standard tricks: demand zeroing and copy-
on-write. We now describe these lazy optimizations.

One form of laziness in VMS (and most modern systems) is demand
zeroing of pages. To understand this better, let’s consider the example
of adding a page to your address space, say in your heap. In a naive
implementation, the OS responds to a request to add a page to your heap
by finding a page in physical memory, zeroing it (required for security;
otherwise you’d be able to see what was on the page from when some
other process used it!), and then mapping it into your address space (i.e.,
setting up the page table to refer to that physical page as desired). But the
naive implementation can be costly, particularly if the page does not get
used by the process.

With demand zeroing, the OS instead does very little work when the
page is added to your address space; it puts an entry in the page table
that marks the page inaccessible. If the process then reads or writes the
page, a trap into the OS takes place. When handling the trap, the OS no-
tices (usually through some bits marked in the “reserved for OS” portion
of the page table entry) that this is actually a demand-zero page; at this
point, the OS then does the needed work of finding a physical page, ze-
roing it, and mapping it into the process’s address space. If the process
never accesses the page, all of this work is avoided, and thus the virtue of
demand zeroing.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

THE VAX/VMS VIRTUAL MEMORY SYSTEM 251

TIP: BE LAZY

Being lazy can be a virtue in both life as well as in operating systems.
Laziness can put off work until later, which is beneficial within an OS for
a number of reasons. First, putting off work might reduce the latency of
the current operation, thus improving responsiveness; for example, op-
erating systems often report that writes to a file succeeded immediately,
and only write them to disk later in the background. Second, and more
importantly, laziness sometimes obviates the need to do the work at all;
for example, delaying a write until the file is deleted removes the need to
do the write at all. Laziness is also good in life: for example, by putting
off your OS project, you may find that the project specification bugs are
worked out by your fellow classmates; however, the class project is un-
likely to get canceled, so being too lazy may be problematic, leading to a
late project, bad grade, and a sad professor. Don’t make professors sad!

Another cool optimization found in VMS (and again, in virtually every
modern OS) is copy-on-write (COW for short). The idea, which goes at
least back to the TENEX operating system [BB+72], is simple: when the
OS needs to copy a page from one address space to another, instead of
copying it, it can map it into the target address space and mark it read-
only in both address spaces. If both address spaces only read the page, no
further action is taken, and thus the OS has affected a fast copy without
actually moving any data.

If, however, one of the address spaces does indeed try to write to the
page, it will trap into the OS. The OS will then notice that the page is a
COW page, and thus (lazily) allocate a new page, fill it with the data, and
map this new page into the address space of the faulting process. The
process then continues and now has its own private copy of the page.

COW is useful for a number of reasons. Certainly any sort of shared
library can be mapped copy-on-write into the address spaces of many
processes, saving valuable memory space. In UNIX systems, COW is
even more critical, due to the semantics of fork() and exec(). As
you might recall, fork() creates an exact copy of the address space of
the caller; with a large address space, making such a copy is slow and
data intensive. Even worse, most of the address space is immediately
over-written by a subsequent call to exec(), which overlays the calling
process’s address space with that of the soon-to-be-exec’d program. By
instead performing a copy-on-write fork(), the OS avoids much of the
needless copying and thus retains the correct semantics while improving
performance.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

252 THE VAX/VMS VIRTUAL MEMORY SYSTEM

23.6 Summary

You have now seen a top-to-bottom review of an entire virtual mem-
ory system. Hopefully, most of the details were easy to follow, as you
should have already had a good understanding of most of the basic mech-
anisms and policies. More detail is available in the excellent (and short)
paper by Levy and Lipman [LL82]; we encourage you to read it, a great
way to see what the source material behind these chapters is like.

You should also learn more about the state of the art by reading about
Linux and other modern systems when possible. There is a lot of source
material out there, including some reasonable books [BC05]. One thing
that will amaze you: how classic ideas, found in old papers such as
this one on VAX/VMS, still influence how modern operating systems are
built.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

THE VAX/VMS VIRTUAL MEMORY SYSTEM 253

References

[BB+72] “TENEX, A Paged Time Sharing System for the PDP-10”
Daniel G. Bobrow, Jerry D. Burchfiel, Daniel L. Murphy, Raymond S. Tomlinson
Communications of the ACM, Volume 15, March 1972
An early time-sharing OS where a number of good ideas came from. Copy-on-write was just one of
those; inspiration for many other aspects of modern systems, including process management, virtual
memory, and file systems are found herein.

[BJ81] “Converting a Swap-Based System to do Paging
in an Architecture Lacking Page-Reference Bits”
Ozalp Babaoglu and William N. Joy
SOSP ’81, December 1981, Pacific Grove, California
A clever idea paper on how to exploit existing protection machinery within a machine in order to emulate
reference bits. The idea came from the group at Berkeley working on their own version of UNIX, known
as the Berkeley Systems Distribution, or BSD. The group was heavily influential in the development of
UNIX, in virtual memory, file systems, and networking.

[BC05] “Understanding the Linux Kernel (Third Edition)”
Daniel P. Bovet and Marco Cesati
O’Reilly Media, November 2005
One of the many books you can find on Linux. They go out of date quickly, but many of the basics
remain and are worth reading about.

[C03] “The Innovator’s Dilemma”
Clayton M. Christenson
Harper Paperbacks, January 2003
A fantastic book about the disk-drive industry and how new innovations disrupt existing ones. A good
read for business majors and computer scientists alike. Provides insight on how large and successful
companies completely fail.

[C93] “Inside Windows NT”
Helen Custer and David Solomon
Microsoft Press, 1993
The book about Windows NT that explains the system top to bottom, in more detail than you might like.
But seriously, a pretty good book.

[LL82] “Virtual Memory Management in the VAX/VMS Operating System”
Henry M. Levy, Peter H. Lipman
IEEE Computer, Volume 15, Number 3 (March 1982) Read the original source of most of this ma-
terial; tt is a concise and easy read. Particularly important if you wish to go to graduate school, where
all you do is read papers, work, read some more papers, work more, eventually write a paper, and then
work some more. But it is fun!

[RL81] “Segmented FIFO Page Replacement”
Rollins Turner and Henry Levy
SIGMETRICS ’81
A short paper that shows for some workloads, segmented FIFO can approach the performance of LRU.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

24

Summary Dialogue on Memory Virtualization

Student: (Gulps) Wow, that was a lot of material.

Professor: Yes, and?

Student: Well, how am I supposed to remember it all? You know, for the exam?

Professor: Goodness, I hope that’s not why you are trying to remember it.

Student: Why should I then?

Professor: Come on, I thought you knew better. You’re trying to learn some-
thing here, so that when you go off into the world, you’ll understand how systems
actually work.

Student: Hmm... can you give an example?

Professor: Sure! One time back in graduate school, my friends and I were
measuring how long memory accesses took, and once in a while the numbers
were way higher than we expected; we thought all the data was fitting nicely into
the second-level hardware cache, you see, and thus should have been really fast
to access.

Student: (nods)

Professor: We couldn’t figure out what was going on. So what do you do in such
a case? Easy, ask a professor! So we went and asked one of our professors, who
looked at the graph we had produced, and simply said “TLB”. Aha! Of course,
TLB misses! Why didn’t we think of that? Having a good model of how virtual
memory works helps diagnose all sorts of interesting performance problems.

Student: I think I see. I’m trying to build these mental models of how things
work, so that when I’m out there working on my own, I won’t be surprised when
a system doesn’t quite behave as expected. I should even be able to anticipate how
the system will work just by thinking about it.

Professor: Exactly. So what have you learned? What’s in your mental model of
how virtual memory works?

Student: Well, I think I now have a pretty good idea of what happens when
memory is referenced by a process, which, as you’ve said many times, happens

255

256 SUMMARY DIALOGUE ON MEMORY VIRTUALIZATION

on each instruction fetch as well as explicit loads and stores.

Professor: Sounds good – tell me more.

Student: Well, one thing I’ll always remember is that the addresses we see in a
user program, written in C for example...

Professor: What other language is there?

Student: (continuing) ... Yes, I know you like C. So do I! Anyhow, as I was
saying, I now really know that all addresses that we can observe within a program
are virtual addresses; that I, as a programmer, am just given this illusion of where
data and code are in memory. I used to think it was cool that I could print the
address of a pointer, but now I find it frustrating – it’s just a virtual address! I
can’t see the real physical address where the data lives.

Professor: Nope, the OS definitely hides that from you. What else?

Student: Well, I think the TLB is a really key piece, providing the system with
a small hardware cache of address translations. Page tables are usually quite
large and hence live in big and slow memories. Without that TLB, programs
would certainly run a great deal more slowly. Seems like the TLB truly makes
virtualizing memory possible. I couldn’t imagine building a system without one!
And I shudder at the thought of a program with a working set that exceeds the
coverage of the TLB: with all those TLB misses, it would be hard to watch.

Professor: Yes, cover the eyes of the children! Beyond the TLB, what did you
learn?

Student: I also now understand that the page table is one of those data structures
you need to know about; it’s just a data structure, though, and that means almost
any structure could be used. We started with simple structures, like arrays (a.k.a.
linear page tables), and advanced all the way up to multi-level tables (which look
like trees), and even crazier things like pageable page tables in kernel virtual
memory. All to save a little space in memory!

Professor: Indeed.

Student: And here’s one more important thing: I learned that the address trans-
lation structures need to be flexible enough to support what programmers want
to do with their address spaces. Structures like the multi-level table are perfect
in this sense; they only create table space when the user needs a portion of the
address space, and thus there is little waste. Earlier attempts, like the simple base
and bounds register, just weren’t flexible enough; the structures need to match
what users expect and want out of their virtual memory system.

Professor: That’s a nice perspective. What about all of the stuff we learned
about swapping to disk?

Student: Well, it’s certainly fun to study, and good to know how page replace-
ment works. Some of the basic policies are kind of obvious (like LRU, for ex-
ample), but building a real virtual memory system seems more interesting, like
we saw in the VMS case study. But somehow, I found the mechanisms more
interesting, and the policies less so.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SUMMARY DIALOGUE ON MEMORY VIRTUALIZATION 257

Professor: Oh, why is that?

Student: Well, as you said, in the end the best solution to policy problems is
simple: buy more memory. But the mechanisms you need to understand to know
how stuff really works. Speaking of which...

Professor: Yes?

Student: Well, my machine is running a little slowly these days... and memory
certainly doesn’t cost that much...

Professor: Oh fine, fine! Here’s a few bucks. Go and get yourself some DRAM,
cheapskate.

Student: Thanks professor! I’ll never swap to disk again – or, if I do, at least I’ll
know what’s actually going on!

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Part II

Concurrency

259

25

A Dialogue on Concurrency

Professor: And thus we reach the second of our three pillars of operating sys-
tems: concurrency.

Student: I thought there were four pillars...?

Professor: Nope, that was in an older version of the book.

Student: Umm... OK. So what is concurrency, oh wonderful professor?

Professor: Well, imagine we have a peach –

Student: (interrupting) Peaches again! What is it with you and peaches?

Professor: Ever read T.S. Eliot? The Love Song of J. Alfred Prufrock, “Do I dare
to eat a peach”, and all that fun stuff?

Student: Oh yes! In English class in high school. Great stuff! I really liked the
part where –

Professor: (interrupting) This has nothing to do with that – I just like peaches.
Anyhow, imagine there are a lot of peaches on a table, and a lot of people who
wish to eat them. Let’s say we did it this way: each eater first identifies a peach
visually, and then tries to grab it and eat it. What is wrong with this approach?

Student: Hmmm... seems like you might see a peach that somebody else also
sees. If they get there first, when you reach out, no peach for you!

Professor: Exactly! So what should we do about it?

Student: Well, probably develop a better way of going about this. Maybe form a
line, and when you get to the front, grab a peach and get on with it.

Professor: Good! But what’s wrong with your approach?

Student: Sheesh, do I have to do all the work?

Professor: Yes.

Student: OK, let me think. Well, we used to have many people grabbing for
peaches all at once, which is faster. But in my way, we just go one at a time,
which is correct, but quite a bit slower. The best kind of approach would be fast
and correct, probably.

261

262 A DIALOGUE ON CONCURRENCY

Professor: You are really starting to impress. In fact, you just told us everything
we need to know about concurrency! Well done.

Student: I did? I thought we were just talking about peaches. Remember, this
is usually a part where you make it about computers again.

Professor: Indeed. My apologies! One must never forget the concrete. Well,
as it turns out, there are certain types of programs that we call multi-threaded
applications; each thread is kind of like an independent agent running around
in this program, doing things on the program’s behalf. But these threads access
memory, and for them, each spot of memory is kind of like one of those peaches. If
we don’t coordinate access to memory between threads, the program won’t work
as expected. Make sense?

Student: Kind of. But why do we talk about this in an OS class? Isn’t that just
application programming?

Professor: Good question! A few reasons, actually. First, the OS must support
multi-threaded applications with primitives such as locks and condition vari-
ables, which we’ll talk about soon. Second, the OS itself was the first concurrent
program – it must access its own memory very carefully or many strange and
terrible things will happen. Really, it can get quite grisly.

Student: I see. Sounds interesting. There are more details, I imagine?

Professor: Indeed there are...

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

26

Concurrency: An Introduction

Thus far, we have seen the development of the basic abstractions that the
OS performs. We have seen how to take a single physical CPU and turn
it into multiple virtual CPUs, thus enabling the illusion of multiple pro-
grams running at the same time. We have also seen how to create the
illusion of a large, private virtual memory for each process; this abstrac-
tion of the address space enables each program to behave as if it has its
own memory when indeed the OS is secretly multiplexing address spaces
across physical memory (and sometimes, disk).

In this note, we introduce a new abstraction for a single running pro-
cess: that of a thread. Instead of our classic view of a single point of
execution within a program (i.e., a single PC where instructions are be-
ing fetched from and executed), a multi-threaded program has more than
one point of execution (i.e., multiple PCs, each of which is being fetched
and executed from). Perhaps another way to think of this is that each
thread is very much like a separate process, except for one difference:
they share the same address space and thus can access the same data.

The state of a single thread is thus very similar to that of a process.
It has a program counter (PC) that tracks where the program is fetch-
ing instructions from. Each thread has its own private set of registers it
uses for computation; thus, if there are two threads that are running on
a single processor, when switching from running one (T1) to running the
other (T2), a context switch must take place. The context switch between
threads is quite similar to the context switch between processes, as the
register state of T1 must be saved and the register state of T2 restored
before running T2. With processes, we saved state to a process control
block (PCB); now, we’ll need one or more thread control blocks (TCBs)
to store the state of each thread of a process. There is one major difference,
though, in the context switch we perform between threads as compared
to processes: the address space remains the same (i.e., there is no need to
switch which page table we are using).

One other major difference between threads and processes concerns
the stack. In our simple model of the address space of a classic process
(which we can now call a single-threaded process), there is a single stack,
usually residing at the bottom of the address space (Figure 26.1, left).

263

264 CONCURRENCY: AN INTRODUCTION

16KB

15KB

2KB

1KB

0KB

Stack

(free)

Heap

Program Code
the code segment:

where instructions live

the heap segment:
contains malloc’d data

dynamic data structures
(it grows downward)

(it grows upward)
the stack segment:

contains local variables
arguments to routines,

return values, etc.

16KB

15KB

2KB

1KB

0KB

Stack (1)

Stack (2)

(free)

(free)

Heap

Program Code

Figure 26.1: A Single-Threaded Address Space

However, in a multi-threaded process, each thread runs independently
and of course may call into various routines to do whatever work it is do-
ing. Instead of a single stack in the address space, there will be one per
thread. Let’s say we have a multi-threaded process that has two threads
in it; the resulting address space looks different (Figure 26.1, right).

In this figure, you can see two stacks spread throughout the address
space of the process. Thus, any stack-allocated variables, parameters, re-
turn values, and other things that we put on the stack will be placed in
what is sometimes called thread-local storage, i.e., the stack of the rele-
vant thread.

You might also notice how this ruins our beautiful address space lay-
out. Before, the stack and heap could grow independently and trouble
only arose when you ran out of room in the address space. Here, we
no longer have such a nice situation. Fortunately, this is usually OK, as
stacks do not generally have to be very large (the exception being in pro-
grams that make heavy use of recursion).

26.1 An Example: Thread Creation

Let’s say we wanted to run a program that created two threads, each
of which was doing some independent work, in this case printing “A” or
“B”. The code is shown in Figure 26.2.

The main program creates two threads, each of which will run the
function mythread(), though with different arguments (the string A or
B). Once a thread is created, it may start running right away (depending
on the whims of the scheduler); alternately, it may be put in a “ready” but
not “running” state and thus not run yet. After creating the two threads
(T1 and T2), the main thread calls pthread join(), which waits for a
particular thread to complete.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

CONCURRENCY: AN INTRODUCTION 265

1 #include <stdio.h>

2 #include <assert.h>

3 #include <pthread.h>

4

5 void *mythread(void *arg) {

6 printf("%s\n", (char *) arg);

7 return NULL;

8 }

9

10 int

11 main(int argc, char *argv[]) {

12 pthread_t p1, p2;

13 br int rc;

14 printf("main: begin\n");

15 rc = pthread_create(&p1, NULL, mythread, "A"); assert(rc == 0);

16 rc = pthread_create(&p2, NULL, mythread, "B"); assert(rc == 0);

17 // join waits for the threads to finish

18 rc = pthread_join(p1, NULL); assert(rc == 0);

19 rc = pthread_join(p2, NULL); assert(rc == 0);

20 printf("main: end\n");

21 return 0;

22 }

Figure 26.2: Simple Thread Creation Code (t0.c)

Let us examine the possible execution ordering of this little program.
In the execution diagram (Table 26.1), time increases in the downwards
direction, and each column shows when a different thread (the main one,
or Thread 1, or Thread 2) is running.

Note, however, that this ordering is not the only possible ordering. In
fact, given a sequence of instructions, there are quite a few, depending on
which thread the scheduler decides to run at a given point. For example,
once a thread is created, it may run immediately, which would lead to the
execution shown in Table 26.2.

We also could even see “B” printed before “A”, if, say, the scheduler
decided to run Thread 2 first even though Thread 1 was created earlier;
there is no reason to assume that a thread that is created first will run first.
Table 26.3 shows this final execution ordering, with Thread 2 getting to
strut its stuff before Thread 1.

As you might be able to see, one way to think about thread creation
is that it is a bit like making a function call; however, instead of first ex-
ecuting the function and then returning to the caller, the system instead
creates a new thread of execution for the routine that is being called, and
it runs independently of the caller, perhaps before returning from the cre-
ate, but perhaps much later.

As you also might be able to tell from this example, threads make life
complicated: it is already hard to tell what will run when! Computers are
hard enough to understand without concurrency. Unfortunately, with
concurrency, it gets worse. Much worse.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

266 CONCURRENCY: AN INTRODUCTION

main Thread 1 Thread2
starts running
prints “main: begin”
creates Thread 1
creates Thread 2
waits for T1

runs
prints “A”
returns

waits for T2
runs
prints “B”
returns

prints “main: end”

Table 26.1: Thread Trace (1)

main Thread 1 Thread2
starts running
prints “main: begin”
creates Thread 1

runs
prints “A”
returns

creates Thread 2
runs
prints “B”
returns

waits for T1
returns immediately; T1 is done

waits for T2
returns immediately; T2 is done

prints “main: end”

Table 26.2: Thread Trace (2)

main Thread 1 Thread2
starts running
prints “main: begin”
creates Thread 1
creates Thread 2

runs
prints “B”
returns

waits for T1
runs
prints “A”
returns

waits for T2
returns immediately; T2 is done

prints “main: end”

Table 26.3: Thread Trace (3)

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

CONCURRENCY: AN INTRODUCTION 267

1 #include <stdio.h>

2 #include <pthread.h>

3 #include "mythreads.h"

4

5 static volatile int counter = 0;

6

7 //

8 // mythread()

9 //

10 // Simply adds 1 to counter repeatedly, in a loop

11 // No, this is not how you would add 10,000,000 to

12 // a counter, but it shows the problem nicely.

13 //

14 void *
15 mythread(void *arg)

16 {

17 printf("%s: begin\n", (char *) arg);

18 int i;

19 for (i = 0; i < 1e7; i++) {

20 counter = counter + 1;

21 }

22 printf("%s: done\n", (char *) arg);

23 return NULL;

24 }

25

26 //

27 // main()

28 //

29 // Just launches two threads (pthread_create)

30 // and then waits for them (pthread_join)

31 //

32 int

33 main(int argc, char *argv[])

34 {

35 pthread_t p1, p2;

36 printf("main: begin (counter = %d)\n", counter);

37 Pthread_create(&p1, NULL, mythread, "A");

38 Pthread_create(&p2, NULL, mythread, "B");

39

40 // join waits for the threads to finish

41 Pthread_join(p1, NULL);

42 Pthread_join(p2, NULL);

43 printf("main: done with both (counter = %d)\n", counter);

44 return 0;

45 }

Figure 26.3: Sharing Data: Oh Oh (t2)

26.2 Why It Gets Worse: Shared Data

The simple thread example we showed above was useful in showing
how threads are created and how they can run in different orders depend-
ing on how the scheduler decides to run them. What it doesn’t show you,
though, is how threads interact when they access shared data.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

268 CONCURRENCY: AN INTRODUCTION

Let us imagine a simple example where two threads wish to update a
global shared variable. The code we’ll study is in Figure 26.3.

Here are a few notes about the code. First, as Stevens suggests [SR05],
we wrap the thread creation and join routines to simply exit on failure;
for a program as simple as this one, we want to at least notice an error
occurred (if it did), but not do anything very smart about it (e.g., just
exit). Thus, Pthread create() simply calls pthread create() and
makes sure the return code is 0; if it isn’t, Pthread create() just prints
a message and exits.

Second, instead of using two separate function bodies for the worker
threads, we just use a single piece of code, and pass the thread an argu-
ment (in this case, a string) so we can have each thread print a different
letter before its messages.

Finally, and most importantly, we can now look at what each worker is
trying to do: add a number to the shared variable counter, and do so 10
million times (1e7) in a loop. Thus, the desired final result is: 20,000,000.

We now compile and run the program, to see how it behaves. Some-
times, everything works how we might expect:

prompt> gcc -o main main.c -Wall -pthread

prompt> ./main

main: begin (counter = 0)

A: begin

B: begin

A: done

B: done

main: done with both (counter = 20000000)

Unfortunately, when we run this code, even on a single processor, we
don’t necessarily get the desired result. Sometimes, we get:

prompt> ./main

main: begin (counter = 0)

A: begin

B: begin

A: done

B: done

main: done with both (counter = 19345221)

Let’s try it one more time, just to see if we’ve gone crazy. After all,
aren’t computers supposed to produce deterministic results, as you have
been taught?! Perhaps your professors have been lying to you? (gasp)

prompt> ./main

main: begin (counter = 0)

A: begin

B: begin

A: done

B: done

main: done with both (counter = 19221041)

Not only is each run wrong, but also yields a different result! A big
question remains: why does this happen?

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

CONCURRENCY: AN INTRODUCTION 269

TIP: KNOW AND USE YOUR TOOLS

You should always learn new tools that help you write, debug, and un-
derstand computer systems. Here, we use a neat tool called a disassem-
bler. When you run a disassembler on an executable, it shows you what
assembly instructions make up the program. For example, if we wish to
understand the low-level code to update a counter (as in our example),
we run objdump (Linux) to see the assembly code:

prompt> objdump -d main

Doing so produces a long listing of all the instructions in the program,
neatly labeled (particularly if you compiled with the -g flag), which in-
cludes symbol information in the program. The objdump program is just
one of many tools you should learn how to use; a debugger like gdb,
memory profilers like valgrind or purify, and of course the compiler
itself are others that you should spend time to learn more about; the better
you are at using your tools, the better systems you’ll be able to build.

26.3 The Heart of the Problem: Uncontrolled Scheduling

To understand why this happens, we must understand the code se-
quence that the compiler generates for the update to counter. In this
case, we wish to simply add a number (1) to counter. Thus, the code
sequence for doing so might look something like this (in x86);

mov 0x8049a1c, %eax

add $0x1, %eax

mov %eax, 0x8049a1c

This example assumes that the variable counter is located at address
0x8049a1c. In this three-instruction sequence, the x86 mov instruction is
used first to get the memory value at the address and put it into register
eax. Then, the add is performed, adding 1 (0x1) to the contents of the
eax register, and finally, the contents of eax are stored back into memory
at the same address.

Let us imagine one of our two threads (Thread 1) enters this region of
code, and is thus about to increment counter by one. It loads the value
of counter (let’s say it’s 50 to begin with) into its register eax. Thus,
eax=50 for Thread 1. Then it adds one to the register; thus eax=51.
Now, something unfortunate happens: a timer interrupt goes off; thus,
the OS saves the state of the currently running thread (its PC, its registers
including eax, etc.) to the thread’s TCB.

Now something worse happens: Thread 2 is chosen to run, and it en-
ters this same piece of code. It also executes the first instruction, getting
the value of counter and putting it into its eax (remember: each thread
when running has its own private registers; the registers are virtualized
by the context-switch code that saves and restores them). The value of

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

270 CONCURRENCY: AN INTRODUCTION

(after instruction)
OS Thread 1 Thread 2 PC %eax counter

before critical section 100 0 50
mov 0x8049a1c, %eax 105 50 50
add $0x1, %eax 108 51 50

interrupt
save T1’s state
restore T2’s state 100 0 50

mov 0x8049a1c, %eax 105 50 50
add $0x1, %eax 108 51 50
mov %eax, 0x8049a1c 113 51 51

interrupt
save T2’s state
restore T1’s state 108 51 50

mov %eax, 0x8049a1c 113 51 51

Table 26.4: The Problem: Up Close and Personal

counter is still 50 at this point, and thus Thread 2 has eax=50. Let’s
then assume that Thread 2 executes the next two instructions, increment-
ing eax by 1 (thus eax=51), and then saving the contents of eax into
counter (address 0x8049a1c). Thus, the global variable counter now
has the value 51.

Finally, another context switch occurs, and Thread 1 resumes running.
Recall that it had just executed the mov and add, and is now about to
perform the final mov instruction. Recall also that eax=51. Thus, the final
mov instruction executes, and saves the value to memory; the counter is
set to 51 again.

Put simply, what has happened is this: the code to increment counter
has been run twice, but counter, which started at 50, is now only equal
to 51. A “correct” version of this program should have resulted in counter
equal to 52.

Here is a pictorial depiction of what happened and when in the ex-
ample above. Assume, for this depiction, that the above code is loaded at
address 100 in memory, like the following sequence (note for those of you
used to nice, RISC-like instruction sets: x86 has variable-length instruc-
tions; the mov instructions here take up 5 bytes of memory, whereas the
add takes only 3):
100 mov 0x8049a1c, %eax

105 add $0x1, %eax

108 mov %eax, 0x8049a1c

With these assumptions, what happens is seen in Table 26.4. Assume
the counter starts at value 50, and trace through this example to make
sure you understand what is going on.

What we have demonstrated here is called a race condition: the results
depend on the timing execution of the code. With some bad luck (i.e.,
context switches that occur at untimely points in the execution), we get
the wrong result. In fact, we may get a different result each time; thus,
instead of a nice deterministic computation (which we are used to from
computers), we call this result indeterminate, where it is not known what
the output will be and it is indeed likely to be different across runs.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

CONCURRENCY: AN INTRODUCTION 271

Because multiple threads executing this code can result in a race con-
dition, we call this code a critical section. A critical section is a piece of
code that accesses a shared variable (or more generally, a shared resource)
and must not be concurrently executed by more than one thread.

What we really want for this code is what we call mutual exclusion.
This property guarantees that if one thread is executing within the critical
section, the others will be prevented from doing so.

Virtually all of these terms, by the way, were coined by Edsger Dijk-
stra, who was a pioneer in the field and indeed won the Turing Award
because of this and other work; see his 1968 paper on “Cooperating Se-
quential Processes” [D68] for an amazingly clear description of the prob-
lem. We’ll be hearing more about Dijkstra in this section of the book.

26.4 The Wish For Atomicity

One way to solve this problem would be to have more powerful in-
structions that, in a single step, did exactly whatever we needed done
and thus removed the possibility of an untimely interrupt. For example,
what if we had a super instruction that looked like this?

memory-add 0x8049a1c, $0x1

Assume this instruction adds a value to a memory location, and the
hardware guarantees that it executes atomically; when the instruction
executed, it would perform the update as desired. It could not be inter-
rupted mid-instruction, because that is precisely the guarantee we receive
from the hardware: when an interrupt occurs, either the instruction has
not run at all, or it has run to completion; there is no in-between state.
Hardware can be a beautiful thing, no?

Atomically, in this context, means “as a unit”, which sometimes we
take as “all or none.” What we’d like is to execute the three instruction
sequence atomically:

mov 0x8049a1c, %eax

add $0x1, %eax

mov %eax, 0x8049a1c

As we said, if we had a single instruction to do this, we could just
issue that instruction and be done. But in the general case, we won’t have
such an instruction. Imagine we were building a concurrent B-tree, and
wished to update it; would we really want the hardware to support an
“atomic update of B-tree” instruction? Probably not, at least in a sane
instruction set.

Thus, what we will instead do is ask the hardware for a few useful
instructions upon which we can build a general set of what we call syn-
chronization primitives. By using these hardware synchronization prim-
itives, in combination with some help from the operating system, we will
be able to build multi-threaded code that accesses critical sections in a

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

272 CONCURRENCY: AN INTRODUCTION

ASIDE: KEY CONCURRENCY TERMS

CRITICAL SECTION, RACE CONDITION,
INDETERMINATE, MUTUAL EXCLUSION

These four terms are so central to concurrent code that we thought it
worth while to call them out explicitly. See some of Dijkstra’s early work
[D65,D68] for more details.

• A critical section is a piece of code that accesses a shared resource,
usually a variable or data structure.

• A race condition arises if multiple threads of execution enter the
critical section at roughly the same time; both attempt to update
the shared data structure, leading to a surprising (and perhaps un-
desirable) outcome.

• An indeterminate program consists of one or more race conditions;
the output of the program varies from run to run, depending on
which threads ran when. The outcome is thus not deterministic,
something we usually expect from computer systems.

• To avoid these problems, threads should use some kind of mutual
exclusion primitives; doing so guarantees that only a single thread
ever enters a critical section, thus avoiding races, and resulting in
deterministic program outputs.

synchronized and controlled manner, and thus reliably produces the cor-
rect result despite the challenging nature of concurrent execution. Pretty
awesome, right?

This is the problem we will study in this section of the book. It is a
wonderful and hard problem, and should make your mind hurt (a bit).
If it doesn’t, then you don’t understand! Keep working until your head
hurts; you then know you’re headed in the right direction. At that point,
take a break; we don’t want your head hurting too much.

THE CRUX:
HOW TO PROVIDE SUPPORT FOR SYNCHRONIZATION

What support do we need from the hardware in order to build use-
ful synchronization primitives? What support do we need from the OS?
How can we build these primitives correctly and efficiently? How can
programs use them to get the desired results?

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

CONCURRENCY: AN INTRODUCTION 273

26.5 One More Problem: Waiting For Another

This chapter has set up the problem of concurrency as if only one type
of interaction occurs between threads, that of accessing shared variables
and the need to support atomicity for critical sections. As it turns out,
there is another common interaction that arises, where one thread must
wait for another to complete some action before it continues. This inter-
action arises, for example, when a process performs a disk I/O and is put
to sleep; when the I/O completes, the process needs to be roused from its
slumber so it can continue.

Thus, in the coming chapters, we’ll be not only studying how to build
support for synchronization primitives to support atomicity but also for
mechanisms to support this type of sleeping/waking interaction that is
common in multi-threaded programs. If this doesn’t make sense right
now, that is OK! It will soon enough, when you read the chapter on con-
dition variables. If it doesn’t by then, well, then it is less OK, and you
should read that chapter again (and again) until it does make sense.

26.6 Summary: Why in OS Class?

Before wrapping up, one question that you might have is: why are we
studying this in OS class? “History” is the one-word answer; the OS was
the first concurrent program, and many techniques were created for use
within the OS. Later, with multi-threaded processes, application program-
mers also had to consider such things.

For example, imagine the case where there are two processes running.
Assume they both call write() to write to the file, and both wish to
append the data to the file (i.e., add the data to the end of the file, thus in-
creasing its length). To do so, both must allocate a new block, record in the
inode of the file where this block lives, and change the size of the file to re-
flect the new larger size (among other things; we’ll learn more about files
in the third part of the book). Because an interrupt may occur at any time,
the code that updates to these shared structures (e.g., a bitmap for alloca-
tion, or the file’s inode) are critical sections; thus, OS designers, from the
very beginning of the introduction of the interrupt, had to worry about
how the OS updates internal structures. An untimely interrupt causes all
of the problems described above. Not surprisingly, page tables, process
lists, file system structures, and virtually every kernel data structure has
to be carefully accessed, with the proper synchronization primitives, to
work correctly.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

274 CONCURRENCY: AN INTRODUCTION

TIP: USE ATOMIC OPERATIONS

Atomic operations are one of the most powerful underlying techniques
in building computer systems, from the computer architecture, to concur-
rent code (what we are studying here), to file systems (which we’ll study
soon enough), database management systems, and even distributed sys-
tems [L+93].

The idea behind making a series of actions atomic is simply expressed
with the phrase “all or nothing”; it should either appear as if all of the ac-
tions you wish to group together occurred, or that none of them occurred,
with no in-between state visible. Sometimes, the grouping of many ac-
tions into a single atomic action is called a transaction, an idea devel-
oped in great detail in the world of databases and transaction processing
[GR92].

In our theme of exploring concurrency, we’ll be using synchronization
primitives to turn short sequences of instructions into atomic blocks of
execution, but the idea of atomicity is much bigger than that, as we will
see. For example, file systems use techniques such as journaling or copy-
on-write in order to atomically transition their on-disk state, critical for
operating correctly in the face of system failures. If that doesn’t make
sense, don’t worry – it will, in some future chapter.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

CONCURRENCY: AN INTRODUCTION 275

References

[D65] “Solution of a problem in concurrent programming control”
E. W. Dijkstra
Communications of the ACM, 8(9):569, September 1965
Pointed to as the first paper of Dijkstra’s where he outlines the mutual exclusion problem and a solution.
The solution, however, is not widely used; advanced hardware and OS support is needed, as we will see
in the coming chapters.

[D68] “Cooperating sequential processes”
Edsger W. Dijkstra, 1968
Available: http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD123.PDF
Dijkstra has an amazing number of his old papers, notes, and thoughts recorded (for posterity) on this
website at the last place he worked, the University of Texas. Much of his foundational work, however,
was done years earlier while he was at the Technische Hochshule of Eindhoven (THE), including this
famous paper on “cooperating sequential processes”, which basically outlines all of the thinking that
has to go into writing multi-threaded programs. Dijkstra discovered much of this while working on an
operating system named after his school: the “THE” operating system (said “T”, “H”, “E”, and not
like the word “the”).

[GR92] “Transaction Processing: Concepts and Techniques”
Jim Gray and Andreas Reuter
Morgan Kaufmann, September 1992
This book is the bible of transaction processing, written by one of the legends of the field, Jim Gray. It is,
for this reason, also considered Jim Gray’s “brain dump”, in which he wrote down everything he knows
about how database management systems work. Sadly, Gray passed away tragically a few years back,
and many of us lost a friend and great mentor, including the co-authors of said book, who were lucky
enough to interact with Gray during their graduate school years.

[L+93] “Atomic Transactions”
Nancy Lynch, Michael Merritt, William Weihl, Alan Fekete
Morgan Kaufmann, August 1993
A nice text on some of the theory and practice of atomic transactions for distributed systems. Perhaps a
bit formal for some, but lots of good material is found herein.

[SR05] “Advanced Programming in the UNIX Environment”
W. Richard Stevens and Stephen A. Rago
Addison-Wesley, 2005
As we’ve said many times, buy this book, and read it, in little chunks, preferably before going to bed.
This way, you will actually fall asleep more quickly; more importantly, you learn a little more about
how to become a serious UNIX programmer.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

276 CONCURRENCY: AN INTRODUCTION

Homework

This program, x86.py, allows you to see how different thread inter-
leavings either cause or avoid race conditions. See the README for de-
tails on how the program works and its basic inputs, then answer the
questions below.

Questions

1. To start, let’s examine a simple program, “loop.s”. First, just look at
the program, and see if you can understand it: cat loop.s. Then,
run it with these arguments:

./x86.py -p loop.s -t 1 -i 100 -R dx

Tthis specifies a single thread, an interrupt every 100 instructions,
and tracing of register %dx. Can you figure out what the value of
%dx will be during the run? Once you have, run the same above
and use the -c flag to check your answers; note the answers, on
the left, show the value of the register (or memory value) after the
instruction on the right has run.

2. Now run the same code but with these flags:

./x86.py -p loop.s -t 2 -i 100 -a dx=3,dx=3 -R dx

Tthis specifies two threads, and initializes each %dx register to 3.
What values will %dx see? Run with the -c flag to see the answers.
Does the presence of multiple threads affect anything about your
calculations? Is there a race condition in this code?

3. Now run the following:

./x86.py -p loop.s -t 2 -i 3 -r -a dx=3,dx=3 -R dx

This makes the interrupt interval quite small and random; use dif-
ferent seeds with -s to see different interleavings. Does the fre-
quency of interruption change anything about this program?

4. Next we’ll examine a different program (looping-race-nolock.s).
This program accesses a shared variable located at memory address
2000; we’ll call this variable x for simplicity. Run it with a single
thread and make sure you understand what it does, like this:

./x86.py -p looping-race-nolock.s -t 1 -M 2000

What value is found in x (i.e., at memory address 2000) throughout
the run? Use -c to check your answer.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

CONCURRENCY: AN INTRODUCTION 277

5. Now run with multiple iterations and threads:

./x86.py -p looping-race-nolock.s -t 2 -a bx=3 -M 2000

Do you understand why the code in each thread loops three times?
What will the final value of x be?

6. Now run with random interrupt intervals:

./x86.py -p looping-race-nolock.s -t 2 -M 2000 -i 4 -r -s 0

Then change the random seed, setting -s 1, then -s 2, etc. Can
you tell, just by looking at the thread interleaving, what the final
value of x will be? Does the exact location of the interrupt matter?
Where can it safely occur? Where does an interrupt cause trouble?
In other words, where is the critical section exactly?

7. Now use a fixed interrupt interval to explore the program further.
Run:

./x86.py -p looping-race-nolock.s -a bx=1 -t 2 -M 2000 -i 1

See if you can guess what the final value of the shared variable
x will be. What about when you change -i 2, -i 3, etc.? For
which interrupt intervals does the program give the “correct” final
answer?

8. Now run the same code for more loops (e.g., set -a bx=100). What
interrupt intervals, set with the -i flag, lead to a “correct” outcome?
Which intervals lead to surprising results?

9. We’ll examine one last program in this homework (wait-for-me.s).
Run the code like this:

./x86.py -p wait-for-me.s -a ax=1,ax=0 -R ax -M 2000

This sets the %ax register to 1 for thread 0, and 0 for thread 1, and
watches the value of %ax and memory location 2000 throughout
the run. How should the code behave? How is the value at location
2000 being used by the threads? What will its final value be?

10. Now switch the inputs:

./x86.py -p wait-for-me.s -a ax=0,ax=1 -R ax -M 2000

How do the threads behave? What is thread 0 doing? How would
changing the interrupt interval (e.g., -i 1000, or perhaps to use
random intervals) change the trace outcome? Is the program effi-
ciently using the CPU?

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

27

Interlude: Thread API

This chapter briefly covers the main portions of the thread API. Each part
will be explained further in the subsequent chapters, as we show how
to use the API. More details can be found in various books and online
sources [B97, B+96, K+96]. We should note that the subsequent chapters
introduce the concepts of locks and condition variables more slowly, with
many examples; this chapter is thus better used as a reference.

CRUX: HOW TO CREATE AND CONTROL THREADS

What interfaces should the OS present for thread creation and control?
How should these interfaces be designed to enable ease of use as well as
utility?

27.1 Thread Creation

The first thing you have to be able to do to write a multi-threaded
program is to create new threads, and thus some kind of thread creation
interface must exist. In POSIX, it is easy:

#include <pthread.h>

int

pthread_create(pthread_t * thread,

const pthread_attr_t * attr,

void * (*start_routine)(void*),

void * arg);

This declaration might look a little complex (particularly if you haven’t
used function pointers in C), but actually it’s not too bad. There are
four arguments: thread, attr, start routine, and arg. The first,
thread, is a pointer to a structure of type pthread t; we’ll use this
structure to interact with this thread, and thus we need to pass it to
pthread create() in order to initialize it.

279

280 INTERLUDE: THREAD API

The second argument, attr, is used to specify any attributes this thread
might have. Some examples include setting the stack size or perhaps in-
formation about the scheduling priority of the thread. An attribute is
initialized with a separate call to pthread attr init(); see the man-
ual page for details. However, in most cases, the defaults will be fine; in
this case, we will simply pass the value NULL in.

The third argument is the most complex, but is really just asking: which
function should this thread start running in? In C, we call this a function
pointer, and this one tells us the following is expected: a function name
(start routine), which is passed a single argument of type void * (as
indicated in the parentheses after start routine), and which returns a
value of type void * (i.e., a void pointer).

If this routine instead required an integer argument, instead of a void
pointer, the declaration would look like this:

int pthread_create(..., // first two args are the same

void * (*start_routine)(int),

int arg);

If instead the routine took a void pointer as an argument, but returned
an integer, it would look like this:

int pthread_create(..., // first two args are the same

int (*start_routine)(void *),

void * arg);

Finally, the fourth argument, arg, is exactly the argument to be passed
to the function where the thread begins execution. You might ask: why
do we need these void pointers? Well, the answer is quite simple: having
a void pointer as an argument to the function start routine allows us
to pass in any type of argument; having it as a return value allows the
thread to return any type of result.

Let’s look at an example in Figure 27.1. Here we just create a thread
that is passed two arguments, packaged into a single type we define our-
selves (myarg t). The thread, once created, can simply cast its argument
to the type it expects and thus unpack the arguments as desired.

And there it is! Once you create a thread, you really have another
live executing entity, complete with its own call stack, running within the
same address space as all the currently existing threads in the program.
The fun thus begins!

27.2 Thread Completion

The example above shows how to create a thread. However, what
happens if you want to wait for a thread to complete? You need to do
something special in order to wait for completion; in particular, you must
call the routine pthread join().

int pthread_join(pthread_t thread, void **value_ptr);

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTERLUDE: THREAD API 281

1 #include <pthread.h>

2

3 typedef struct __myarg_t {

4 int a;

5 int b;

6 } myarg_t;

7

8 void *mythread(void *arg) {

9 myarg_t *m = (myarg_t *) arg;

10 printf("%d %d\n", m->a, m->b);

11 return NULL;

12 }

13

14 int

15 main(int argc, char *argv[]) {

16 pthread_t p;

17 int rc;

18

19 myarg_t args;

20 args.a = 10;

21 args.b = 20;

22 rc = pthread_create(&p, NULL, mythread, &args);

23 ...

24 }

Figure 27.1: Creating a Thread

This routine takes only two arguments. The first is of type pthread t,
and is used to specify which thread to wait for. This value is exactly what
you passed into the thread library during creation; if you held onto it,
you can now use it to wait for the thread to stop running.

The second argument is a pointer to the return value you expect to get
back. Because the routine can return anything, it is defined to return a
pointer to void; because the pthread join() routine changes the value
of the passed in argument, you need to pass in a pointer to that value, not
just the value itself.

Let’s look at another example (Figure 27.2). In the code, a single thread
is again created, and passed a couple of arguments via the myarg t struc-
ture. To return values, the myret t type is used. Once the thread is
finished running, the main thread, which has been waiting inside of the

pthread join() routine1, then returns, and we can access the values
returned from the thread, namely whatever is in myret t.

A few things to note about this example. First, often times we don’t
have to do all of this painful packing and unpacking of arguments. For
example, if we just create a thread with no arguments, we can pass NULL
in as an argument when the thread is created. Similarly, we can pass NULL
into pthread join() if we don’t care about the return value.

Second, if we are just passing in a single value (e.g., an int), we don’t
have to package it up as an argument. Figure 27.3 shows an example. In

1Note we use wrapper functions here; specifically, we call Malloc(), Pthread join(), and
Pthread create(), which just call their similarly-named lower-case versions and make sure the
routines did not return anything unexpected.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

282 INTERLUDE: THREAD API

1 #include <stdio.h>

2 #include <pthread.h>

3 #include <assert.h>

4 #include <stdlib.h>

5

6 typedef struct __myarg_t {

7 int a;

8 int b;

9 } myarg_t;

10

11 typedef struct __myret_t {

12 int x;

13 int y;

14 } myret_t;

15

16 void *mythread(void *arg) {

17 myarg_t *m = (myarg_t *) arg;

18 printf("%d %d\n", m->a, m->b);

19 myret_t *r = Malloc(sizeof(myret_t));

20 r->x = 1;

21 r->y = 2;

22 return (void *) r;

23 }

24

25 int

26 main(int argc, char *argv[]) {

27 int rc;

28 pthread_t p;

29 myret_t *m;

30

31 myarg_t args;

32 args.a = 10;

33 args.b = 20;

34 Pthread_create(&p, NULL, mythread, &args);

35 Pthread_join(p, (void **) &m);

36 printf("returned %d %d\n", m->x, m->y);

37 return 0;

38 }

Figure 27.2: Waiting for Thread Completion

this case, life is a bit simpler, as we don’t have to package arguments and
return values inside of structures.

Third, we should note that one has to be extremely careful with how
values are returned from a thread. In particular, never return a pointer
which refers to something allocated on the thread’s call stack. If you do,
what do you think will happen? (think about it!) Here is an example of a
dangerous piece of code, modified from the example in Figure 27.2.

1 void *mythread(void *arg) {

2 myarg_t *m = (myarg_t *) arg;

3 printf("%d %d\n", m->a, m->b);

4 myret_t r; // ALLOCATED ON STACK: BAD!

5 r.x = 1;

6 r.y = 2;

7 return (void *) &r;

8 }

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTERLUDE: THREAD API 283

void *mythread(void *arg) {

int m = (int) arg;

printf("%d\n", m);

return (void *) (arg + 1);

}

int main(int argc, char *argv[]) {

pthread_t p;

int rc, m;

Pthread_create(&p, NULL, mythread, (void *) 100);

Pthread_join(p, (void **) &m);

printf("returned %d\n", m);

return 0;

}

Figure 27.3: Simpler Argument Passing to a Thread

In this case, the variable r is allocated on the stack of mythread. How-
ever, when it returns, the value is automatically deallocated (that’s why
the stack is so easy to use, after all!), and thus, passing back a pointer to
a now deallocated variable will lead to all sorts of bad results. Certainly,
when you print out the values you think you returned, you’ll probably

(but not necessarily!) be surprised. Try it and find out for yourself2!
Finally, you might notice that the use of pthread create() to create

a thread, followed by an immediate call to pthread join(), is a pretty
strange way to create a thread. In fact, there is an easier way to accom-
plish this exact task; it’s called a procedure call. Clearly, we’ll usually be
creating more than just one thread and waiting for it to complete, other-
wise there is not much purpose to using threads at all.

We should note that not all code that is multi-threaded uses the join
routine. For example, a multi-threaded web server might create a number
of worker threads, and then use the main thread to accept requests and
pass them to the workers, indefinitely. Such long-lived programs thus
may not need to join. However, a parallel program that creates threads
to execute a particular task (in parallel) will likely use join to make sure
all such work completes before exiting or moving onto the next stage of
computation.

27.3 Locks

Beyond thread creation and join, probably the next most useful set of
functions provided by the POSIX threads library are those for providing
mutual exclusion to a critical section via locks. The most basic pair of
routines to use for this purpose is provided by this pair of routines:

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

2Fortunately the compiler gcc will likely complain when you write code like this, which
is yet another reason to pay attention to compiler warnings.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

284 INTERLUDE: THREAD API

The routines should be easy to understand and use. When you have a
region of code you realize is a critical section, and thus needs to be pro-
tected by locks in order to operate as desired. You can probably imagine
what the code looks like:

pthread_mutex_t lock;

pthread_mutex_lock(&lock);

x = x + 1; // or whatever your critical section is

pthread_mutex_unlock(&lock);

The intent of the code is as follows: if no other thread holds the lock
when pthread mutex lock() is called, the thread will acquire the lock
and enter the critical section. If another thread does indeed hold the lock,
the thread trying to grab the lock will not return from the call until it has
acquired the lock (implying that the thread holding the lock has released
it via the unlock call). Of course, many threads may be stuck waiting
inside the lock acquisition function at a given time; only the thread with
the lock acquired, however, should call unlock.

Unfortunately, this code is broken, in two important ways. The first
problem is a lack of proper initialization. All locks must be properly
initialized in order to guarantee that they have the correct values to begin
with and thus work as desired when lock and unlock are called.

With POSIX threads, there are two ways to initialize locks. One way
to do this is to use PTHREAD MUTEX INITIALIZER, as follows:

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

Doing so sets the lock to the default values and thus makes the lock
usable. The dynamic way to do it (i.e., at run time) is to make a call to
pthread mutex init(), as follows:

int rc = pthread_mutex_init(&lock, NULL);

assert(rc == 0); // always check success!

The first argument to this routine is the address of the lock itself, whereas
the second is an optional set of attributes. Read more about the attributes
yourself; passing NULL in simply uses the defaults. Either way works, but
we usually use the dynamic (latter) method. Note that a corresponding
call to pthread cond destroy() should also be made, when you are
done with the lock; see the manual page for all of details.

The second problem with the code above is that it fails to check errors
code when calling lock and unlock. Just like virtually any library rou-
tine you call in a UNIX system, these routines can also fail! If your code
doesn’t properly check error codes, the failure will happen silently, which
in this case could allow multiple threads into a critical section. Minimally,
use wrappers, which assert that the routine succeeded (e.g., as in Fig-
ure 27.4); more sophisticated (non-toy) programs, which can’t simply exit
when something goes wrong, should check for failure and do something
appropriate when the lock or unlock does not succeed.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTERLUDE: THREAD API 285

// Use this to keep your code clean but check for failures

// Only use if exiting program is OK upon failure

void Pthread_mutex_lock(pthread_mutex_t *mutex) {

int rc = pthread_mutex_lock(mutex);

assert(rc == 0);

}

Figure 27.4: An Example Wrapper

The lock and unlock routines are not the only routines that pthreads
has to interact with locks. In particular, here are two more routines which
may be of interest:

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_timedlock(pthread_mutex_t *mutex,

struct timespec *abs_timeout);

These two calls are used in lock acquisition. The trylock version re-
turns failure if the lock is already held; the timedlock version of acquir-
ing a lock returns after a timeout or after acquiring the lock, whichever
happens first. Thus, the timedlock with a timeout of zero degenerates
to the trylock case. Both of these versions should generally be avoided;
however, there are a few cases where avoiding getting stuck (perhaps in-
definitely) in a lock acquisition routine can be useful, as we’ll see in future
chapters (e.g., when we study deadlock).

27.4 Condition Variables

The other major component of any threads library, and certainly the
case with POSIX threads, is the presence of a condition variable. Con-
dition variables are useful when some kind of signaling must take place
between threads, if one thread is waiting for another to do something be-
fore it can continue. Two primary routines are used by programs wishing
to interact in this way:

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);

int pthread_cond_signal(pthread_cond_t *cond);

To use a condition variable, one has to in addition have a lock that is
associated with this condition. When calling either of the above routines,
this lock should be held.

The first routine, pthread cond wait(), puts the calling thread to
sleep, and thus waits for some other thread to signal it, usually when
something in the program has changed that the now-sleeping thread might
care about. For example, a typical usage looks like this:

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t init = PTHREAD_COND_INITIALIZER;

Pthread_mutex_lock(&lock);

while (initialized == 0)

Pthread_cond_wait(&init, &lock);

Pthread_mutex_unlock(&lock);

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

286 INTERLUDE: THREAD API

In this code, after initialization of the relevant lock and condition3,
a thread checks to see if the variable initialized has yet been set to
something other than zero. If not, the thread simply calls the wait routine
in order to sleep until some other thread wakes it.

The code to wake a thread, which would run in some other thread,
looks like this:

Pthread_mutex_lock(&lock);

initialized = 1;

Pthread_cond_signal(&init);

Pthread_mutex_unlock(&lock);

A few things to note about this code sequence. First, when signal-
ing (as well as when modifying the global variable initialized), we
always make sure to have the lock held. This ensures that we don’t acci-
dentally introduce a race condition into our code.

Second, you might notice that the wait call takes a lock as its second
parameter, whereas the signal call only takes a condition. The reason
for this difference is that the wait call, in addition to putting the call-
ing thread to sleep, releases the lock when putting said caller to sleep.
Imagine if it did not: how could the other thread acquire the lock and
signal it to wake up? However, before returning after being woken, the
pthread cond wait() re-acquires the lock, thus ensuring that any time
the waiting thread is running between the lock acquire at the beginning
of the wait sequence, and the lock release at the end, it holds the lock.

One last oddity: the waiting thread re-checks the condition in a while
loop, instead of a simple if statement. We’ll discuss this issue in detail
when we study condition variables in a future chapter, but in general,
using a while loop is the simple and safe thing to do. Although it rechecks
the condition (perhaps adding a little overhead), there are some pthread
implementations that could spuriously wake up a waiting thread; in such
a case, without rechecking, the waiting thread will continue thinking that
the condition has changed even though it has not. It is safer thus to view
waking up as a hint that something might have changed, rather than an
absolute fact.

Note that sometimes it is tempting to use a simple flag to signal be-
tween two threads, instead of a condition variable and associated lock.
For example, we could rewrite the waiting code above to look more like
this in the waiting code:

while (initialized == 0)

; // spin

The associated signaling code would look like this:

initialized = 1;

3Note that one could use pthread cond init() (and correspond-
ing the pthread cond destroy() call) instead of the static initializer
PTHREAD COND INITIALIZER. Sound like more work? It is.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTERLUDE: THREAD API 287

Don’t ever do this, for the following reasons. First, it performs poorly
in many cases (spinning for a long time just wastes CPU cycles). Sec-
ond, it is error prone. As recent research shows [X+10], it is surprisingly
easy to make mistakes when using flags (as above) to synchronize be-
tween threads; roughly half the uses of these ad hoc synchronizations were
buggy! Don’t be lazy; use condition variables even when you think you
can get away without doing so.

27.5 Compiling and Running

All of the code examples in this chapter are relatively easy to get up
and running. To compile them, you must include the header pthread.h
in your code. On the link line, you must also explicitly link with the
pthreads library, by adding the -pthread flag.

For example, to compile a simple multi-threaded program, all you
have to do is the following:

prompt> gcc -o main main.c -Wall -pthread

As long as main.c includes the pthreads header, you have now suc-
cessfully compiled a concurrent program. Whether it works or not, as
usual, is a different matter entirely.

27.6 Summary

We have introduced the basics of the pthread library, including thread
creation, building mutual exclusion via locks, and signaling and waiting
via condition variables. You don’t need much else to write robust and
efficient multi-threaded code, except patience and a great deal of care!

We now end the chapter with a set of tips that might be useful to you
when you write multi-threaded code (see the aside on the following page
for details). There are other aspects of the API that are interesting; if you
want more information, type man -k pthread on a Linux system to
see over one hundred APIs that make up the entire interface. However,
the basics discussed herein should enable you to build sophisticated (and
hopefully, correct and performant) multi-threaded programs. The hard
part with threads is not the APIs, but rather the tricky logic of how you
build concurrent programs. Read on to learn more.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

288 INTERLUDE: THREAD API

ASIDE: THREAD API GUIDELINES

There are a number of small but important things to remember when
you use the POSIX thread library (or really, any thread library) to build a
multi-threaded program. They are:

• Keep it simple. Above all else, any code to lock or signal between
threads should be as simple as possible. Tricky thread interactions
lead to bugs.

• Minimize thread interactions. Try to keep the number of ways
in which threads interact to a minimum. Each interaction should
be carefully thought out and constructed with tried and true ap-
proaches (many of which we will learn about in the coming chap-
ters).

• Initialize locks and condition variables. Failure to do so will lead
to code that sometimes works and sometimes fails in very strange
ways.

• Check your return codes. Of course, in any C and UNIX program-
ming you do, you should be checking each and every return code,
and it’s true here as well. Failure to do so will lead to bizarre and
hard to understand behavior, making you likely to (a) scream, (b)
pull some of your hair out, or (c) both.

• Be careful with how you pass arguments to, and return values
from, threads. In particular, any time you are passing a reference to
a variable allocated on the stack, you are probably doing something
wrong.

• Each thread has its own stack. As related to the point above, please
remember that each thread has its own stack. Thus, if you have a
locally-allocated variable inside of some function a thread is exe-
cuting, it is essentially private to that thread; no other thread can
(easily) access it. To share data between threads, the values must be
in the heap or otherwise some locale that is globally accessible.

• Always use condition variables to signal between threads. While
it is often tempting to use a simple flag, don’t do it.

• Use the manual pages. On Linux, in particular, the pthread man
pages are highly informative and discuss much of the nuances pre-
sented here, often in even more detail. Read them carefully!

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTERLUDE: THREAD API 289

References

[B97] “Programming with POSIX Threads”
David R. Butenhof
Addison-Wesley, May 1997
Another one of these books on threads.

[B+96] “PThreads Programming:
A POSIX Standard for Better Multiprocessing”
Dick Buttlar, Jacqueline Farrell, Bradford Nichols
O’Reilly, September 1996
A reasonable book from the excellent, practical publishing house O’Reilly. Our bookshelves certainly
contain a great deal of books from this company, including some excellent offerings on Perl, Python, and
Javascript (particularly Crockford’s “Javascript: The Good Parts”.)

[K+96] “Programming With Threads”
Steve Kleiman, Devang Shah, Bart Smaalders
Prentice Hall, January 1996
Probably one of the better books in this space. Get it at your local library.

[X+10] “Ad Hoc Synchronization Considered Harmful”
Weiwei Xiong, Soyeon Park, Jiaqi Zhang, Yuanyuan Zhou, Zhiqiang Ma
OSDI 2010, Vancouver, Canada
This paper shows how seemingly simple synchronization code can lead to a surprising number of bugs.
Use condition variables and do the signaling correctly!

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

28

Locks

From the introduction to concurrency, we saw one of the fundamental
problems in concurrent programming: we would like to execute a series
of instructions atomically, but due to the presence of interrupts on a single
processor (or multiple threads executing on multiple processors concur-
rently), we couldn’t. In this chapter, we thus attack this problem directly,
with the introduction of something referred to as a lock. Programmers
annotate source code with locks, putting them around critical sections,
and thus ensure that any such critical section executes as if it were a sin-
gle atomic instruction.

28.1 Locks: The Basic Idea

As an example, assume our critical section looks like this, the canonical
update of a shared variable:

balance = balance + 1;

Of course, other critical sections are possible, such as adding an ele-
ment to a linked list or other more complex updates to shared structures,
but we’ll just keep to this simple example for now. To use a lock, we add
some code around the critical section like this:

1 lock_t mutex; // some globally-allocated lock ’mutex’

2 ...

3 lock(&mutex);

4 balance = balance + 1;

5 unlock(&mutex);

A lock is just a variable, and thus to use one, you must declare a lock
variable of some kind (such as mutex above). This lock variable (or just
“lock” for short) holds the state of the lock at any instant in time. It is ei-
ther available (or unlocked or free) and thus no thread holds the lock, or
acquired (or locked or held), and thus exactly one thread holds the lock
and presumably is in a critical section. We could store other information

291

292 LOCKS

in the data type as well, such as which thread holds the lock, or a queue
for ordering lock acquisition, but information like that is hidden from the
user of the lock.

The semantics of the lock() and unlock() routines are simple. Call-
ing the routine lock() tries to acquire the lock; if no other thread holds
the lock (i.e., it is free), the thread will acquire the lock and enter the crit-
ical section; this thread is sometimes said to be the owner of the lock. If
another thread then calls lock() on that same lock variable (mutex in
this example), it will not return while the lock is held by another thread;
in this way, other threads are prevented from entering the critical section
while the first thread that holds the lock is in there.

Once the owner of the lock calls unlock(), the lock is now available
(free) again. If no other threads are waiting for the lock (i.e., no other
thread has called lock() and is stuck therein), the state of the lock is
simply changed to free. If there are waiting threads (stuck in lock()),
one of them will (eventually) notice (or be informed of) this change of the
lock’s state, acquire the lock, and enter the critical section.

Locks provide some minimal amount of control over scheduling to
programmers. In general, we view threads as entities created by the pro-
grammer but scheduled by the OS, in any fashion that the OS chooses.
Locks yield some of that control back to the programmer; by putting
a lock around a section of code, the programmer can guarantee that no
more than a single thread can ever be active within that code. Thus locks
help transform the chaos that is traditional OS scheduling into a more
controlled activity.

28.2 Pthread Locks

The name that the POSIX library uses for a lock is a mutex, as it is used
to provide mutual exclusion between threads, i.e., if one thread is in the
critical section, it excludes the others from entering until it has completed
the section. Thus, when you see the following POSIX threads code, you
should understand that it is doing the same thing as above (we again use
our wrappers that check for errors upon lock and unlock):

1 pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

2

3 Pthread_mutex_lock(&lock); // wrapper for pthread_mutex_lock()

4 balance = balance + 1;

5 Pthread_mutex_unlock(&lock);

You might also notice here that the POSIX version passes a variable
to lock and unlock, as we may be using different locks to protect different
variables. Doing so can increase concurrency: instead of one big lock that
is used any time any critical section is accessed (a coarse-grained locking
strategy), one will often protect different data and data structures with
different locks, thus allowing more threads to be in locked code at once
(a more fine-grained approach).

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LOCKS 293

28.3 Building A Lock

By now, you should have some understanding of how a lock works,
from the perspective of a programmer. But how should we build a lock?
What hardware support is needed? What OS support? It is this set of
questions we address in the rest of this chapter.

The Crux: HOW TO BUILD A LOCK

How can we build an efficient lock? Efficient locks provided mutual
exclusion at low cost, and also might attain a few other properties we
discuss below. What hardware support is needed? What OS support?

To build a working lock, we will need some help from our old friend,
the hardware, as well as our good pal, the OS. Over the years, a num-
ber of different hardware primitives have been added to the instruction
sets of various computer architectures; while we won’t study how these
instructions are implemented (that, after all, is the topic of a computer
architecture class), we will study how to use them in order to build a mu-
tual exclusion primitive like a lock. We will also study how the OS gets
involved to complete the picture and enable us to build a sophisticated
locking library.

28.4 Evaluating Locks

Before building any locks, we should first understand what our goals
are, and thus we ask how to evaluate the efficacy of a particular lock
implementation. To evaluate whether a lock works (and works well), we
should first establish some basic criteria. The first is whether the lock does
its basic task, which is to provide mutual exclusion. Basically, does the
lock work, preventing multiple threads from entering a critical section?

The second is fairness. Does each thread contending for the lock get
a fair shot at acquiring it once it is free? Another way to look at this is
by examining the more extreme case: does any thread contending for the
lock starve while doing so, thus never obtaining it?

The final criterion is performance, specifically the time overheads added
by using the lock. There are a few different cases that are worth con-
sidering here. One is the case of no contention; when a single thread
is running and grabs and releases the lock, what is the overhead of do-
ing so? Another is the case where multiple threads are contending for
the lock on a single CPU; in this case, are there performance concerns? Fi-
nally, how does the lock perform when there are multiple CPUs involved,
and threads on each contending for the lock? By comparing these differ-
ent scenarios, we can better understand the performance impact of using
various locking techniques, as described below.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

294 LOCKS

28.5 Controlling Interrupts

One of the earliest solutions used to provide mutual exclusion was
to disable interrupts for critical sections; this solution was invented for
single-processor systems. The code would look like this:

1 void lock() {

2 DisableInterrupts();

3 }

4 void unlock() {

5 EnableInterrupts();

6 }

Assume we are running on such a single-processor system. By turn-
ing off interrupts (using some kind of special hardware instruction) be-
fore entering a critical section, we ensure that the code inside the critical
section will not be interrupted, and thus will execute as if it were atomic.
When we are finished, we re-enable interrupts (again, via a hardware in-
struction) and thus the program proceeds as usual.

The main positive of this approach is its simplicity. You certainly don’t
have to scratch your head too hard to figure out why this works. Without
interruption, a thread can be sure that the code it executes will execute
and that no other thread will interfere with it.

The negatives, unfortunately, are many. First, this approach requires
us to allow any calling thread to perform a privileged operation (turning
interrupts on and off), and thus trust that this facility is not abused. As
you already know, any time we are required to trust an arbitrary pro-
gram, we are probably in trouble. Here, the trouble manifests in numer-
ous ways: a greedy program could call lock() at the beginning of its
execution and thus monopolize the processor; worse, an errant or mali-
cious program could call lock() and go into an endless loop. In this
latter case, the OS never regains control of the system, and there is only
one recourse: restart the system. Using interrupt disabling as a general-
purpose synchronization solution requires too much trust in applications.

Second, the approach does not work on multiprocessors. If multiple
threads are running on different CPUs, and each try to enter the same
critical section, it does not matter whether interrupts are disabled; threads
will be able to run on other processors, and thus could enter the critical
section. As multiprocessors are now commonplace, our general solution
will have to do better than this.

Third, and probably least important, this approach can be inefficient.
Compared to normal instruction execution, code that masks or unmasks
interrupts tends to be executed slowly by modern CPUs.

For these reasons, turning off interrupts is only used in limited con-
texts as a mutual-exclusion primitive. For example, in some cases an
operating system itself will sometimes use interrupt masking to guaran-
tee atomicity when accessing its own data structures, or at least to pre-
vent certain messy interrupt handling situations from arising. This usage
makes sense, as the trust issue disappears inside the OS, which always
trusts itself to perform privileged operations anyhow.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LOCKS 295

ASIDE: DEKKER’S AND PETERSON’S ALGORITHMS

In the 1960’s, Dijkstra posed the concurrency problem to his friends,
and one of them, a mathematician named Theodorus Jozef Dekker, came
up with a solution [D68]. Unlike the solutions we discuss here, which use
special hardware instructions and even OS support, Dekker’s approach
uses just loads and stores (assuming they are atomic with respect to each
other, which was true on early hardware).

Dekker’s approach was later refined by Peterson [P81] (and thus “Pe-
terson’s algorithm”), shown here. Once again, just loads and stores are
used, and the idea is to ensure that two threads never enter a critical sec-
tion at the same time. Here is Peterson’s algorithm (for two threads); see
if you can understand it.

int flag[2];

int turn;

void init() {

flag[0] = flag[1] = 0; // 1->thread wants to grab lock

turn = 0; // whose turn? (thread 0 or 1?)

}

void lock() {

flag[self] = 1; // self: thread ID of caller

turn = 1 - self; // make it other thread’s turn

while ((flag[1-self] == 1) && (turn == 1 - self))

; // spin-wait

}

void unlock() {

flag[self] = 0; // simply undo your intent

}

For some reason, developing locks that work without special hard-
ware support became all the rage for a while, giving theory-types a lot
of problems to work on. Of course, this all became quite useless when
people realized it is much easier to assume a little hardware support (and
indeed that support had been around from the very earliest days of multi-
processing). Further, algorithms like the ones above don’t work on mod-
ern hardware (due to relaxed memory consistency models), thus making
them even less useful than they were before. Yet more research relegated
to the dustbin of history...

28.6 Test And Set (Atomic Exchange)

Because disabling interrupts does not work on multiple processors,
system designers started to invent hardware support for locking. The
earliest multiprocessor systems, such as the Burroughs B5000 in the early
1960’s [M82], had such support; today all systems provide this type of
support, even for single CPU systems.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

296 LOCKS

1 typedef struct __lock_t { int flag; } lock_t;

2

3 void init(lock_t *mutex) {

4 // 0 -> lock is available, 1 -> held

5 mutex->flag = 0;

6 }

7

8 void lock(lock_t *mutex) {

9 while (mutex->flag == 1) // TEST the flag

10 ; // spin-wait (do nothing)

11 mutex->flag = 1; // now SET it!

12 }

13

14 void unlock(lock_t *mutex) {

15 mutex->flag = 0;

16 }

Figure 28.1: First Attempt: A Simple Flag

The simplest bit of hardware support to understand is what is known
as a test-and-set instruction, also known as atomic exchange. To under-
stand how test-and-set works, let’s first try to build a simple lock without
it. In this failed attempt, we use a simple flag variable to denote whether
the lock is held or not.

In this first attempt (Figure 28.1), the idea is quite simple: use a simple
variable to indicate whether some thread has possession of a lock. The
first thread that enters the critical section will call lock(), which tests
whether the flag is equal to 1 (in this case, it is not), and then sets the flag
to 1 to indicate that the thread now holds the lock. When finished with
the critical section, the thread calls unlock() and clears the flag, thus
indicating that the lock is no longer held.

If another thread happens to call lock() while that first thread is in
the critical section, it will simply spin-wait in the while loop for that
thread to call unlock() and clear the flag. Once that first thread does
so, the waiting thread will fall out of the while loop, set the flag to 1 for
itself, and proceed into the critical section.

Unfortunately, the code has two problems: one of correctness, and an-
other of performance. The correctness problem is simple to see once you
get used to thinking about concurrent programming. Imagine the code
interleaving in Table 28.1 (assume flag=0 to begin).

Thread 1 Thread 2

call lock()
while (flag == 1)
interrupt: switch to Thread 2

call lock()
while (flag == 1)
flag = 1;
interrupt: switch to Thread 1

flag = 1; // set flag to 1 (too!)

Table 28.1: Trace: No Mutual Exclusion

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LOCKS 297

TIP: THINK ABOUT CONCURRENCY AS MALICIOUS SCHEDULER

What we also get from this example is a sense of the approach we
need to take when trying to understand concurrent execution. What you
are really trying to do is to pretend you are a malicious scheduler, one
that interrupts threads at the most inopportune of times in order to foil
their feeble attempts at building synchronization primitives. Although
the exact sequence of interrupts may be improbable, it is possible, and that
is all we need to show to demonstrate that a particular approach does not
work.

As you can see from this interleaving, with timely (untimely?) inter-
rupts, we can easily produce a case where both threads set their flags to 1
and both threads are thus able to enter the critical section. This is bad! We
have obviously failed to provide the most basic requirement: providing
mutual exclusion.

The performance problem, which we will address more later on, is the
fact that the way a thread waits to acquire a lock that is already held:
it endlessly checks the value of flag, a technique known as spin-waiting.
Spin-waiting wastes time waiting for another thread to release a lock. The
waste is exceptionally high on a uniprocessor, where the thread that the
waiter is waiting for cannot even run (at least, until a context switch oc-
curs)! Thus, as we move forward and develop more sophisticated solu-
tions, we should also consider ways to avoid this kind of waste.

28.7 Building A Working Spin Lock

While the idea behind the example above is a good one, it is not possi-
ble to implement without some support from the hardware. Fortunately,
some systems provide an instruction to support the creation of simple
locks based on this concept. This more powerful instruction has differ-
ent names – on SPARC, it is the load/store unsigned byte instruction
(ldstub), whereas on x86, it is the atomic exchange instruction (xchg)
– but basically does the same thing across platforms, and is usually gen-
erally referred to as test-and-set. We define what the test-and-set instruc-
tion does with the following C code snippet:

1 int TestAndSet(int *ptr, int new) {

2 int old = *ptr; // fetch old value at ptr

3 *ptr = new; // store ’new’ into ptr

4 return old; // return the old value

5 }

What the test-and-set instruction does is as follows. It returns the old
value pointed to by the ptr, and simultaneously updates said value to
new. The key, of course, is that this sequence of operations is performed
atomically. The reason it is called “test and set” is that it enables you
to “test” the old value (which is what is returned) while simultaneously

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

298 LOCKS

1 typedef struct __lock_t {

2 int flag;

3 } lock_t;

4

5 void init(lock_t *lock) {

6 // 0 indicates that lock is available, 1 that it is held

7 lock->flag = 0;

8 }

9

10 void lock(lock_t *lock) {

11 while (TestAndSet(&lock->flag, 1) == 1)

12 ; // spin-wait (do nothing)

13 }

14

15 void unlock(lock_t *lock) {

16 lock->flag = 0;

17 }

Figure 28.2: A Simple Spin Lock Using Test-and-set

“setting” the memory location to a new value; as it turns out, this slightly
more powerful instruction is enough to build a simple spin lock, as we
now examine in Figure 28.2.

Let’s make sure we understand why this works. Imagine first the case
where a thread calls lock() and no other thread currently holds the lock;
thus, flag should be 0. When the thread then calls TestAndSet(flag,
1), the routine will return the old value of flag, which is 0; thus, the call-
ing thread, which is testing the value of flag, will not get caught spinning
in the while loop and will acquire the lock. The thread will also atomi-
cally set the value to 1, thus indicating that the lock is now held. When
the thread is finished with its critical section, it calls unlock() to set the
flag back to zero.

The second case we can imagine arises when one thread already has
the lock held (i.e., flag is 1). In this case, this thread will call lock() and
then call TestAndSet(flag, 1) as well. This time, TestAndSet()
will return the old value at flag, which is 1 (because the lock is held),
while simultaneously setting it to 1 again. As long as the lock is held by
another thread, TestAndSet() will repeatedly return 1, and thus this
thread will spin and spin until the lock is finally released. When the flag is
finally set to 0 by some other thread, this thread will call TestAndSet()
again, which will now return 0 while atomically setting the value to 1 and
thus acquire the lock and enter the critical section.

By making both the test (of the old lock value) and set (of the new
value) a single atomic operation, we ensure that only one thread acquires
the lock. And that’s how to build a working mutual exclusion primitive!

You may also now understand why this type of lock is usually referred
to as a spin lock. It is the simplest type of lock to build, and simply spins,
using CPU cycles, until the lock becomes available. To work correctly
on a single processor, it requires a preemptive scheduler (i.e., one that
will interrupt a thread via a timer, in order to run a different thread, from
time to time). Without preemption, spin locks don’t make much sense on
a single CPU, as a thread spinning on a CPU will never relinquish it.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LOCKS 299

28.8 Evaluating Spin Locks

Given our basic spin lock, we can now evaluate how effective it is
along our previously described axes. The most important aspect of a lock
is correctness: does it provide mutual exclusion? The answer here is ob-
viously yes: the spin lock only allows a single thread to enter the critical
section at a time. Thus, we have a correct lock.

The next axis is fairness. How fair is a spin lock to a waiting thread?
Can you guarantee that a waiting thread will ever enter the critical sec-
tion? The answer here, unfortunately, is bad news: spin locks don’t pro-
vide any fairness guarantees. Indeed, a thread spinning may spin forever,
under contention. Spin locks are not fair and may lead to starvation.

The final axis is performance. What are the costs of using a spin lock?
To analyze this more carefully, we suggest thinking about a few different
cases. In the first, imagine threads competing for the lock on a single
processor; in the second, consider the threads as spread out across many
processors.

For spin locks, in the single CPU case, performance overheads can
be quite painful; imagine the case where the thread holding the lock is
pre-empted within a critical section. The scheduler might then run every
other thread (imagine there are N − 1 others), each of which tries to ac-
quire the lock. In this case, each of those threads will spin for the duration
of a time slice before giving up the CPU, a waste of CPU cycles.

However, on multiple CPUs, spin locks work reasonably well (if the
number of threads roughly equals the number of CPUs). The thinking
goes as follows: imagine Thread A on CPU 1 and Thread B on CPU 2,
both contending for a lock. If Thread A (CPU 1) grabs the lock, and then
Thread B tries to, B will spin (on CPU 2). However, presumably the crit-
ical section is short, and thus soon the lock becomes available, and is ac-
quired by Thread B. Spinning to wait for a lock held on another processor
doesn’t waste many cycles in this case, and thus can be quite effective.

28.9 Compare-And-Swap

Another hardware primitive that some systems provide is known as
the compare-and-swap instruction (as it is called on SPARC, for exam-
ple), or compare-and-exchange (as it called on x86). The C pseudocode
for this single instruction is found in Figure 28.3.

The basic idea is for compare-and-swap to test whether the value at the

1 int CompareAndSwap(int *ptr, int expected, int new) {

2 int actual = *ptr;

3 if (actual == expected)

4 *ptr = new;

5 return actual;

6 }

Figure 28.3: Compare-and-swap

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

300 LOCKS

address specified by ptr is equal to expected; if so, update the memory
location pointed to by ptr with the new value. If not, do nothing. In
either case, return the actual value at that memory location, thus allowing
the code calling compare-and-swap to know whether it succeeded or not.

With the compare-and-swap instruction, we can build a lock in a man-
ner quite similar to that with test-and-set. For example, we could just
replace the lock() routine above with the following:

1 void lock(lock_t *lock) {

2 while (CompareAndSwap(&lock->flag, 0, 1) == 1)

3 ; // spin

4 }

The rest of the code is the same as the test-and-set example above.
This code works quite similarly; it simply checks if the flag is 0 and if
so, atomically swaps in a 1 thus acquiring the lock. Threads that try to
acquire the lock while it is held will get stuck spinning until the lock is
finally released.

If you want to see how to really make a C-callable x86-version of
compare-and-swap, this code sequence might be useful (from [S05]):

1 char CompareAndSwap(int *ptr, int old, int new) {

2 unsigned char ret;

3

4 // Note that sete sets a ’byte’ not the word

5 __asm__ __volatile__ (

6 " lock\n"

7 " cmpxchgl %2,%1\n"

8 " sete %0\n"

9 : "=q" (ret), "=m" (*ptr)

10 : "r" (new), "m" (*ptr), "a" (old)

11 : "memory");

12 return ret;

13 }

Finally, as you may have sensed, compare-and-swap is a more power-
ful instruction than test-and-set. We will make some use of this power in
the future when we briefly delve into wait-free synchronization [H91].
However, if we just build a simple spin lock with it, its behavior is iden-
tical to the spin lock we analyzed above.

28.10 Load-Linked and Store-Conditional

Some platforms provide a pair of instructions that work in concert to
help build critical sections. On the MIPS architecture [H93], for example,
the load-linked and store-conditional instructions can be used in tandem
to build locks and other concurrent structures. The C pseudocode for
these instructions is as found in Figure 28.4. Alpha, PowerPC, and ARM
provide similar instructions [W09].

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LOCKS 301

1 int LoadLinked(int *ptr) {

2 return *ptr;

3 }

4

5 int StoreConditional(int *ptr, int value) {

6 if (no one has updated *ptr since the LoadLinked to this address) {

7 *ptr = value;

8 return 1; // success!

9 } else {

10 return 0; // failed to update

11 }

12 }

Figure 28.4: Load-linked And Store-conditional

1 void lock(lock_t *lock) {

2 while (1) {

3 while (LoadLinked(&lock->flag) == 1)

4 ; // spin until it’s zero

5 if (StoreConditional(&lock->flag, 1) == 1)

6 return; // if set-it-to-1 was a success: all done

7 // otherwise: try it all over again

8 }

9 }

10

11 void unlock(lock_t *lock) {

12 lock->flag = 0;

13 }

Figure 28.5: Using LL/SC To Build A Lock

The load-linked operates much like a typical load instruction, and sim-
ply fetches a value from memory and places it in a register. The key differ-
ence comes with the store-conditional, which only succeeds (and updates
the value stored at the address just load-linked from) if no intermittent
store to the address has taken place. In the case of success, the store-
conditional returns 1 and updates the value at ptr to value; if it fails,
the value at ptr is not updated and 0 is returned.

As a challenge to yourself, try thinking about how to build a lock using
load-linked and store-conditional. Then, when you are finished, look at
the code below which provides one simple solution. Do it! The solution
is in Figure 28.5.

The lock() code is the only interesting piece. First, a thread spins
waiting for the flag to be set to 0 (and thus indicate the lock is not held).
Once so, the thread tries to acquire the lock via the store-conditional; if it
succeeds, the thread has atomically changed the flag’s value to 1 and thus
can proceed into the critical section.

Note how failure of the store-conditional might arise. One thread calls
lock() and executes the load-linked, returning 0 as the lock is not held.
Before it can attempt the store-conditional, it is interrupted and another
thread enters the lock code, also executing the load-linked instruction,
and also getting a 0 and continuing. At this point, two threads have
each executed the load-linked and each are about to attempt the store-
conditional. The key feature of these instructions is that only one of these
threads will succeed in updating the flag to 1 and thus acquire the lock;

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

302 LOCKS

TIP: LESS CODE IS BETTER CODE (LAUER’S LAW)
Programmers tend to brag about how much code they wrote to do some-
thing. Doing so is fundamentally broken. What one should brag about,
rather, is how little code one wrote to accomplish a given task. Short,
concise code is always preferred; it is likely easier to understand and has
fewer bugs. As Hugh Lauer said, when discussing the construction of
the Pilot operating system: “If the same people had twice as much time,
they could produce as good of a system in half the code.” [L81] We’ll call
this Lauer’s Law, and it is well worth remembering. So next time you’re
bragging about how much code you wrote to finish the assignment, think
again, or better yet, go back, rewrite, and make the code as clear and con-
cise as possible.

the second thread to attempt the store-conditional will fail (because the
other thread updated the value of flag between its load-linked and store-
conditional) and thus have to try to acquire the lock again.

In class a few years ago, undergraduate student David Capel sug-
gested a more concise form of the above, for those of you who enjoy
short-circuiting boolean conditionals. See if you can figure out why it
is equivalent. It certainly is shorter!

1 void lock(lock_t *lock) {

2 while (LoadLinked(&lock->flag)||!StoreConditional(&lock->flag, 1))

3 ; // spin

4 }

28.11 Fetch-And-Add

One final hardware primitive is the fetch-and-add instruction, which
atomically increments a value while returning the old value at a partic-
ular address. The C pseudocode for the fetch-and-add instruction looks
like this:

1 int FetchAndAdd(int *ptr) {

2 int old = *ptr;

3 *ptr = old + 1;

4 return old;

5 }

In this example, we’ll use fetch-and-add to build a more interesting
ticket lock, as introduced by Mellor-Crummey and Scott [MS91]. The
lock and unlock code looks like what you see in Figure 28.6.

Instead of a single value, this solution uses a ticket and turn variable in
combination to build a lock. The basic operation is pretty simple: when
a thread wishes to acquire a lock, it first does an atomic fetch-and-add
on the ticket value; that value is now considered this thread’s “turn”
(myturn). The globally shared lock->turn is then used to determine
which thread’s turn it is; when (myturn == turn) for a given thread,

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LOCKS 303

1 typedef struct __lock_t {

2 int ticket;

3 int turn;

4 } lock_t;

5

6 void lock_init(lock_t *lock) {

7 lock->ticket = 0;

8 lock->turn = 0;

9 }

10

11 void lock(lock_t *lock) {

12 int myturn = FetchAndAdd(&lock->ticket);

13 while (lock->turn != myturn)

14 ; // spin

15 }

16

17 void unlock(lock_t *lock) {

18 FetchAndAdd(&lock->turn);

19 }

Figure 28.6: Ticket Locks

it is that thread’s turn to enter the critical section. Unlock is accomplished
simply by incrementing the turn such that the next waiting thread (if
there is one) can now enter the critical section.

Note one important difference with this solution versus our previous
attempts: it ensures progress for all threads. Once a thread is assigned its
ticket value, it will be scheduled at some point in the future (once those in
front of it have passed through the critical section and released the lock).
In our previous attempts, no such guarantee existed; a thread spinning
on test-and-set (for example) could spin forever even as other threads
acquire and release the lock.

28.12 Summary: So Much Spinning

Our simple hardware-based locks are simple (only a few lines of code)
and they work (you could even prove that if you’d like to, by writing
some code), which are two excellent properties of any system or code.
However, in some cases, these solutions can be quite inefficient. Imagine
you are running two threads on a single processor. Now imagine that
one thread (thread 0) is in a critical section and thus has a lock held, and
unfortunately gets interrupted. The second thread (thread 1) now tries to
acquire the lock, but finds that it is held. Thus, it begins to spin. And spin.
Then it spins some more. And finally, a timer interrupt goes off, thread
0 is run again, which releases the lock, and finally (the next time it runs,
say), thread 1 won’t have to spin so much and will be able to acquire the
lock. Thus, any time a thread gets caught spinning in a situation like this,
it wastes an entire time slice doing nothing but checking a value that isn’t
going to change! The problem gets worse with N threads contending
for a lock; N − 1 time slices may be wasted in a similar manner, simply
spinning and waiting for a single thread to release the lock. And thus,
our next problem:

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

304 LOCKS

THE CRUX: HOW TO AVOID SPINNING

How can we develop a lock that doesn’t needlessly waste time spin-
ning on the CPU?

Hardware support alone cannot solve the problem. We’ll need OS sup-
port too! Let’s now figure out just how that might work.

28.13 A Simple Approach: Just Yield, Baby

Hardware support got us pretty far: working locks, and even (as with
the case of the ticket lock) fairness in lock acquisition. However, we still
have a problem: what to do when a context switch occurs in a critical
section, and threads start to spin endlessly, waiting for the interrupt (lock-
holding) thread to be run again?

Our first try is a simple and friendly approach: when you are going to
spin, instead give up the CPU to another thread. Or, as Al Davis might
say, “just yield, baby!” [D91]. Figure 28.7 presents the approach.

In this approach, we assume an operating system primitive yield()
which a thread can call when it wants to give up the CPU and let an-
other thread run. Because a thread can be in one of three states (running,
ready, or blocked), you can think of this as an OS system call that moves
the caller from the running state to the ready state, and thus promotes
another thread to running.

Think about the example with two threads on one CPU; in this case,
our yield-based approach works quite well. If a thread happens to call
lock() and find a lock held, it will simply yield the CPU, and thus the
other thread will run and finish its critical section. In this simple case, the
yielding approach works well.

Let us now consider the case where there are many threads (say 100)
contending for a lock repeatedly. In this case, if one thread acquires
the lock and is preempted before releasing it, the other 99 will each call

1 void init() {

2 flag = 0;

3 }

4

5 void lock() {

6 while (TestAndSet(&flag, 1) == 1)

7 yield(); // give up the CPU

8 }

9

10 void unlock() {

11 flag = 0;

12 }

Figure 28.7: Lock With Test-and-set And Yield

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LOCKS 305

lock(), find the lock held, and yield the CPU. Assuming some kind
of round-robin scheduler, each of the 99 will execute this run-and-yield
pattern before the thread holding the lock gets to run again. While better
than our spinning approach (which would waste 99 time slices spinning),
this approach is still costly; the cost of a context switch can be substantial,
and there is thus plenty of waste.

Worse, we have not tackled the starvation problem at all. A thread
may get caught in an endless yield loop while other threads repeatedly
enter and exit the critical section. We clearly will need an approach that
addresses this problem directly.

28.14 Using Queues: Sleeping Instead Of Spinning

The real problem with our previous approaches is that they leave too
much to chance. The scheduler determines which thread runs next; if
the scheduler makes a bad choice, a thread runs that must either spin
waiting for the lock (our first approach), or yield the CPU immediately
(our second approach). Either way, there is potential for waste and no
prevention of starvation.

Thus, we must explicitly exert some control over who gets to acquire
the lock next after the current holder releases it. To do this, we will need a
little more OS support, as well as a queue to keep track of which threads
are waiting to enter the lock.

For simplicity, we will use the support provided by Solaris, in terms of
two calls: park() to put a calling thread to sleep, and unpark(threadID)

to wake a particular thread as designated by threadID. These two rou-
tines can be used in tandem to build a lock that puts a caller to sleep if it
tries to acquire a held lock and wakes it when the lock is free. Let’s look at
the code in Figure 28.8 to understand one possible use of such primitives.

We do a couple of interesting things in this example. First, we combine
the old test-and-set idea with an explicit queue of lock waiters to make a
more efficient lock. Second, we use a queue to help control who gets the
lock next and thus avoid starvation.

You might notice how the guard is used, basically as a spin-lock around
the flag and queue manipulations the lock is using. This approach thus
doesn’t avoid spin-waiting entirely; a thread might be interrupted while
acquiring or releasing the lock, and thus cause other threads to spin-wait
for this one to run again. However, the time spent spinning is quite lim-
ited (just a few instructions inside the lock and unlock code, instead of the
user-defined critical section), and thus this approach may be reasonable.

Second, you might notice that in lock(), when a thread can not ac-
quire the lock (it is already held), we are careful to add ourselves to a
queue (by calling the gettid() call to get the thread ID of the current
thread), set guard to 0, and yield the CPU. A question for the reader:
What would happen if the release of the guard lock came after the park(),
and not before? Hint: something bad.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

306 LOCKS

1 typedef struct __lock_t {

2 int flag;

3 int guard;

4 queue_t *q;

5 } lock_t;

6

7 void lock_init(lock_t *m) {

8 m->flag = 0;

9 m->guard = 0;

10 queue_init(m->q);

11 }

12

13 void lock(lock_t *m) {

14 while (TestAndSet(&m->guard, 1) == 1)

15 ; //acquire guard lock by spinning

16 if (m->flag == 0) {

17 m->flag = 1; // lock is acquired

18 m->guard = 0;

19 } else {

20 queue_add(m->q, gettid());

21 m->guard = 0;

22 park();

23 }

24 }

25

26 void unlock(lock_t *m) {

27 while (TestAndSet(&m->guard, 1) == 1)

28 ; //acquire guard lock by spinning

29 if (queue_empty(m->q))

30 m->flag = 0; // let go of lock; no one wants it

31 else

32 unpark(queue_remove(m->q)); // hold lock (for next thread!)

33 m->guard = 0;

34 }

Figure 28.8: Lock With Queues, Test-and-set, Yield, And Wakeup

You might also notice the interesting fact that the flag does not get set
back to 0 when another thread gets woken up. Why is this? Well, it is not
an error, but rather a necessity! When a thread is woken up, it will be as
if it is returning from park(); however, it does not hold the guard at that
point in the code and thus cannot even try to set the flag to 1. Thus, we
just pass the lock directly from the thread releasing the lock to the next
thread acquiring it; flag is not set to 0 in-between.

Finally, you might notice the perceived race condition in the solution,
just before the call to park(). With just the wrong timing, a thread will
be about to park, assuming that it should sleep until the lock is no longer
held. A switch at that time to another thread (say, a thread holding the
lock) could lead to trouble, for example, if that thread then released the
lock. The subsequent park by the first thread would then sleep forever
(potentially). This problem is sometimes called the wakeup/waiting race;
to avoid it, we need to do some extra work.

Solaris solves this problem by adding a third system call: setpark().
By calling this routine, a thread can indicate it is about to park. If it then
happens to be interrupted and another thread calls unpark before park is

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LOCKS 307

actually called, the subsequent park returns immediately instead of sleep-
ing. The code modification, inside of lock(), is quite small:

1 queue_add(m->q, gettid());

2 setpark(); // new code

3 m->guard = 0;

A different solution could pass the guard into the kernel. In that case,
the kernel could take precautions to atomically release the lock and de-
queue the running thread.

28.15 Different OS, Different Support

We have thus far seen one type of support that an OS can provide in
order to build a more efficient lock in a thread library. Other OS’s provide
similar support; the details vary.

For example, Linux provides something called a futex which is simi-
lar to the Solaris interface but provides a bit more in-kernel functionality.
Specifically, each futex has associated with it a specific physical mem-
ory location; associated with each such memory location is an in-kernel
queue. Callers can use futex calls (described below) to sleep and wake as
need be.

Specifically, two calls are available. The call to futex wait(address,

expected)puts the calling thread to sleep, assuming the value at address
is equal to expected. If it is not equal, the call returns immediately. The
call to the routine futex wake(address)wakes one thread that is wait-
ing on the queue. The usage of these in Linux is as found in 28.9.

This code snippet from lowlevellock.h in the nptl library (part of
the gnu libc library) [L09] is pretty interesting. Basically, it uses a single
integer to track both whether the lock is held or not (the high bit of the
integer) and the number of waiters on the lock (all the other bits). Thus,
if the lock is negative, it is held (because the high bit is set and that bit
determines the sign of the integer). The code is also interesting because it
shows how to optimize for the common case where there is no contention:
with only one thread acquiring and releasing a lock, very little work is
done (the atomic bit test-and-set to lock and an atomic add to release the
lock). See if you can puzzle through the rest of this “real-world” lock to
see how it works.

28.16 Two-Phase Locks

One final note: the Linux approach has the flavor of an old approach
that has been used on and off for years, going at least as far back to Dahm
Locks in the early 1960’s [M82], and is now referred to as a two-phase
lock. A two-phase lock realizes that spinning can be useful, particularly
if the lock is about to be released. So in the first phase, the lock spins for
a while, hoping that it can acquire the lock.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

308 LOCKS

1 void mutex_lock (int *mutex) {

2 int v;

3 /* Bit 31 was clear, we got the mutex (this is the fastpath) */

4 if (atomic_bit_test_set (mutex, 31) == 0)

5 return;

6 atomic_increment (mutex);

7 while (1) {

8 if (atomic_bit_test_set (mutex, 31) == 0) {

9 atomic_decrement (mutex);

10 return;

11 }

12 /* We have to wait now. First make sure the futex value

13 we are monitoring is truly negative (i.e. locked). */

14 v = *mutex;

15 if (v >= 0)

16 continue;

17 futex_wait (mutex, v);

18 }

19 }

20

21 void mutex_unlock (int *mutex) {

22 /* Adding 0x80000000 to the counter results in 0 if and only if

23 there are not other interested threads */

24 if (atomic_add_zero (mutex, 0x80000000))

25 return;

26

27 /* There are other threads waiting for this mutex,

28 wake one of them up. */

29 futex_wake (mutex);

Figure 28.9: Linux-based Futex Locks

However, if the lock is not acquired during the first spin phase, a sec-
ond phase is entered, where the caller is put to sleep, and only woken up
when the lock becomes free later. The Linux lock above is a form of such
a lock, but it only spins once; a generalization of this could spin in a loop
for a fixed amount of time before using futex support to sleep.

Two-phase locks are yet another instance of a hybrid approach, where
combining two good ideas may indeed yield a better one. Of course,
whether it does depends strongly on many things, including the hard-
ware environment, number of threads, and other workload details. As
always, making a single general-purpose lock, good for all possible use
cases, is quite a challenge.

28.17 Summary

The above approach shows how real locks are built these days: some
hardware support (in the form of a more powerful instruction) plus some
operating system support (e.g., in the form of park() and unpark()

primitives on Solaris, or futex on Linux). Of course, the details differ, and
the exact code to perform such locking is usually highly tuned. Check
out the Solaris or Linux open source code bases if you want to see more
details; they are a fascinating read [L09, S09].

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LOCKS 309

References

[D91] “Just Win, Baby: Al Davis and His Raiders”
Glenn Dickey, Harcourt 1991
There is even an undoubtedly bad book about Al Davis and his famous “just win” quote. Or, we suppose,
the book is more about Al Davis and the Raiders, and maybe not just the quote. Read the book to find
out?

[D68] “Cooperating sequential processes”
Edsger W. Dijkstra, 1968
Available: http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD123.PDF
One of the early seminal papers in the area. Discusses how Dijkstra posed the original concurrency
problem, and Dekker’s solution.

[H93] “MIPS R4000 Microprocessor User’s Manual”.
Joe Heinrich, Prentice-Hall, June 1993
Available: http://cag.csail.mit.edu/raw/
documents/R4400 Uman book Ed2.pdf

[H91] “Wait-free Synchronization”
Maurice Herlihy
ACM Transactions on Programming Languages and Systems (TOPLAS)
Volume 13, Issue 1, January 1991
A landmark paper introducing a different approach to building concurrent data structures. However,
because of the complexity involved, many of these ideas have been slow to gain acceptance in deployed
systems.

[L81] “Observations on the Development of an Operating System”
Hugh Lauer
SOSP ’81
A must-read retrospective about the development of the Pilot OS, an early PC operating system. Fun
and full of insights.

[L09] “glibc 2.9 (include Linux pthreads implementation)”
Available: http://ftp.gnu.org/gnu/glibc/
In particular, take a look at the nptl subdirectory where you will find most of the pthread support in
Linux today.

[M82] “The Architecture of the Burroughs B5000
20 Years Later and Still Ahead of the Times?”
Alastair J.W. Mayer, 1982
www.ajwm.net/amayer/papers/B5000.html
From the paper: “One particularly useful instruction is the RDLK (read-lock). It is an indivisible
operation which reads from and writes into a memory location.” RDLK is thus an early test-and-set
primitive, if not the earliest. Some credit here goes to an engineer named Dave Dahm, who apparently
invented a number of these things for the Burroughs systems, including a form of spin locks (called
“Buzz Locks” as well as a two-phase lock eponymously called “Dahm Locks.”)

[MS91] “Algorithms for Scalable Synchronization on Shared-Memory Multiprocessors”
John M. Mellor-Crummey and M. L. Scott
ACM TOCS, February 1991
An excellent survey on different locking algorithms. However, no OS support is used, just fancy hard-
ware instructions.

[P81] “Myths About the Mutual Exclusion Problem”
G.L. Peterson
Information Processing Letters. 12(3) 1981, 115–116
Peterson’s algorithm introduced here.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

310 LOCKS

[S05] “Guide to porting from Solaris to Linux on x86”
Ajay Sood, April 29, 2005
Available: http://www.ibm.com/developerworks/linux/library/l-solar/

[S09] “OpenSolaris Thread Library”
Available: http://src.opensolaris.org/source/xref/onnv/onnv-gate/
usr/src/lib/libc/port/threads/synch.c
This is also pretty interesting to look at, though who knows what will happen to it now that Oracle owns
Sun. Thanks to Mike Swift for the pointer to the code.

[W09] “Load-Link, Store-Conditional”
Wikipedia entry on said topic, as of October 22, 2009
http://en.wikipedia.org/wiki/Load-Link/Store-Conditional

Can you believe we referenced wikipedia? Pretty shabby. But, we found the information there first,
and it felt wrong not to cite it. Further, they even listed the instructions for the different architec-
tures: ldl l/stl c and ldq l/stq c (Alpha), lwarx/stwcx (PowerPC), ll/sc (MIPS), and
ldrex/strex (ARM version 6 and above).

[WG00] “The SPARC Architecture Manual: Version 9”
David L. Weaver and Tom Germond, September 2000
SPARC International, San Jose, California
Available: http://www.sparc.org/standards/SPARCV9.pdf
Also see: http://developers.sun.com/solaris/articles/atomic sparc/ for some
more details on Sparc atomic operations.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

29

Lock-based Concurrent Data Structures

Before moving beyond locks, we’ll first describe how to use locks in some
common data structures. Adding locks to a data structure to make it us-
able by threads makes the structure thread safe. Of course, exactly how
such locks are added determines both the correctness and performance of
the data structure. And thus, our challenge:

CRUX: HOW TO ADD LOCKS TO DATA STRUCTURES

When given a particular data structure, how should we add locks to
it, in order to make it work correctly? Further, how do we add locks such
that the data structure yields high performance, enabling many threads
to access the structure at once, i.e., concurrently?

Of course, we will be hard pressed to cover all data structures or all
methods for adding concurrency, as this is a topic that has been studied
for years, with (literally) thousands of research papers published about
it. Thus, we hope to provide a sufficient introduction to the type of think-
ing required, and refer you to some good sources of material for further
inquiry on your own. We found Moir and Shavit’s survey to be a great
source of information [MS04].

29.1 Concurrent Counters

One of the simplest data structures is a counter. It is a structure that
is commonly used and has a simple interface. We define a simple non-
concurrent counter in Figure 29.1.

Simple But Not Scalable

As you can see, the non-synchronized counter is a trivial data structure,
requiring a tiny amount of code to implement. We now have our next
challenge: how can we make this code thread safe? Figure 29.2 shows
how we do so.

311

312 LOCK-BASED CONCURRENT DATA STRUCTURES

1 typedef struct __counter_t {

2 int value;

3 } counter_t;

4

5 void init(counter_t *c) {

6 c->value = 0;

7 }

8

9 void increment(counter_t *c) {

10 c->value++;

11 }

12

13 void decrement(counter_t *c) {

14 c->value--;

15 }

16

17 int get(counter_t *c) {

18 return c->value;

19 }

Figure 29.1: A Counter Without Locks

1 typedef struct __counter_t {

2 int value;

3 pthread_lock_t lock;

4 } counter_t;

5

6 void init(counter_t *c) {

7 c->value = 0;

8 Pthread_mutex_init(&c->lock, NULL);

9 }

10

11 void increment(counter_t *c) {

12 Pthread_mutex_lock(&c->lock);

13 c->value++;

14 Pthread_mutex_unlock(&c->lock);

15 }

16

17 void decrement(counter_t *c) {

18 Pthread_mutex_lock(&c->lock);

19 c->value--;

20 Pthread_mutex_unlock(&c->lock);

21 }

22

23 int get(counter_t *c) {

24 Pthread_mutex_lock(&c->lock);

25 int rc = c->value;

26 Pthread_mutex_unlock(&c->lock);

27 return rc;

28 }

Figure 29.2: A Counter With Locks

This concurrent counter is simple and works correctly. In fact, it fol-
lows a design pattern common to the simplest and most basic concurrent
data structures: it simply adds a single lock, which is acquired when call-
ing a routine that manipulates the data structure, and is released when
returning from the call. In this manner, it is similar to a data structure
built with monitors [BH73], where locks are acquired and released auto-
matically as you call and return from object methods.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LOCK-BASED CONCURRENT DATA STRUCTURES 313

1 2 3 4
0

5

10

15

Threads

T
im

e
 (

s
e

c
o

n
d

s
)

Precise
Sloppy

Figure 29.3: Performance of Traditional vs. Sloppy Counters

At this point, you have a working concurrent data structure. The prob-
lem you might have is performance. If your data structure is too slow,
you’ll have to do more than just add a single lock; such optimizations, if
needed, are thus the topic of the rest of the chapter. Note that if the data
structure is not too slow, you are done! No need to do something fancy if
something simple will work.

To understand the performance costs of the simple approach, we run a
benchmark in which each thread updates a single shared counter a fixed
number of times; we then vary the number of threads. Figure 29.3 shows
the total time taken, with one to four threads active; each thread updates
the counter one million times. This experiment was run upon an iMac
with four Intel 2.7 GHz i5 CPUs; with more CPUs active, we hope to get
more total work done per unit time.

From the top line in the figure (labeled precise), you can see that the
performance of the synchronized counter scales poorly. Whereas a single
thread can complete the million counter updates in a tiny amount of time
(roughly 0.03 seconds), having two threads each update the counter one
million times concurrently leads to a massive slowdown (taking over 5
seconds!). It only gets worse with more threads.

Ideally, you’d like to see the threads complete just as quickly on mul-
tiple processors as the single thread does on one. Achieving this end is
called perfect scaling; even though more work is done, it is done in par-
allel, and hence the time taken to complete the task is not increased.

Scalable Counting

Amazingly, researchers have studied how to build more scalable coun-
ters for years [MS04]. Even more amazing is the fact that scalable coun-
ters matter, as recent work in operating system performance analysis has
shown [B+10]; without scalable counting, some workloads running on

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

314 LOCK-BASED CONCURRENT DATA STRUCTURES

Time L1 L2 L3 L4 G

0 0 0 0 0 0
1 0 0 1 1 0
2 1 0 2 1 0
3 2 0 3 1 0
4 3 0 3 2 0
5 4 1 3 3 0
6 5 → 0 1 3 4 5 (from L1)
7 0 2 4 5 → 0 10 (from L4)

Table 29.1: Tracing the Sloppy Counters

Linux suffer from serious scalability problems on multicore machines.
Though many techniques have been developed to attack this problem,

we’ll now describe one particular approach. The idea, introduced in re-
cent research [B+10], is known as a sloppy counter.

The sloppy counter works by representing a single logical counter via
numerous local physical counters, one per CPU core, as well as a single
global counter. Specifically, on a machine with four CPUs, there are four
local counters and one global one. In addition to these counters, there are
also locks: one for each local counter, and one for the global counter.

The basic idea of sloppy counting is as follows. When a thread running
on a given core wishes to increment the counter, it increments its local
counter; access to this local counter is synchronized via the corresponding
local lock. Because each CPU has its own local counter, threads across
CPUs can update local counters without contention, and thus counter
updates are scalable.

However, to keep the global counter up to date (in case a thread wishes
to read its value), the local values are periodically transferred to the global
counter, by acquiring the global lock and incrementing it by the local
counter’s value; the local counter is then reset to zero.

How often this local-to-global transfer occurs is determined by a thresh-
old, which we call S here (for sloppiness). The smaller S is, the more the
counter behaves like the non-scalable counter above; the bigger S is, the
more scalable the counter, but the further off the global value might be
from the actual count. One could simply acquire all the local locks and
the global lock (in a specified order, to avoid deadlock) to get an exact
value, but that is not scalable.

To make this clear, let’s look at an example (Table 29.1). In this exam-
ple, the threshold S is set to 5, and there are threads on each of four CPUs
updating their local counters L1 ... L4. The global counter value (G) is
also shown in the trace, with time increasing downward. At each time
step, a local counter may be incremented; if the local value reaches the
threshold S, the local value is transferred to the global counter and the
local counter is reset.

The lower line in Figure 29.3 (labeled sloppy) shows the performance of
sloppy counters with a threshold S of 1024. Performance is excellent; the
time taken to update the counter four million times on four processors is
hardly higher than the time taken to update it one million times on one
processor.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LOCK-BASED CONCURRENT DATA STRUCTURES 315

1 typedef struct __counter_t {

2 int global; // global count

3 pthread_mutex_t glock; // global lock

4 int local[NUMCPUS]; // local count (per cpu)

5 pthread_mutex_t llock[NUMCPUS]; // ... and locks

6 int threshold; // update frequency

7 } counter_t;

8

9 // init: record threshold, init locks, init values

10 // of all local counts and global count

11 void init(counter_t *c, int threshold) {

12 c->threshold = threshold;

13

14 c->global = 0;

15 pthread_mutex_init(&c->glock, NULL);

16

17 int i;

18 for (i = 0; i < NUMCPUS; i++) {

19 c->local[i] = 0;

20 pthread_mutex_init(&c->llock[i], NULL);

21 }

22 }

23

24 // update: usually, just grab local lock and update local amount

25 // once local count has risen by ’threshold’, grab global

26 // lock and transfer local values to it

27 void update(counter_t *c, int threadID, int amt) {

28 pthread_mutex_lock(&c->llock[threadID]);

29 c->local[threadID] += amt; // assumes amt > 0

30 if (c->local[threadID] >= c->threshold) { // transfer to global

31 pthread_mutex_lock(&c->glock);

32 c->global += c->local[threadID];

33 pthread_mutex_unlock(&c->glock);

34 c->local[threadID] = 0;

35 }

36 pthread_mutex_unlock(&c->llock[threadID]);

37 }

38

39 // get: just return global amount (which may not be perfect)

40 int get(counter_t *c) {

41 pthread_mutex_lock(&c->glock);

42 int val = c->global;

43 pthread_mutex_unlock(&c->glock);

44 return val; // only approximate!

45 }

Figure 29.4: Sloppy Counter Implementation

Figure 29.5 shows the importance of the threshold value S, with four
threads each incrementing the counter 1 million times on four CPUs. If S
is low, performance is poor (but the global count is always quite accurate);
if S is high, performance is excellent, but the global count lags (by the
number of CPUs multiplied by S). This accuracy/performance trade-off
is what sloppy counters enables.

A rough version of such a sloppy counter is found in Figure 29.4. Read
it, or better yet, run it yourself in some experiments to better understand
how it works.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

316 LOCK-BASED CONCURRENT DATA STRUCTURES

1 2 4 8 16 32 64 128 256 1024512
0

5

10

15

Sloppiness

T
im

e
 (

s
e

c
o

n
d

s
)

Figure 29.5: Scaling Sloppy Counters

29.2 Concurrent Linked Lists

We next examine a more complicated structure, the linked list. Let’s
start with a basic approach once again. For simplicity, we’ll omit some of
the obvious routines that such a list would have and just focus on concur-
rent insert; we’ll leave it to the reader to think about lookup, delete, and
so forth. Figure 29.6 shows the code for this rudimentary data structure.

As you can see in the code, the code simply acquires a lock in the insert
routine upon entry, and releases it upon exit. One small tricky issue arises
if malloc() happens to fail (a rare case); in this case, the code must also
release the lock before failing the insert.

This kind of exceptional control flow has been shown to be quite error
prone; a recent study of Linux kernel patches found that a huge fraction of
bugs (nearly 40%) are found on such rarely-taken code paths (indeed, this
observation sparked some of our own research, in which we removed all
memory-failing paths from a Linux file system, resulting in a more robust
system [S+11]).

Thus, a challenge: can we rewrite the insert and lookup routines to re-
main correct under concurrent insert but avoid the case where the failure
path also requires us to add the call to unlock?

The answer, in this case, is yes. Specifically, we can rearrange the code
a bit so that the lock and release only surround the actual critical section
in the insert code, and that a common exit path is used in the lookup code.
The former works because part of the lookup actually need not be locked;
assuming that malloc() itself is thread-safe, each thread can call into it
without worry of race conditions or other concurrency bugs. Only when
updating the shared list does a lock need to be held. See Figure 29.7 for
the details of these modifications.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LOCK-BASED CONCURRENT DATA STRUCTURES 317

1 // basic node structure

2 typedef struct __node_t {

3 int key;

4 struct __node_t *next;

5 } node_t;

6

7 // basic list structure (one used per list)

8 typedef struct __list_t {

9 node_t *head;

10 pthread_mutex_t lock;

11 } list_t;

12

13 void List_Init(list_t *L) {

14 L->head = NULL;

15 pthread_mutex_init(&L->lock, NULL);

16 }

17

18 int List_Insert(list_t *L, int key) {

19 pthread_mutex_lock(&L->lock);

20 node_t *new = malloc(sizeof(node_t));

21 if (new == NULL) {

22 perror("malloc");

23 pthread_mutex_unlock(&L->lock);

24 return -1; // fail

25 }

26 new->key = key;

27 new->next = L->head;

28 L->head = new;

29 pthread_mutex_unlock(&L->lock);

30 return 0; // success

31 }

32

33 int List_Lookup(list_t *L, int key) {

34 pthread_mutex_lock(&L->lock);

35 node_t *curr = L->head;

36 while (curr) {

37 if (curr->key == key) {

38 pthread_mutex_unlock(&L->lock);

39 return 0; // success

40 }

41 curr = curr->next;

42 }

43 pthread_mutex_unlock(&L->lock);

44 return -1; // failure

45 }

Figure 29.6: Concurrent Linked List

As for the lookup routine, it is a simple code transformation to jump
out of the main search loop to a single return path. Doing so again re-
duces the number of lock acquire/release points in the code, and thus
decreases the chances of accidentally introducing bugs (such as forget-
ting to unlock before returning) into the code.

Scaling Linked Lists

Though we again have a basic concurrent linked list, once again we
are in a situation where it does not scale particularly well. One technique
that researchers have explored to enable more concurrency within a list is

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

318 LOCK-BASED CONCURRENT DATA STRUCTURES

1 void List_Init(list_t *L) {

2 L->head = NULL;

3 pthread_mutex_init(&L->lock, NULL);

4 }

5

6 void List_Insert(list_t *L, int key) {

7 // synchronization not needed

8 node_t *new = malloc(sizeof(node_t));

9 if (new == NULL) {

10 perror("malloc");

11 return;

12 }

13 new->key = key;

14

15 // just lock critical section

16 pthread_mutex_lock(&L->lock);

17 new->next = L->head;

18 L->head = new;

19 pthread_mutex_unlock(&L->lock);

20 }

21

22 int List_Lookup(list_t *L, int key) {

23 int rv = -1;

24 pthread_mutex_lock(&L->lock);

25 node_t *curr = L->head;

26 while (curr) {

27 if (curr->key == key) {

28 rv = 0;

29 break;

30 }

31 curr = curr->next;

32 }

33 pthread_mutex_unlock(&L->lock);

34 return rv; // now both success and failure

35 }

Figure 29.7: Concurrent Linked List: Rewritten

something called hand-over-hand locking (a.k.a. lock coupling) [MS04].
The idea is pretty simple. Instead of having a single lock for the entire

list, you instead add a lock per node of the list. When traversing the
list, the code first grabs the next node’s lock and then releases the current
node’s lock (which inspires the name hand-over-hand).

Conceptually, a hand-over-hand linked list makes some sense; it en-
ables a high degree of concurrency in list operations. However, in prac-
tice, it is hard to make such a structure faster than the simple single lock
approach, as the overheads of acquiring and releasing locks for each node
of a list traversal is prohibitive. Even with very large lists, and a large
number of threads, the concurrency enabled by allowing multiple on-
going traversals is unlikely to be faster than simply grabbing a single
lock, performing an operation, and releasing it. Perhaps some kind of hy-
brid (where you grab a new lock every so many nodes) would be worth
investigating.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LOCK-BASED CONCURRENT DATA STRUCTURES 319

TIP: MORE CONCURRENCY ISN’T NECESSARILY FASTER

If the scheme you design adds a lot of overhead (for example, by acquir-
ing and releasing locks frequently, instead of once), the fact that it is more
concurrent may not be important. Simple schemes tend to work well,
especially if they use costly routines rarely. Adding more locks and com-
plexity can be your downfall. All of that said, there is one way to really
know: build both alternatives (simple but less concurrent, and complex
but more concurrent) and measure how they do. In the end, you can’t
cheat on performance; your idea is either faster, or it isn’t.

TIP: BE WARY OF LOCKS AND CONTROL FLOW

A general design tip, which is useful in concurrent code as well as
elsewhere, is to be wary of control flow changes that lead to function re-
turns, exits, or other similar error conditions that halt the execution of
a function. Because many functions will begin by acquiring a lock, al-
locating some memory, or doing other similar stateful operations, when
errors arise, the code has to undo all of the state before returning, which
is error-prone. Thus, it is best to structure code to minimize this pattern.

29.3 Concurrent Queues

As you know by now, there is always a standard method to make a
concurrent data structure: add a big lock. For a queue, we’ll skip that
approach, assuming you can figure it out.

Instead, we’ll take a look at a slightly more concurrent queue designed
by Michael and Scott [MS98]. The data structures and code used for this
queue are found in Figure 29.8 on the following page.

If you study this code carefully, you’ll notice that there are two locks,
one for the head of the queue, and one for the tail. The goal of these two
locks is to enable concurrency of enqueue and dequeue operations. In
the common case, the enqueue routine will only access the tail lock, and
dequeue only the head lock.

One trick used by the Michael and Scott is to add a dummy node (allo-
cated in the queue initialization code); this dummy enables the separation
of head and tail operations. Study the code, or better yet, type it in, run
it, and measure it, to understand how it works deeply.

Queues are commonly used in multi-threaded applications. However,
the type of queue used here (with just locks) often does not completely
meet the needs of such programs. A more fully developed bounded
queue, that enables a thread to wait if the queue is either empty or overly
full, is the subject of our intense study in the next chapter on condition
variables. Watch for it!

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

320 LOCK-BASED CONCURRENT DATA STRUCTURES

1 typedef struct __node_t {

2 int value;

3 struct __node_t *next;

4 } node_t;

5

6 typedef struct __queue_t {

7 node_t *head;

8 node_t *tail;

9 pthread_mutex_t headLock;

10 pthread_mutex_t tailLock;

11 } queue_t;

12

13 void Queue_Init(queue_t *q) {

14 node_t *tmp = malloc(sizeof(node_t));

15 tmp->next = NULL;

16 q->head = q->tail = tmp;

17 pthread_mutex_init(&q->headLock, NULL);

18 pthread_mutex_init(&q->tailLock, NULL);

19 }

20

21 void Queue_Enqueue(queue_t *q, int value) {

22 node_t *tmp = malloc(sizeof(node_t));

23 assert(tmp != NULL);

24 tmp->value = value;

25 tmp->next = NULL;

26

27 pthread_mutex_lock(&q->tailLock);

28 q->tail->next = tmp;

29 q->tail = tmp;

30 pthread_mutex_unlock(&q->tailLock);

31 }

32

33 int Queue_Dequeue(queue_t *q, int *value) {

34 pthread_mutex_lock(&q->headLock);

35 node_t *tmp = q->head;

36 node_t *newHead = tmp->next;

37 if (newHead == NULL) {

38 pthread_mutex_unlock(&q->headLock);

39 return -1; // queue was empty

40 }

41 *value = newHead->value;

42 q->head = newHead;

43 pthread_mutex_unlock(&q->headLock);

44 free(tmp);

45 return 0;

46 }

Figure 29.8: Michael and Scott Concurrent Queue

29.4 Concurrent Hash Table

We end our discussion with a simple and widely applicable concurrent
data structure, the hash table. We’ll focus on a simple hash table that does
not resize; a little more work is required to handle resizing, which we
leave as an exercise for the reader (sorry!).

This concurrent hash table is straightforward, is built using the con-
current lists we developed earlier, and works incredibly well. The reason

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LOCK-BASED CONCURRENT DATA STRUCTURES 321

1 #define BUCKETS (101)

2

3 typedef struct __hash_t {

4 list_t lists[BUCKETS];

5 } hash_t;

6

7 void Hash_Init(hash_t *H) {

8 int i;

9 for (i = 0; i < BUCKETS; i++) {

10 List_Init(&H->lists[i]);

11 }

12 }

13

14 int Hash_Insert(hash_t *H, int key) {

15 int bucket = key % BUCKETS;

16 return List_Insert(&H->lists[bucket], key);

17 }

18

19 int Hash_Lookup(hash_t *H, int key) {

20 int bucket = key % BUCKETS;

21 return List_Lookup(&H->lists[bucket], key);

22 }

Figure 29.9: A Concurrent Hash Table

for its good performance is that instead of having a single lock for the en-
tire structure, it uses a lock per hash bucket (each of which is represented
by a list). Doing so enables many concurrent operations to take place.

Figure 29.10 shows the performance of the hash table under concur-
rent updates (from 10,000 to 50,000 concurrent updates from each of four
threads, on the same iMac with four CPUs). Also shown, for the sake
of comparison, is the performance of a linked list (with a single lock).
As you can see from the graph, this simple concurrent hash table scales
magnificently; the linked list, in contrast, does not.

0 10 20 30 40
0

5

10

15

Inserts (Thousands)

T
im

e
 (

s
e

c
o

n
d

s
)

Simple Concurrent List
Concurrent Hash Table

Figure 29.10: Scaling Hash Tables

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

322 LOCK-BASED CONCURRENT DATA STRUCTURES

TIP: AVOID PREMATURE OPTIMIZATION (KNUTH’S LAW)
When building a concurrent data structure, start with the most basic ap-
proach, which is to add a single big lock to provide synchronized access.
By doing so, you are likely to build a correct lock; if you then find that it
suffers from performance problems, you can refine it, thus only making
it fast if need be. As Knuth famously stated, “Premature optimization is
the root of all evil.”

Many operating systems added a single lock when transitioning to multi-
processors, including Sun OS and Linux. In the latter, it even had a name,
the big kernel lock (BKL), and was the source of performance problems
for many years until it was finally removed in 2011. In SunOS (which
was a BSD variant), the notion of removing the single lock protecting
the kernel was so painful that the Sun engineers decided on a different
route: building the entirely new Solaris operating system, which was
multi-threaded from day one. Read the Linux and Solaris kernel books
for more information [BC05, MM00].

29.5 Summary

We have introduced a sampling of concurrent data structures, from
counters, to lists and queues, and finally to the ubiquitous and heavily-
used hash table. We have learned a few important lessons along the way:
to be careful with acquisition and release of locks around control flow
changes; that enabling more concurrency does not necessarily increase
performance; that performance problems should only be remedied once
they exist. This last point, of avoiding premature optimization, is cen-
tral to any performance-minded developer; there is no value in making
something faster if doing so will not improve the overall performance of
the application.

Of course, we have just scratched the surface of high performance
structures. See Moir and Shavit’s excellent survey for more information,
as well as links to other sources [MS04]. In particular, you might be inter-
ested in other structures (such as B-trees); for this knowledge, a database
class is your best bet. You also might be interested in techniques that don’t
use traditional locks at all; such non-blocking data structures are some-
thing we’ll get a taste of in the chapter on common concurrency bugs,
but frankly this topic is an entire area of knowledge requiring more study
than is possible in this humble book. Find out more on your own if you
are interested (as always!).

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LOCK-BASED CONCURRENT DATA STRUCTURES 323

References

[B+10] “An Analysis of Linux Scalability to Many Cores”
Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev, M. Frans Kaashoek,
Robert Morris, Nickolai Zeldovich
OSDI ’10, Vancouver, Canada, October 2010
A great study of how Linux performs on multicore machines, as well as some simple solutions.

[BH73] “Operating System Principles”
Per Brinch Hansen, Prentice-Hall, 1973
Available: http://portal.acm.org/citation.cfm?id=540365
One of the first books on operating systems; certainly ahead of its time. Introduced monitors as a
concurrency primitive.

[BC05] “Understanding the Linux Kernel (Third Edition)”
Daniel P. Bovet and Marco Cesati
O’Reilly Media, November 2005
The classic book on the Linux kernel. You should read it.

[L+13] “A Study of Linux File System Evolution”
Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Shan Lu
FAST ’13, San Jose, CA, February 2013
Our paper that studies every patch to Linux file systems over nearly a decade. Lots of fun findings in
there; read it to see! The work was painful to do though; the poor graduate student, Lanyue Lu, had to
look through every single patch by hand in order to understand what they did.

[MS98] “Nonblocking Algorithms and Preemption-safe Locking on Multiprogrammed Shared-
memory Multiprocessors”
M. Michael and M. Scott
Journal of Parallel and Distributed Computing, Vol. 51, No. 1, 1998
Professor Scott and his students have been at the forefront of concurrent algorithms and data structures
for many years; check out his web page, numerous papers, or books to find out more.

[MS04] “Concurrent Data Structures”
Mark Moir and Nir Shavit
In Handbook of Data Structures and Applications
(Editors D. Metha and S.Sahni)
Chapman and Hall/CRC Press, 2004
Available: www.cs.tau.ac.il/˜shanir/concurrent-data-structures.pdf
A short but relatively comprehensive reference on concurrent data structures. Though it is missing
some of the latest works in the area (due to its age), it remains an incredibly useful reference.

[MM00] “Solaris Internals: Core Kernel Architecture”
Jim Mauro and Richard McDougall
Prentice Hall, October 2000
The Solaris book. You should also read this, if you want to learn in great detail about something other
than Linux.

[S+11] “Making the Common Case the Only Case with Anticipatory Memory Allocation”
Swaminathan Sundararaman, Yupu Zhang, Sriram Subramanian,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
FAST ’11, San Jose, CA, February 2011
Our work on removing possibly-failing calls to malloc from kernel code paths. The idea is to allocate all
potentially needed memory before doing any of the work, thus avoiding failure deep down in the storage
stack.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

30

Condition Variables

Thus far we have developed the notion of a lock and seen how one can be
properly built with the right combination of hardware and OS support.
Unfortunately, locks are not the only primitives that are needed to build
concurrent programs.

In particular, there are many cases where a thread wishes to check
whether a condition is true before continuing its execution. For example,
a parent thread might wish to check whether a child thread has completed
before continuing (this is often called a join()); how should such a wait
be implemented? Let’s look at Figure 30.1.

1 void *child(void *arg) {

2 printf("child\n");

3 // XXX how to indicate we are done?

4 return NULL;

5 }

6

7 int main(int argc, char *argv[]) {

8 printf("parent: begin\n");

9 pthread_t c;

10 Pthread_create(&c, NULL, child, NULL); // create child

11 // XXX how to wait for child?

12 printf("parent: end\n");

13 return 0;

14 }

Figure 30.1: A Parent Waiting For Its Child

What we would like to see here is the following output:

parent: begin

child

parent: end

We could try using a shared variable, as you see in Figure 30.2. This
solution will generally work, but it is hugely inefficient as the parent spins
and wastes CPU time. What we would like here instead is some way to
put the parent to sleep until the condition we are waiting for (e.g., the
child is done executing) comes true.

325

326 CONDITION VARIABLES

1 volatile int done = 0;

2

3 void *child(void *arg) {

4 printf("child\n");

5 done = 1;

6 return NULL;

7 }

8

9 int main(int argc, char *argv[]) {

10 printf("parent: begin\n");

11 pthread_t c;

12 Pthread_create(&c, NULL, child, NULL); // create child

13 while (done == 0)

14 ; // spin

15 printf("parent: end\n");

16 return 0;

17 }

Figure 30.2: Parent Waiting For Child: Spin-based Approach

THE CRUX: HOW TO WAIT FOR A CONDITION

In multi-threaded programs, it is often useful for a thread to wait for
some condition to become true before proceeding. The simple approach,
of just spinning until the condition becomes true, is grossly inefficient
and wastes CPU cycles, and in some cases, can be incorrect. Thus, how
should a thread wait for a condition?

30.1 Definition and Routines

To wait for a condition to become true, a thread can make use of what
is known as a condition variable. A condition variable is an explicit
queue that threads can put themselves on when some state of execution
(i.e., some condition) is not as desired (by waiting on the condition);
some other thread, when it changes said state, can then wake one (or
more) of those waiting threads and thus allow them to continue (by sig-
naling on the condition). The idea goes back to Dijkstra’s use of “private
semaphores” [D68]; a similar idea was later named a “condition variable”
by Hoare in his work on monitors [H74].

To declare such a condition variable, one simply writes something
like this: pthread cond t c;, which declares c as a condition variable
(note: proper initialization is also required). A condition variable has two
operations associated with it: wait() and signal(). The wait() call
is executed when a thread wishes to put itself to sleep; the signal() call
is executed when a thread has changed something in the program and
thus wants to wake a sleeping thread waiting on this condition. Specifi-
cally, the POSIX calls look like this:

pthread_cond_wait(pthread_cond_t *c, pthread_mutex_t *m);

pthread_cond_signal(pthread_cond_t *c);

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

CONDITION VARIABLES 327

1 int done = 0;

2 pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

3 pthread_cond_t c = PTHREAD_COND_INITIALIZER;

4

5 void thr_exit() {

6 Pthread_mutex_lock(&m);

7 done = 1;

8 Pthread_cond_signal(&c);

9 Pthread_mutex_unlock(&m);

10 }

11

12 void *child(void *arg) {

13 printf("child\n");

14 thr_exit();

15 return NULL;

16 }

17

18 void thr_join() {

19 Pthread_mutex_lock(&m);

20 while (done == 0)

21 Pthread_cond_wait(&c, &m);

22 Pthread_mutex_unlock(&m);

23 }

24

25 int main(int argc, char *argv[]) {

26 printf("parent: begin\n");

27 pthread_t p;

28 Pthread_create(&p, NULL, child, NULL);

29 thr_join();

30 printf("parent: end\n");

31 return 0;

32 }

Figure 30.3: Parent Waiting For Child: Use A Condition Variable

We will often refer to these as wait() and signal() for simplicity.
One thing you might notice about the wait() call is that it also takes a
mutex as a parameter; it assumes that this mutex is locked when wait()

is called. The responsibility of wait() is to release the lock and put the
calling thread to sleep (atomically); when the thread wakes up (after some
other thread has signaled it), it must re-acquire the lock before returning
to the caller. This complexity stems from the desire to prevent certain
race conditions from occurring when a thread is trying to put itself to
sleep. Let’s take a look at the solution to the join problem (Figure 30.3) to
understand this better.

There are two cases to consider. In the first, the parent creates the child
thread but continues running itself (assume we have only a single pro-
cessor) and thus immediately calls into thr join() to wait for the child
thread to complete. In this case, it will acquire the lock, check if the child
is done (it is not), and put itself to sleep by calling wait() (hence releas-
ing the lock). The child will eventually run, print the message “child”,
and call thr exit() to wake the parent thread; this code just grabs the
lock, sets the state variable done, and signals the parent thus waking it.
Finally, the parent will run (returning from wait() with the lock held),
unlock the lock, and print the final message “parent: end”.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

328 CONDITION VARIABLES

In the second case, the child runs immediately upon creation, sets
done to 1, calls signal to wake a sleeping thread (but there is none, so
it just returns), and is done. The parent then runs, calls thr join(), sees
that done is 1, and thus does not wait and returns.

One last note: you might observe the parent uses a while loop instead
of just an if statement when deciding whether to wait on the condition.
While this does not seem strictly necessary per the logic of the program,
it is always a good idea, as we will see below.

To make sure you understand the importance of each piece of the
thr exit() and thr join() code, let’s try a few alternate implemen-
tations. First, you might be wondering if we need the state variable done.
What if the code looked like the example below? Would this work?

1 void thr_exit() {

2 Pthread_mutex_lock(&m);

3 Pthread_cond_signal(&c);

4 Pthread_mutex_unlock(&m);

5 }

6

7 void thr_join() {

8 Pthread_mutex_lock(&m);

9 Pthread_cond_wait(&c, &m);

10 Pthread_mutex_unlock(&m);

11 }

Unfortunately this approach is broken. Imagine the case where the
child runs immediately and calls thr exit() immediately; in this case,
the child will signal, but there is no thread asleep on the condition. When
the parent runs, it will simply call wait and be stuck; no thread will ever
wake it. From this example, you should appreciate the importance of
the state variable done; it records the value the threads are interested in
knowing. The sleeping, waking, and locking all are built around it.

Here is another poor implementation. In this example, we imagine
that one does not need to hold a lock in order to signal and wait. What
problem could occur here? Think about it!

1 void thr_exit() {

2 done = 1;

3 Pthread_cond_signal(&c);

4 }

5

6 void thr_join() {

7 if (done == 0)

8 Pthread_cond_wait(&c);

9 }

The issue here is a subtle race condition. Specifically, if the parent calls
thr join() and then checks the value of done, it will see that it is 0 and
thus try to go to sleep. But just before it calls wait to go to sleep, the parent
is interrupted, and the child runs. The child changes the state variable
done to 1 and signals, but no thread is waiting and thus no thread is
woken. When the parent runs again, it sleeps forever, which is sad.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

CONDITION VARIABLES 329

TIP: ALWAYS HOLD THE LOCK WHILE SIGNALING

Although it is strictly not necessary in all cases, it is likely simplest and
best to hold the lock while signaling when using condition variables. The
example above shows a case where you must hold the lock for correct-
ness; however, there are some other cases where it is likely OK not to, but
probably is something you should avoid. Thus, for simplicity, hold the
lock when calling signal.

The converse of this tip, i.e., hold the lock when calling wait, is not just
a tip, but rather mandated by the semantics of wait, because wait always
(a) assumes the lock is held when you call it, (b) releases said lock when
putting the caller to sleep, and (c) re-acquires the lock just before return-
ing. Thus, the generalization of this tip is correct: hold the lock when
calling signal or wait, and you will always be in good shape.

Hopefully, from this simple join example, you can see some of the ba-
sic requirements of using condition variables properly. To make sure you
understand, we now go through a more complicated example: the pro-
ducer/consumer or bounded-buffer problem.

30.2 The Producer/Consumer (Bound Buffer) Problem

The next synchronization problem we will confront in this chapter is
known as the producer/consumer problem, or sometimes as the bounded
buffer problem, which was first posed by Dijkstra [D72]. Indeed, it was
this very producer/consumer problem that led Dijkstra and his co-workers
to invent the generalized semaphore (which can be used as either a lock
or a condition variable) [D01]; we will learn more about semaphores later.

Imagine one or more producer threads and one or more consumer
threads. Producers produce data items and wish to place them in a buffer;
consumers grab data items out of the buffer consume them in some way.

This arrangement occurs in many real systems. For example, in a
multi-threaded web server, a producer puts HTTP requests into a work
queue (i.e., the bounded buffer); consumer threads take requests out of
this queue and process them.

A bounded buffer is also used when you pipe the output of one pro-
gram into another, e.g., grep foo file.txt | wc -l. This example
runs two processes concurrently; grep writes lines from file.txt with
the string foo in them to what it thinks is standard output; the UNIX

shell redirects the output to what is called a UNIX pipe (created by the
pipe system call). The other end of this pipe is connected to the stan-
dard input of the process wc, which simply counts the number of lines in
the input stream and prints out the result. Thus, the grep process is the
producer; the wc process is the consumer; between them is an in-kernel
bounded buffer; you, in this example, are just the happy user.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

330 CONDITION VARIABLES

1 int buffer;

2 int count = 0; // initially, empty

3

4 void put(int value) {

5 assert(count == 0);

6 count = 1;

7 buffer = value;

8 }

9

10 int get() {

11 assert(count == 1);

12 count = 0;

13 return buffer;

14 }

Figure 30.4: The Put and Get Routines (Version 1)

1 void *producer(void *arg) {

2 int i;

3 int loops = (int) arg;

4 for (i = 0; i < loops; i++) {

5 put(i);

6 }

7 }

8

9 void *consumer(void *arg) {

10 int i;

11 while (1) {

12 int tmp = get();

13 printf("%d\n", tmp);

14 }

15 }

Figure 30.5: Producer/Consumer Threads (Version 1)

Because the bounded buffer is a shared resource, we must of course
require synchronized access to it, lest1 a race condition arise. To begin to
understand this problem better, let us examine some actual code.

The first thing we need is a shared buffer, into which a producer puts
data, and out of which a consumer takes data. Let’s just use a single
integer for simplicity (you can certainly imagine placing a pointer to a
data structure into this slot instead), and the two inner routines to put
a value into the shared buffer, and to get a value out of the buffer. See
Figure 30.4 for details.

Pretty simple, no? The put() routine assumes the buffer is empty
(and checks this with an assertion), and then simply puts a value into the
shared buffer and marks it full by setting count to 1. The get() routine
does the opposite, setting the buffer to empty (i.e., setting count to 0)
and returning the value. Don’t worry that this shared buffer has just a
single entry; later, we’ll generalize it to a queue that can hold multiple
entries, which will be even more fun than it sounds.

Now we need to write some routines that know when it is OK to access
the buffer to either put data into it or get data out of it. The conditions for

1This is where we drop some serious Old English on you, and the subjunctive form.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

CONDITION VARIABLES 331

1 cond_t cond;

2 mutex_t mutex;

3

4 void *producer(void *arg) {

5 int i;

6 for (i = 0; i < loops; i++) {

7 Pthread_mutex_lock(&mutex); // p1

8 if (count == 1) // p2

9 Pthread_cond_wait(&cond, &mutex); // p3

10 put(i); // p4

11 Pthread_cond_signal(&cond); // p5

12 Pthread_mutex_unlock(&mutex); // p6

13 }

14 }

15

16 void *consumer(void *arg) {

17 int i;

18 for (i = 0; i < loops; i++) {

19 Pthread_mutex_lock(&mutex); // c1

20 if (count == 0) // c2

21 Pthread_cond_wait(&cond, &mutex); // c3

22 int tmp = get(); // c4

23 Pthread_cond_signal(&cond); // c5

24 Pthread_mutex_unlock(&mutex); // c6

25 printf("%d\n", tmp);

26 }

27 }

Figure 30.6: Producer/Consumer: Single CV and If Statement

this should be obvious: only put data into the buffer when count is zero
(i.e., when the buffer is empty), and only get data from the buffer when
count is one (i.e., when the buffer is full). If we write the synchronization
code such that a producer puts data into a full buffer, or a consumer gets
data from an empty one, we have done something wrong (and in this
code, an assertion will fire).

This work is going to be done by two types of threads, one set of which
we’ll call the producer threads, and the other set which we’ll call con-
sumer threads. Figure 30.5 shows the code for a producer that puts an
integer into the shared buffer loops number of times, and a consumer
that gets the data out of that shared buffer (forever), each time printing
out the data item it pulled from the shared buffer.

A Broken Solution

Now imagine that we have just a single producer and a single consumer.
Obviously the put() and get() routines have critical sections within
them, as put() updates the buffer, and get() reads from it. However,
putting a lock around the code doesn’t work; we need something more.
Not surprisingly, that something more is some condition variables. In this
(broken) first try (Figure 30.6), we have a single condition variable cond
and associated lock mutex.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

332 CONDITION VARIABLES

Tc1 State Tc2 State Tp State Count Comment
c1 Running Ready Ready 0
c2 Running Ready Ready 0
c3 Sleep Ready Ready 0 Nothing to get

Sleep Ready p1 Running 0
Sleep Ready p2 Running 0
Sleep Ready p4 Running 1 Buffer now full
Ready Ready p5 Running 1 Tc1 awoken
Ready Ready p6 Running 1
Ready Ready p1 Running 1
Ready Ready p2 Running 1
Ready Ready p3 Sleep 1 Buffer full; sleep
Ready c1 Running Sleep 1 Tc2 sneaks in ...
Ready c2 Running Sleep 1
Ready c4 Running Sleep 0 ... and grabs data
Ready c5 Running Ready 0 Tp awoken
Ready c6 Running Ready 0

c4 Running Ready Ready 0 Oh oh! No data

Table 30.1: Thread Trace: Broken Solution (Version 1)

Let’s examine the signaling logic between producers and consumers.
When a producer wants to fill the buffer, it waits for it to be empty (p1–
p3). The consumer has the exact same logic, but waits for a different
condition: fullness (c1–c3).

With just a single producer and a single consumer, the code in Figure
30.6 works. However, if we have more than one of these threads (e.g.,
two consumers), the solution has two critical problems. What are they?

... (pause here to think) ...
Let’s understand the first problem, which has to do with the if state-

ment before the wait. Assume there are two consumers (Tc1 and Tc2) and
one producer (Tp). First, a consumer (Tc1) runs; it acquires the lock (c1),
checks if any buffers are ready for consumption (c2), and finding that
none are, waits (c3) (which releases the lock).

Then the producer (Tp) runs. It acquires the lock (p1), checks if all
buffers are full (p2), and finding that not to be the case, goes ahead and
fills the buffer (p4). The producer then signals that a buffer has been
filled (p5). Critically, this moves the first consumer (Tc1) from sleeping
on a condition variable to the ready queue; Tc1 is now able to run (but
not yet running). The producer then continues until realizing the buffer
is full, at which point it sleeps (p6, p1–p3).

Here is where the problem occurs: another consumer (Tc2) sneaks in
and consumes the one existing value in the buffer (c1, c2, c4, c5, c6, skip-
ping the wait at c3 because the buffer is full). Now assume Tc1 runs; just
before returning from the wait, it re-acquires the lock and then returns. It
then calls get() (c4), but there are no buffers to consume! An assertion
triggers, and the code has not functioned as desired. Clearly, we should
have somehow prevented Tc1 from trying to consume because Tc2 snuck
in and consumed the one value in the buffer that had been produced. Ta-
ble 30.1 shows the action each thread takes, as well as its scheduler state
(Ready, Running, or Sleeping) over time.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

CONDITION VARIABLES 333

1 cond_t cond;

2 mutex_t mutex;

3

4 void *producer(void *arg) {

5 int i;

6 for (i = 0; i < loops; i++) {

7 Pthread_mutex_lock(&mutex); // p1

8 while (count == 1) // p2

9 Pthread_cond_wait(&cond, &mutex); // p3

10 put(i); // p4

11 Pthread_cond_signal(&cond); // p5

12 Pthread_mutex_unlock(&mutex); // p6

13 }

14 }

15

16 void *consumer(void *arg) {

17 int i;

18 for (i = 0; i < loops; i++) {

19 Pthread_mutex_lock(&mutex); // c1

20 while (count == 0) // c2

21 Pthread_cond_wait(&cond, &mutex); // c3

22 int tmp = get(); // c4

23 Pthread_cond_signal(&cond); // c5

24 Pthread_mutex_unlock(&mutex); // c6

25 printf("%d\n", tmp);

26 }

27 }

Figure 30.7: Producer/Consumer: Single CV and While

The problem arises for a simple reason: after the producer woke Tc1,
but before Tc1 ever ran, the state of the bounded buffer changed (thanks to
Tc2). Signaling a thread only wakes them up; it is thus a hint that the state
of the world has changed (in this case, that a value has been placed in the
buffer), but there is no guarantee that when the woken thread runs, the
state will still be as desired. This interpretation of what a signal means
is often referred to as Mesa semantics, after the first research that built
a condition variable in such a manner [LR80]; the contrast, referred to as
Hoare semantics, is harder to build but provides a stronger guarantee
that the woken thread will run immediately upon being woken [H74].
Virtually every system ever built employs Mesa semantics.

Better, But Still Broken: While, Not If

Fortunately, this fix is easy (Figure 30.7): change the if to a while. Think
about why this works; now consumer Tc1 wakes up and (with the lock
held) immediately re-checks the state of the shared variable (c2). If the
buffer is empty at that point, the consumer simply goes back to sleep
(c3). The corollary if is also changed to a while in the producer (p2).

Thanks to Mesa semantics, a simple rule to remember with condition
variables is to always use while loops. Sometimes you don’t have to re-
check the condition, but it is always safe to do so; just do it and be happy.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

334 CONDITION VARIABLES

Tc1 State Tc2 State Tp State Count Comment
c1 Running Ready Ready 0
c2 Running Ready Ready 0
c3 Sleep Ready Ready 0 Nothing to get

Sleep c1 Running Ready 0
Sleep c2 Running Ready 0
Sleep c3 Sleep Ready 0 Nothing to get
Sleep Sleep p1 Running 0
Sleep Sleep p2 Running 0
Sleep Sleep p4 Running 1 Buffer now full
Ready Sleep p5 Running 1 Tc1 awoken
Ready Sleep p6 Running 1
Ready Sleep p1 Running 1
Ready Sleep p2 Running 1
Ready Sleep p3 Sleep 1 Must sleep (full)

c2 Running Sleep Sleep 1 Recheck condition
c4 Running Sleep Sleep 0 Tc1 grabs data
c5 Running Ready Sleep 0 Oops! Woke Tc2

c6 Running Ready Sleep 0
c1 Running Ready Sleep 0
c2 Running Ready Sleep 0
c3 Sleep Ready Sleep 0 Nothing to get

Sleep c2 Running Sleep 0
Sleep c3 Sleep Sleep 0 Everyone asleep...

Table 30.2: Thread Trace: Broken Solution (Version 2)

However, this code still has a bug, the second of two problems men-
tioned above. Can you see it? It has something to do with the fact that
there is only one condition variable. Try to figure out what the problem
is, before reading ahead. DO IT!

... (another pause for you to think, or close your eyes for a bit) ...
Let’s confirm you figured it out correctly, or perhaps let’s confirm that

you are now awake and reading this part of the book. The problem oc-
curs when two consumers run first (Tc1 and Tc2), and both go to sleep
(c3). Then, a producer runs, put a value in the buffer, wakes one of the
consumers (say Tc1), and goes back to sleep. Now we have one consumer
ready to run (Tc1), and two threads sleeping on a condition (Tc2 and Tp).
And we are about to cause a problem to occur: things are getting exciting!

The consumer Tc1 then wakes by returning fromwait() (c3), re-checks
the condition (c2), and finding the buffer full, consumes the value (c4).
This consumer then, critically, signals on the condition (c5), waking one
thread that is sleeping. However, which thread should it wake?

Because the consumer has emptied the buffer, it clearly should wake
the producer. However, if it wakes the consumer Tc2 (which is definitely
possible, depending on how the wait queue is managed), we have a prob-
lem. Specifically, the consumer Tc2 will wake up and find the buffer
empty (c2), and go back to sleep (c3). The producer Tp, which has a value
to put into the buffer, is left sleeping. The other consumer thread, Tc1,
also goes back to sleep. All three threads are left sleeping, a clear bug; see
Table 30.2 for the brutal step-by-step of this terrible calamity.

Signaling is clearly needed, but must be more directed. A consumer
should not wake other consumers, only producers, and vice-versa.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

CONDITION VARIABLES 335

1 cond_t empty, fill;

2 mutex_t mutex;

3

4 void *producer(void *arg) {

5 int i;

6 for (i = 0; i < loops; i++) {

7 Pthread_mutex_lock(&mutex);

8 while (count == 1)

9 Pthread_cond_wait(&empty, &mutex);

10 put(i);

11 Pthread_cond_signal(&fill);

12 Pthread_mutex_unlock(&mutex);

13 }

14 }

15

16 void *consumer(void *arg) {

17 int i;

18 for (i = 0; i < loops; i++) {

19 Pthread_mutex_lock(&mutex);

20 while (count == 0)

21 Pthread_cond_wait(&fill, &mutex);

22 int tmp = get();

23 Pthread_cond_signal(&empty);

24 Pthread_mutex_unlock(&mutex);

25 printf("%d\n", tmp);

26 }

27 }

Figure 30.8: Producer/Consumer: Two CVs and While

The Single Buffer Producer/Consumer Solution

The solution here is once again a small one: use two condition variables,
instead of one, in order to properly signal which type of thread should
wake up when the state of the system changes. Figure 30.8 shows the
resulting code.

In the code above, producer threads wait on the condition empty, and
signals fill. Conversely, consumer threads wait on fill and signal empty.
By doing so, the second problem above is avoided by design: a consumer
can never accidentally wake a consumer, and a producer can never acci-
dentally wake a producer.

The Final Producer/Consumer Solution

We now have a working producer/consumer solution, albeit not a fully
general one. The last change we make is to enable more concurrency and
efficiency; specifically, we add more buffer slots, so that multiple values
can be produced before sleeping, and similarly multiple values can be
consumed before sleeping. With just a single producer and consumer, this
approach is more efficient as it reduces context switches; with multiple
producers or consumers (or both), it even allows concurrent producing
or consuming to take place, thus increasing concurrency. Fortunately, it
is a small change from our current solution.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

336 CONDITION VARIABLES

1 int buffer[MAX];

2 int fill = 0;

3 int use = 0;

4 int count = 0;

5

6 void put(int value) {

7 buffer[fill] = value;

8 fill = (fill + 1) % MAX;

9 count++;

10 }

11

12 int get() {

13 int tmp = buffer[use];

14 use = (use + 1) % MAX;

15 count--;

16 return tmp;

17 }

Figure 30.9: The Final Put and Get Routines

1 cond_t empty, fill;

2 mutex_t mutex;

3

4 void *producer(void *arg) {

5 int i;

6 for (i = 0; i < loops; i++) {

7 Pthread_mutex_lock(&mutex); // p1

8 while (count == MAX) // p2

9 Pthread_cond_wait(&empty, &mutex); // p3

10 put(i); // p4

11 Pthread_cond_signal(&fill); // p5

12 Pthread_mutex_unlock(&mutex); // p6

13 }

14 }

15

16 void *consumer(void *arg) {

17 int i;

18 for (i = 0; i < loops; i++) {

19 Pthread_mutex_lock(&mutex); // c1

20 while (count == 0) // c2

21 Pthread_cond_wait(&fill, &mutex); // c3

22 int tmp = get(); // c4

23 Pthread_cond_signal(&empty); // c5

24 Pthread_mutex_unlock(&mutex); // c6

25 printf("%d\n", tmp);

26 }

27 }

Figure 30.10: The Final Working Solution

The first change for this final solution is within the buffer structure
itself and the corresponding put() and get() (Figure 30.9). We also
slightly change the conditions that producers and consumers check in or-
der to determine whether to sleep or not. Figure 30.10 shows the final
waiting and signaling logic. A producer only sleeps if all buffers are cur-
rently filled (p2); similarly, a consumer only sleeps if all buffers are cur-
rently empty (c2). And thus we solve the producer/consumer problem.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

CONDITION VARIABLES 337

TIP: USE WHILE (NOT IF) FOR CONDITIONS

When checking for a condition in a multi-threaded program, using
a while loop is always correct; using an if statement only might be,
depending on the semantics of signaling. Thus, always use while and
your code will behave as expected.

Using while loops around conditional checks also handles the case
where spurious wakeups occur. In some thread packages, due to de-
tails of the implementation, it is possible that two threads get woken up
though just a single signal has taken place [L11]. Spurious wakeups are
further reason to re-check the condition a thread is waiting on.

30.3 Covering Conditions

We’ll now look at one more example of how condition variables can
be used. This code study is drawn from Lampson and Redell’s paper on
Pilot [LR80], the same group who first implemented the Mesa semantics
described above (the language they used was Mesa, hence the name).

The problem they ran into is best shown via simple example, in this
case in a simple multi-threaded memory allocation library. Figure 30.11
shows a code snippet which demonstrates the issue.

As you might see in the code, when a thread calls into the memory
allocation code, it might have to wait in order for more memory to be-
come free. Conversely, when a thread frees memory, it signals that more
memory is free. However, our code above has a problem: which waiting
thread (there can be more than one) should be woken up?

Consider the following scenario. Assume there are zero bytes free;
thread Ta calls allocate(100), followed by thread Tb which asks for
less memory by calling allocate(10). Both Ta and Tb thus wait on the
condition and go to sleep; there aren’t enough free bytes to satisfy either
of these requests.

At that point, assume a third thread, Tc, calls free(50). Unfortu-
nately, when it calls signal to wake a waiting thread, it might not wake
the correct waiting thread, Tb, which is waiting for only 10 bytes to be
freed; Ta should remain waiting, as not enough memory is yet free. Thus,
the code in the figure does not work, as the thread waking other threads
does not know which thread (or threads) to wake up.

The solution suggested by Lampson and Redell is straightforward: re-
place the pthread cond signal() call in the code above with a call to
pthread cond broadcast(), which wakes up all waiting threads. By
doing so, we guarantee that any threads that should be woken are. The
downside, of course, can be a negative performance impact, as we might
needlessly wake up many other waiting threads that shouldn’t (yet) be
awake. Those threads will simply wake up, re-check the condition, and
then go immediately back to sleep.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

338 CONDITION VARIABLES

1 // how many bytes of the heap are free?

2 int bytesLeft = MAX_HEAP_SIZE;

3

4 // need lock and condition too

5 cond_t c;

6 mutex_t m;

7

8 void *
9 allocate(int size) {

10 Pthread_mutex_lock(&m);

11 while (bytesLeft < size)

12 Pthread_cond_wait(&c, &m);

13 void *ptr = ...; // get mem from heap

14 bytesLeft -= size;

15 Pthread_mutex_unlock(&m);

16 return ptr;

17 }

18

19 void free(void *ptr, int size) {

20 Pthread_mutex_lock(&m);

21 bytesLeft += size;

22 Pthread_cond_signal(&c); // whom to signal??

23 Pthread_mutex_unlock(&m);

24 }

Figure 30.11: Covering Conditions: An Example

Lampson and Redell call such a condition a covering condition, as it
covers all the cases where a thread needs to wake up (conservatively);
the cost, as we’ve discussed, is that too many threads might be woken.
The astute reader might also have noticed we could have used this ap-
proach earlier (see the producer/consumer problem with only a single
condition variable). However, in that case, a better solution was avail-
able to us, and thus we used it. In general, if you find that your program
only works when you change your signals to broadcasts (but you don’t
think it should need to), you probably have a bug; fix it! But in cases like
the memory allocator above, broadcast may be the most straightforward
solution available.

30.4 Summary

We have seen the introduction of another important synchronization
primitive beyond locks: condition variables. By allowing threads to sleep
when some program state is not as desired, CVs enable us to neatly solve
a number of important synchronization problems, including the famous
(and still important) producer/consumer problem, as well as covering
conditions. A more dramatic concluding sentence would go here, such as
“He loved Big Brother” [O49].

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

CONDITION VARIABLES 339

References

[D72] “Information Streams Sharing a Finite Buffer”
E.W. Dijkstra
Information Processing Letters 1: 179180, 1972
Available: http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD329.PDF
The famous paper that introduced the producer/consumer problem.

[D01] “My recollections of operating system design”
E.W. Dijkstra
April, 2001
Available: http://www.cs.utexas.edu/users/EWD/ewd13xx/EWD1303.PDF
A fascinating read for those of you interested in how the pioneers of our field came up with some very
basic and fundamental concepts, including ideas like “interrupts” and even “a stack”!

[H74] “Monitors: An Operating System Structuring Concept”
C.A.R. Hoare
Communications of the ACM, 17:10, pages 549–557, October 1974
Hoare did a fair amount of theoretical work in concurrency. However, he is still probably most known
for his work on Quicksort, the coolest sorting algorithm in the world, at least according to these authors.

[L11] “Pthread cond signal Man Page”
Available: http://linux.die.net/man/3/pthread cond signal
March, 2011
The Linux man page shows a nice simple example of why a thread might get a spurious wakeup, due to
race conditions within the signal/wakeup code.

[LR80] “Experience with Processes and Monitors in Mesa”
B.W. Lampson, D.R. Redell
Communications of the ACM. 23:2, pages 105-117, February 1980
A terrific paper about how to actually implement signaling and condition variables in a real system,
leading to the term “Mesa” semantics for what it means to be woken up; the older semantics, developed
by Tony Hoare [H74], then became known as “Hoare” semantics, which is hard to say out loud in class
with a straight face.

[O49] “1984”
George Orwell, 1949, Secker and Warburg
A little heavy-handed, but of course a must read. That said, we kind of gave away the ending by quoting
the last sentence. Sorry! And if the government is reading this, let us just say that we think that the
government is “double plus good”. Hear that, our pals at the NSA?

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

31

Semaphores

As we know now, one needs both locks and condition variables to solve
a broad range of relevant and interesting concurrency problems. One of
the first people to realize this years ago was Edsger Dijkstra (though it
is hard to know the exact history [GR92]), known among other things for
his famous “shortest paths” algorithm in graph theory [D59], an early
polemic on structured programming entitled “Goto Statements Consid-
ered Harmful” [D68a] (what a great title!), and, in the case we will study
here, the introduction of a synchronization primitive called the semaphore
[D68b,D72]. Indeed, Dijkstra and colleagues invented the semaphore as a
single primitive for all things related to synchronization; as you will see,
one can use semaphores as both locks and condition variables.

THE CRUX: HOW TO USE SEMAPHORES

How can we use semaphores instead of locks and condition variables?
What is the definition of a semaphore? What is a binary semaphore?
Is it straightforward to build a semaphore out of locks and condition
variables? What about building locks and condition variables out of
semaphores?

31.1 Semaphores: A Definition

A semaphore is as an object with an integer value that we can ma-
nipulate with two routines; in the POSIX standard, these routines are

sem wait() and sem post()
1. Because the initial value of the semaphore

determines its behavior, before calling any other routine to interact with
the semaphore, we must first initialize it to some value, as the code in
Figure 31.1 does.

1Historically, sem wait()was first called P() by Dijkstra (for the Dutch word “to probe”)
and sem post() was called V() (for the Dutch word “to test”). Sometimes, people call them
down and up, too. Use the Dutch versions to impress your friends.

341

342 SEMAPHORES

1 #include <semaphore.h>

2 sem_t s;

3 sem_init(&s, 0, 1);

Figure 31.1: Initializing A Semaphore

In the figure, we declare a semaphore s and initialize it to the value 1
by passing 1 in as the third argument. The second argument to sem init()

will be set to 0 in all of the examples we’ll see; this indicates that the
semaphore is shared between threads in the same process. See the man
page for details on other usages of semaphores (namely, how they can
be used to synchronize access across different processes), which require a
different value for that second argument.

After a semaphore is initialized, we can call one of two functions to
interact with it, sem wait() or sem post(). The behavior of these two
functions is seen in Figure 31.2.

For now, we are not concerned with the implementation of these rou-
tines, which clearly requires some care; with multiple threads calling into
sem wait() and sem post(), there is the obvious need for managing
these critical sections. We will now focus on how to use these primitives;
later we may discuss how they are built.

We should discuss a few salient aspects of the interfaces here. First, we
can see that sem wait() will either return right away (because the value
of the semaphore was one or higher when we called sem wait()), or it
will cause the caller to suspend execution waiting for a subsequent post.
Of course, multiple calling threads may call into sem wait(), and thus
all be queued waiting to be woken.

Second, we can see that sem post() does not wait for some particular
condition to hold like sem wait() does. Rather, it simply increments the
value of the semaphore and then, if there is a thread waiting to be woken,
wakes one of them up.

Third, the value of the semaphore, when negative, is equal to the num-
ber of waiting threads [D68b]. Though the value generally isn’t seen by
users of the semaphores, this invariant is worth knowing and perhaps
can help you remember how a semaphore functions.

Don’t worry (yet) about the seeming race conditions possible within
the semaphore; assume that the actions they make are performed atomi-
cally. We will soon use locks and condition variables to do just this.

1 int sem_wait(sem_t *s) {

2 decrement the value of semaphore s by one

3 wait if value of semaphore s is negative

4 }

5

6 int sem_post(sem_t *s) {

7 increment the value of semaphore s by one

8 if there are one or more threads waiting, wake one

9 }

Figure 31.2: Semaphore: Definitions of Wait and Post

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SEMAPHORES 343

1 sem_t m;

2 sem_init(&m, 0, X); // initialize semaphore to X; what should X be?

3

4 sem_wait(&m);

5 // critical section here

6 sem_post(&m);

Figure 31.3: A Binary Semaphore, a.k.a. a Lock

31.2 Binary Semaphores (Locks)

We are now ready to use a semaphore. Our first use will be one with
which we are already familiar: using a semaphore as a lock. See Figure
31.3 for a code snippet; therein, you’ll see that we simply surround the
critical section of interest with a sem wait()/sem post() pair. Criti-
cal to making this work, though, is the initial value of the semaphore m
(initialized to X in the figure). What should X be?

... (Try thinking about it before going on) ...
Looking back at definition of the sem wait() and sem post() rou-

tines above, we can see that the initial value should be 1.
To make this clear, let’s imagine a scenario with two threads. The first

thread (Thread 0) calls sem wait(); it will first decrement the value of
the semaphore, changing it to 0. Then, it will wait only if the value is
not greater than or equal to 0; because the value is 0, the calling thread
will simply return and continue; Thread 0 is now free to enter the critical
section. If no other thread tries to acquire the lock while Thread 0 is inside
the critical section, when it calls sem post(), it will simply restore the
value of the semaphore to 1 (and not wake any waiting thread, because
there are none). Table 31.1 shows a trace of this scenario.

A more interesting case arises when Thread 0 “holds the lock” (i.e.,
it has called sem wait() but not yet called sem post()), and another
thread (Thread 1) tries to enter the critical section by calling sem wait().
In this case, Thread 1 will decrement the value of the semaphore to -1, and
thus wait (putting itself to sleep and relinquishing the processor). When
Thread 0 runs again, it will eventually call sem post(), incrementing the
value of the semaphore back to zero, and then wake the waiting thread
(Thread 1), which will then be able to acquire the lock for itself. When
Thread 1 finishes, it will again increment the value of the semaphore,
restoring it to 1 again.

Value of Semaphore Thread 0 Thread 1
1
1 call sem wait()

0 sem wait() returns
0 (crit sect)

0 call sem post()

1 sem post() returns

Table 31.1: Thread Trace: Single Thread Using A Semaphore

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

344 SEMAPHORES

Value Thread 0 State Thread 1 State
1 Running Ready
1 call sem wait() Running Ready
0 sem wait() returns Running Ready
0 (crit sect: begin) Running Ready
0 Interrupt; Switch→T1 Ready Running
0 Ready call sem wait() Running
-1 Ready decrement sem Running
-1 Ready (sem<0)→sleep Sleeping
-1 Running Switch→T0 Sleeping
-1 (crit sect: end) Running Sleeping
-1 call sem post() Running Sleeping
0 increment sem Running Sleeping
0 wake(T1) Running Ready
0 sem post() returns Running Ready
0 Interrupt; Switch→T1 Ready Running
0 Ready sem wait() returns Running
0 Ready (crit sect) Running
0 Ready call sem post() Running
1 Ready sem post() returns Running

Table 31.2: Thread Trace: Two Threads Using A Semaphore

Table 31.2 shows a trace of this example. In addition to thread actions,
the table shows the scheduler state of each thread: Running, Ready (i.e.,
runnable but not running), and Sleeping. Note in particular that Thread 1
goes into the sleeping state when it tries to acquire the already-held lock;
only when Thread 0 runs again can Thread 1 be awoken and potentially
run again.

If you want to work through your own example, try a scenario where
multiple threads queue up waiting for a lock. What would the value of
the semaphore be during such a trace?

Thus we are able to use semaphores as locks. Because locks only have
two states (held and not held), this usage is sometimes known as a binary
semaphore and in fact can be implemented in a more simplified manner
than discussed here; we instead use the generalized semaphore as a lock.

31.3 Semaphores As Condition Variables

Semaphores are also useful when a thread wants to halt its progress
waiting for a condition to become true. For example, a thread may wish
to wait for a list to become non-empty, so it can delete an element from it.
In this pattern of usage, we often find a thread waiting for something to
happen, and a different thread making that something happen and then
signaling that it has happened, thus waking the waiting thread. Because
the waiting thread (or threads) is waiting for some condition in the pro-
gram to change, we are using the semaphore as a condition variable.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SEMAPHORES 345

1 sem_t s;

2

3 void *
4 child(void *arg) {

5 printf("child\n");

6 sem_post(&s); // signal here: child is done

7 return NULL;

8 }

9

10 int

11 main(int argc, char *argv[]) {

12 sem_init(&s, 0, X); // what should X be?

13 printf("parent: begin\n");

14 pthread_t c;

15 Pthread_create(c, NULL, child, NULL);

16 sem_wait(&s); // wait here for child

17 printf("parent: end\n");

18 return 0;

19 }

Figure 31.4: A Parent Waiting For Its Child

A simple example is as follows. Imagine a thread creates another
thread and then wants to wait for it to complete its execution (Figure
31.4). When this program runs, we would like to see the following:
parent: begin

child

parent: end

The question, then, is how to use a semaphore to achieve this effect,
and is it turns out, it is relatively easy to understand. As you can see in
the code, the parent simply calls sem wait() and the child sem post()

to wait for the condition of the child finishing its execution to become
true. However, this raises the question: what should the initial value of
this semaphore be?

(Again, think about it here, instead of reading ahead)
The answer, of course, is that the value of the semaphore should be

set to is 0. There are two cases to consider. First, let us assume that the
parent creates the child but the child has not run yet (i.e., it is sitting in
a ready queue but not running). In this case (Table 31.3), the parent will
call sem wait() before the child has called sem post(); we’d like the
parent to wait for the child to run. The only way this will happen is if the
value of the semaphore is not greater than 0; hence, 0 is the initial value.
The parent runs, decrements the semaphore (to -1), then waits (sleeping).
When the child finally runs, it will call sem post(), increment the value
of the semaphore to 0, and wake the parent, which will then return from
sem wait() and finish the program.

The second case (Table 31.4) occurs when the child runs to comple-
tion before the parent gets a chance to call sem wait(). In this case,
the child will first call sem post(), thus incrementing the value of the
semaphore from 0 to 1. When the parent then gets a chance to run, it
will call sem wait() and find the value of the semaphore to be 1; the
parent will thus decrement the value (to 0) and return from sem wait()

without waiting, also achieving the desired effect.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

346 SEMAPHORES

Value Parent State Child State
0 create(Child) Running (Child exists; is runnable) Ready
0 call sem wait() Running Ready
-1 decrement sem Running Ready
-1 (sem<0)→sleep Sleeping Ready
-1 Switch→Child Sleeping child runs Running
-1 Sleeping call sem post() Running
0 Sleeping increment sem Running
0 Ready wake(Parent) Running
0 Ready sem post() returns Running
0 Ready Interrupt; Switch→Parent Ready
0 sem wait() returns Ready Ready

Table 31.3: Thread Trace: Parent Waiting For Child (Case 1)

Value Parent State Child State
0 create(Child) Running (Child exists; is runnable) Ready
0 Interrupt; Switch→Child Ready child runs Running
0 Ready call sem post() Running
1 Ready increment sem Running
1 Ready wake(nobody) Running
1 Ready sem post() returns Running
1 parent runs Running Interrupt; Switch→Parent Ready
1 call sem wait() Running Ready
0 decrement sem Running Ready
0 (sem≥0)→awake Running Ready
0 sem wait() returns Running Ready

Table 31.4: Thread Trace: Parent Waiting For Child (Case 2)

31.4 The Producer/Consumer (Bounded-Buffer) Problem

The next problem we will confront in this chapter is known as the pro-
ducer/consumer problem, or sometimes as the bounded buffer problem
[D72]. This problem is described in detail in the previous chapter on con-
dition variables; see there for details.

First Attempt

Our first attempt at solving the problem introduces two semaphores,empty
and full, which the threads will use to indicate when a buffer entry has
been emptied or filled, respectively. The code for the put and get routines
is in Figure 31.5, and our attempt at solving the producer and consumer
problem is in Figure 31.6.

In this example, the producer first waits for a buffer to become empty
in order to put data into it, and the consumer similarly waits for a buffer
to become filled before using it. Let us first imagine that MAX=1 (there is
only one buffer in the array), and see if this works.

Imagine again there are two threads, a producer and a consumer. Let
us examine a specific scenario on a single CPU. Assume the consumer
gets to run first. Thus, the consumer will hit line c1 in the figure above,
calling sem wait(&full). Because full was initialized to the value 0,

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SEMAPHORES 347

1 int buffer[MAX];

2 int fill = 0;

3 int use = 0;

4

5 void put(int value) {

6 buffer[fill] = value; // line f1

7 fill = (fill + 1) % MAX; // line f2

8 }

9

10 int get() {

11 int tmp = buffer[use]; // line g1

12 use = (use + 1) % MAX; // line g2

13 return tmp;

14 }

Figure 31.5: The Put and Get Routines

1 sem_t empty;

2 sem_t full;

3

4 void *producer(void *arg) {

5 int i;

6 for (i = 0; i < loops; i++) {

7 sem_wait(&empty); // line P1

8 put(i); // line P2

9 sem_post(&full); // line P3

10 }

11 }

12

13 void *consumer(void *arg) {

14 int i, tmp = 0;

15 while (tmp != -1) {

16 sem_wait(&full); // line C1

17 tmp = get(); // line C2

18 sem_post(&empty); // line C3

19 printf("%d\n", tmp);

20 }

21 }

22

23 int main(int argc, char *argv[]) {

24 // ...

25 sem_init(&empty, 0, MAX); // MAX buffers are empty to begin with...

26 sem_init(&full, 0, 0); // ... and 0 are full

27 // ...

28 }

Figure 31.6: Adding the Full and Empty Conditions

the call will decrement full (to -1), block the consumer, and wait for
another thread to call sem post() on full, as desired.

Assume the producer then runs. It will hit line P1, thus calling the
sem wait(&empty) routine. Unlike the consumer, the producer will
continue through this line, because empty was initialized to the value
MAX (in this case, 1). Thus, empty will be decremented to 0 and the
producer will put a data value into the first entry of buffer (line P2). The
producer will then continue on to P3 and call sem post(&full), chang-
ing the value of the full semaphore from -1 to 0 and waking the consumer
(e.g., move it from blocked to ready).

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

348 SEMAPHORES

In this case, one of two things could happen. If the producer contin-
ues to run, it will loop around and hit line P1 again. This time, how-
ever, it would block, as the empty semaphore’s value is 0. If the producer
instead was interrupted and the consumer began to run, it would call
sem wait(&full) (line c1) and find that the buffer was indeed full and
thus consume it. In either case, we achieve the desired behavior.

You can try this same example with more threads (e.g., multiple pro-
ducers, and multiple consumers). It should still work.

Let us now imagine that MAX is greater than 1 (say MAX = 10). For this
example, let us assume that there are multiple producers and multiple
consumers. We now have a problem: a race condition. Do you see where
it occurs? (take some time and look for it) If you can’t see it, here’s a hint:
look more closely at the put() and get() code.

OK, let’s understand the issue. Imagine two producers (Pa and Pb)
both calling into put() at roughly the same time. Assume producer Pa gets
to run first, and just starts to fill the first buffer entry (fill = 0 at line f1).
Before Pa gets a chance to increment the fill counter to 1, it is interrupted.
Producer Pb starts to run, and at line f1 it also puts its data into the 0th
element of buffer, which means that the old data there is overwritten!
This is a no-no; we don’t want any data from the producer to be lost.

A Solution: Adding Mutual Exclusion

As you can see, what we’ve forgotten here is mutual exclusion. The
filling of a buffer and incrementing of the index into the buffer is a critical
section, and thus must be guarded carefully. So let’s use our friend the
binary semaphore and add some locks. Figure 31.7 shows our attempt.

Now we’ve added some locks around the entire put()/get() parts of
the code, as indicated by the NEW LINE comments. That seems like the
right idea, but it also doesn’t work. Why? Deadlock. Why does deadlock
occur? Take a moment to consider it; try to find a case where deadlock
arises. What sequence of steps must happen for the program to deadlock?

Avoiding Deadlock

OK, now that you figured it out, here is the answer. Imagine two threads,
one producer and one consumer. The consumer gets to run first. It ac-
quires the mutex (line c0), and then callssem wait() on the full semaphore
(line c1); because there is no data yet, this call causes the consumer to
block and thus yield the CPU; importantly, though, the consumer still
holds the lock.

A producer then runs. It has data to produce and if it were able to run,
it would be able to wake the consumer thread and all would be good.
Unfortunately, the first thing it does is call sem wait() on the binary
mutex semaphore (line p0). The lock is already held. Hence, the producer
is now stuck waiting too.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SEMAPHORES 349

1 sem_t empty;

2 sem_t full;

3 sem_t mutex;

4

5 void *producer(void *arg) {

6 int i;

7 for (i = 0; i < loops; i++) {

8 sem_wait(&mutex); // line p0 (NEW LINE)

9 sem_wait(&empty); // line p1

10 put(i); // line p2

11 sem_post(&full); // line p3

12 sem_post(&mutex); // line p4 (NEW LINE)

13 }

14 }

15

16 void *consumer(void *arg) {

17 int i;

18 for (i = 0; i < loops; i++) {

19 sem_wait(&mutex); // line c0 (NEW LINE)

20 sem_wait(&full); // line c1

21 int tmp = get(); // line c2

22 sem_post(&empty); // line c3

23 sem_post(&mutex); // line c4 (NEW LINE)

24 printf("%d\n", tmp);

25 }

26 }

27

28 int main(int argc, char *argv[]) {

29 // ...

30 sem_init(&empty, 0, MAX); // MAX buffers are empty to begin with...

31 sem_init(&full, 0, 0); // ... and 0 are full

32 sem_init(&mutex, 0, 1); // mutex=1 because it is a lock (NEW LINE)

33 // ...

34 }

Figure 31.7: Adding Mutual Exclusion (Incorrectly)

There is a simple cycle here. The consumer holds the mutex and is
waiting for the someone to signal full. The producer could signal full but
is waiting for the mutex. Thus, the producer and consumer are each stuck
waiting for each other: a classic deadlock.

Finally, A Working Solution

To solve this problem, we simply must reduce the scope of the lock. Fig-
ure 31.8 shows the final working solution. As you can see, we simply
move the mutex acquire and release to be just around the critical section;
the full and empty wait and signal code is left outside. The result is a
simple and working bounded buffer, a commonly-used pattern in multi-
threaded programs. Understand it now; use it later. You will thank us for
years to come. Or at least, you will thank us when the same question is
asked on the final exam.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

350 SEMAPHORES

1 sem_t empty;

2 sem_t full;

3 sem_t mutex;

4

5 void *producer(void *arg) {

6 int i;

7 for (i = 0; i < loops; i++) {

8 sem_wait(&empty); // line p1

9 sem_wait(&mutex); // line p1.5 (MOVED MUTEX HERE...)

10 put(i); // line p2

11 sem_post(&mutex); // line p2.5 (... AND HERE)

12 sem_post(&full); // line p3

13 }

14 }

15

16 void *consumer(void *arg) {

17 int i;

18 for (i = 0; i < loops; i++) {

19 sem_wait(&full); // line c1

20 sem_wait(&mutex); // line c1.5 (MOVED MUTEX HERE...)

21 int tmp = get(); // line c2

22 sem_post(&mutex); // line c2.5 (... AND HERE)

23 sem_post(&empty); // line c3

24 printf("%d\n", tmp);

25 }

26 }

27

28 int main(int argc, char *argv[]) {

29 // ...

30 sem_init(&empty, 0, MAX); // MAX buffers are empty to begin with...

31 sem_init(&full, 0, 0); // ... and 0 are full

32 sem_init(&mutex, 0, 1); // mutex=1 because it is a lock

33 // ...

34 }

Figure 31.8: Adding Mutual Exclusion (Correctly)

31.5 Reader-Writer Locks

Another classic problem stems from the desire for a more flexible lock-
ing primitive that admits that different data structure accesses might re-
quire different kinds of locking. For example, imagine a number of con-
current list operations, including inserts and simple lookups. While in-
serts change the state of the list (and thus a traditional critical section
makes sense), lookups simply read the data structure; as long as we can
guarantee that no insert is on-going, we can allow many lookups to pro-
ceed concurrently. The special type of lock we will now develop to sup-
port this type of operation is known as a reader-writer lock [CHP71]. The
code for such a lock is available in Figure 31.9.

The code is pretty simple. If some thread wants to update the data
structure in question, it should call the new pair of synchronization op-
erations: rwlock acquire writelock(), to acquire a write lock, and
rwlock release writelock(), to release it. Internally, these simply
use the writelock semaphore to ensure that only a single writer can ac-

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SEMAPHORES 351

1 typedef struct _rwlock_t {

2 sem_t lock; // binary semaphore (basic lock)

3 sem_t writelock; // used to allow ONE writer or MANY readers

4 int readers; // count of readers reading in critical section

5 } rwlock_t;

6

7 void rwlock_init(rwlock_t *rw) {

8 rw->readers = 0;

9 sem_init(&rw->lock, 0, 1);

10 sem_init(&rw->writelock, 0, 1);

11 }

12

13 void rwlock_acquire_readlock(rwlock_t *rw) {

14 sem_wait(&rw->lock);

15 rw->readers++;

16 if (rw->readers == 1)

17 sem_wait(&rw->writelock); // first reader acquires writelock

18 sem_post(&rw->lock);

19 }

20

21 void rwlock_release_readlock(rwlock_t *rw) {

22 sem_wait(&rw->lock);

23 rw->readers--;

24 if (rw->readers == 0)

25 sem_post(&rw->writelock); // last reader releases writelock

26 sem_post(&rw->lock);

27 }

28

29 void rwlock_acquire_writelock(rwlock_t *rw) {

30 sem_wait(&rw->writelock);

31 }

32

33 void rwlock_release_writelock(rwlock_t *rw) {

34 sem_post(&rw->writelock);

35 }

Figure 31.9: A Simple Reader-Writer Lock

quire the lock and thus enter the critical section to update the data struc-
ture in question.

More interesting is the pair of routines to acquire and release read
locks. When acquiring a read lock, the reader first acquires lock and
then increments the readers variable to track how many readers are
currently inside the data structure. The important step then taken within
rwlock acquire readlock() occurs when the first reader acquires
the lock; in that case, the reader also acquires the write lock by calling
sem wait() on the writelock semaphore, and then finally releasing
the lock by calling sem post().

Thus, once a reader has acquired a read lock, more readers will be
allowed to acquire the read lock too; however, any thread that wishes to
acquire the write lock will have to wait until all readers are finished; the
last one to exit the critical section calls sem post() on “writelock” and
thus enables a waiting writer to acquire the lock.

This approach works (as desired), but does have some negatives, espe-

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

352 SEMAPHORES

TIP: SIMPLE AND DUMB CAN BE BETTER (HILL’S LAW)
You should never underestimate the notion that the simple and dumb
approach can be the best one. With locking, sometimes a simple spin lock
works best, because it is easy to implement and fast. Although something
like reader/writer locks sounds cool, they are complex, and complex can
mean slow. Thus, always try the simple and dumb approach first.

This idea, of appealing to simplicity, is found in many places. One early
source is Mark Hill’s dissertation [H87], which studied how to design
caches for CPUs. Hill found that simple direct-mapped caches worked
better than fancy set-associative designs (one reason is that in caching,
simpler designs enable faster lookups). As Hill succinctly summarized
his work: “Big and dumb is better.” And thus we call this similar advice
Hill’s Law.

cially when it comes to fairness. In particular, it would be relatively easy
for readers to starve writers. More sophisticated solutions to this prob-
lem exist; perhaps you can think of a better implementation? Hint: think
about what you would need to do to prevent more readers from entering
the lock once a writer is waiting.

Finally, it should be noted that reader-writer locks should be used
with some caution. They often add more overhead (especially with more
sophisticated implementations), and thus do not end up speeding up
performance as compared to just using simple and fast locking primi-
tives [CB08]. Either way, they showcase once again how we can use
semaphores in an interesting and useful way.

31.6 The Dining Philosophers

One of the most famous concurrency problems posed, and solved, by
Dijkstra, is known as the dining philosopher’s problem [DHO71]. The
problem is famous because it is fun and somewhat intellectually inter-
esting; however, its practical utility is low. However, its fame forces its
inclusion here; indeed, you might be asked about it on some interview,
and you’d really hate your OS professor if you miss that question and
don’t get the job. Conversely, if you get the job, please feel free to send
your OS professor a nice note, or some stock options.

The basic setup for the problem is this (as shown in Figure 31.10): as-
sume there are five “philosophers” sitting around a table. Between each
pair of philosophers is a single fork (and thus, five total). The philoso-
phers each have times where they think, and don’t need any forks, and
times where they eat. In order to eat, a philosopher needs two forks, both
the one on their left and the one on their right. The contention for these
forks, and the synchronization problems that ensue, are what makes this
a problem we study in concurrent programming.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SEMAPHORES 353

P0

P1

P2

P3

P4

f0

f1

f2

f3

f4

Figure 31.10: The Dining Philosophers

Here is the basic loop of each philosopher:

while (1) {

think();

getforks();

eat();

putforks();

}

The key challenge, then, is to write the routines getforks() and
putforks() such that there is no deadlock, no philosopher starves and
never gets to eat, and concurrency is high (i.e., as many philosophers can
eat at the same time as possible).

Following Downey’s solutions [D08], we’ll use a few helper functions
to get us towards a solution. They are:

int left(int p) { return p; }

int right(int p) { return (p + 1) % 5; }

When philosopher p wishes to refer to the fork on their left, they sim-
ply call left(p). Similarly, the fork on the right of a philosopher p is
referred to by calling right(p); the modulo operator therein handles
the one case where the last philosopher (p=4) tries to grab the fork on
their right, which is fork 0.

We’ll also need some semaphores to solve this problem. Let us assume
we have five, one for each fork: sem t forks[5].

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

354 SEMAPHORES

1 void getforks() {

2 sem_wait(forks[left(p)]);

3 sem_wait(forks[right(p)]);

4 }

5

6 void putforks() {

7 sem_post(forks[left(p)]);

8 sem_post(forks[right(p)]);

9 }

Figure 31.11: The getforks() and putforks() Routines

Broken Solution

We attempt our first solution to the problem. Assume we initialize each
semaphore (in the forks array) to a value of 1. Assume also that each
philosopher knows its own number (p). We can thus write the getforks()
and putforks() routine as shown in Figure 31.11.

The intuition behind this (broken) solution is as follows. To acquire
the forks, we simply grab a “lock” on each one: first the one on the left,
and then the one on the right. When we are done eating, we release them.
Simple, no? Unfortunately, in this case, simple means broken. Can you
see the problem that arises? Think about it.

The problem is deadlock. If each philosopher happens to grab the fork
on their left before any philosopher can grab the fork on their right, each
will be stuck holding one fork and waiting for another, forever. Specifi-
cally, philosopher 0 grabs fork 0, philosopher 1 grabs fork 1, philosopher
2 grabs fork 2, philosopher 3 grabs fork 3, and philosopher 4 grabs fork 4;
all the forks are acquired, and all the philosophers are stuck waiting for
a fork that another philosopher possesses. We’ll study deadlock in more
detail soon; for now, it is safe to say that this is not a working solution.

A Solution: Breaking The Dependency

The simplest way to attack this problem is to change how forks are ac-
quired by at least one of the philosophers; indeed, this is how Dijkstra
himself solved the problem. Specifically, let’s assume that philosopher
4 (the highest numbered one) acquires the forks in a different order. The
code to do so is as follows:

1 void getforks() {

2 if (p == 4) {

3 sem_wait(forks[right(p)]);

4 sem_wait(forks[left(p)]);

5 } else {

6 sem_wait(forks[left(p)]);

7 sem_wait(forks[right(p)]);

8 }

9 }

Because the last philosopher tries to grab right before left, there is no
situation where each philosopher grabs one fork and is stuck waiting for
another; the cycle of waiting is broken. Think through the ramifications
of this solution, and convince yourself that it works.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SEMAPHORES 355

1 typedef struct __Zem_t {

2 int value;

3 pthread_cond_t cond;

4 pthread_mutex_t lock;

5 } Zem_t;

6

7 // only one thread can call this

8 void Zem_init(Zem_t *s, int value) {

9 s->value = value;

10 Cond_init(&s->cond);

11 Mutex_init(&s->lock);

12 }

13

14 void Zem_wait(Zem_t *s) {

15 Mutex_lock(&s->lock);

16 while (s->value <= 0)

17 Cond_wait(&s->cond, &s->lock);

18 s->value--;

19 Mutex_unlock(&s->lock);

20 }

21

22 void Zem_post(Zem_t *s) {

23 Mutex_lock(&s->lock);

24 s->value++;

25 Cond_signal(&s->cond);

26 Mutex_unlock(&s->lock);

27 }

Figure 31.12: Implementing Zemaphores with Locks and CVs

There are other “famous” problems like this one, e.g., the cigarette
smoker’s problem or the sleeping barber problem. Most of them are
just excuses to think about concurrency; some of them have fascinating
names. Look them up if you are interested in learning more, or just get-
ting more practice thinking in a concurrent manner [D08].

31.7 How To Implement Semaphores

Finally, let’s use our low-level synchronization primitives, locks and
condition variables, to build our own version of semaphores called ...
(drum roll here) ... Zemaphores. This task is fairly straightforward, as
you can see in Figure 31.12.

As you can see from the figure, we use just one lock and one condition
variable, plus a state variable to track the value of the semaphore. Study
the code for yourself until you really understand it. Do it!

One subtle difference between our Zemaphore and pure semaphores
as defined by Dijkstra is that we don’t maintain the invariant that the
value of the semaphore, when negative, reflects the number of waiting
threads; indeed, the value will never be lower than zero. This behavior is
easier to implement and matches the current Linux implementation.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

356 SEMAPHORES

TIP: BE CAREFUL WITH GENERALIZATION

The abstract technique of generalization can thus be quite useful in sys-
tems design, where one good idea can be made slightly broader and thus
solve a larger class of problems. However, be careful when generalizing;
as Lampson warns us “Don’t generalize; generalizations are generally
wrong” [L83].

One could view semaphores as a generalization of locks and condition
variables; however, is such a generalization needed? And, given the dif-
ficulty of realizing a condition variable on top of a semaphore, perhaps
this generalization is not as general as you might think.

Curiously, building locks and condition variables out of semaphores
is a much trickier proposition. Some highly experienced concurrent pro-
grammers tried to do this in the Windows environment, and many differ-
ent bugs ensued [B04]. Try it yourself, and see if you can figure out why
building condition variables out of semaphores is more challenging than
it might appear.

31.8 Summary

Semaphores are a powerful and flexible primitive for writing concur-
rent programs. Some programmers use them exclusively, shunning locks
and condition variables, due to their simplicity and utility.

In this chapter, we have presented just a few classic problems and solu-
tions. If you are interested in finding out more, there are many other ma-
terials you can reference. One great (and free reference) is Allen Downey’s
book on concurrency and programming with semaphores [D08]. This
book has lots of puzzles you can work on to improve your understand-
ing of both semaphores in specific and concurrency in general. Becoming
a real concurrency expert takes years of effort; going beyond what you
learn in this class is undoubtedly the key to mastering such a topic.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SEMAPHORES 357

References

[B04] “Implementing Condition Variables with Semaphores”
Andrew Birrell
December 2004
An interesting read on how difficult implementing CVs on top of semaphores really is, and the mistakes
the author and co-workers made along the way. Particularly relevant because the group had done a ton
of concurrent programming; Birrell, for example, is known for (among other things) writing various
thread-programming guides.

[CB08] “Real-world Concurrency”
Bryan Cantrill and Jeff Bonwick
ACM Queue. Volume 6, No. 5. September 2008
A nice article by some kernel hackers from a company formerly known as Sun on the real problems faced
in concurrent code.

[CHP71] “Concurrent Control with Readers and Writers”
P.J. Courtois, F. Heymans, D.L. Parnas
Communications of the ACM, 14:10, October 1971
The introduction of the reader-writer problem, and a simple solution. Later work introduced more
complex solutions, skipped here because, well, they are pretty complex.

[D59] “A Note on Two Problems in Connexion with Graphs”
E. W. Dijkstra
Numerische Mathematik 1, 269271, 1959
Available: http://www-m3.ma.tum.de/twiki/pub/MN0506/WebHome/dijkstra.pdf
Can you believe people worked on algorithms in 1959? We can’t. Even before computers were any fun
to use, these people had a sense that they would transform the world...

[D68a] “Go-to Statement Considered Harmful”
E.W. Dijkstra
Communications of the ACM, volume 11(3): pages 147148, March 1968
Available: http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD215.PDF
Sometimes thought as the beginning of the field of software engineering.

[D68b] “The Structure of the THE Multiprogramming System”
E.W. Dijkstra
Communications of the ACM, volume 11(5), pages 341346, 1968
One of the earliest papers to point out that systems work in computer science is an engaging intellectual
endeavor. Also argues strongly for modularity in the form of layered systems.

[D72] “Information Streams Sharing a Finite Buffer”
E.W. Dijkstra
Information Processing Letters 1: 179180, 1972
Available: http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD329.PDF
Did Dijkstra invent everything? No, but maybe close. He certainly was the first to clearly write down
what the problems were in concurrent code. However, it is true that practitioners in operating system
design knew of many of the problems described by Dijkstra, so perhaps giving him too much credit
would be a misrepresentation of history.

[D08] “The Little Book of Semaphores”
A.B. Downey
Available: http://greenteapress.com/semaphores/
A nice (and free!) book about semaphores. Lots of fun problems to solve, if you like that sort of thing.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

358 SEMAPHORES

[DHO71] “Hierarchical ordering of sequential processes”
E.W. Dijkstra
Available: http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD310.PDF
Presents numerous concurrency problems, including the Dining Philosophers. The wikipedia page
about this problem is also quite informative.

[GR92] “Transaction Processing: Concepts and Techniques”
Jim Gray and Andreas Reuter
Morgan Kaufmann, September 1992
The exact quote that we find particularly humorous is found on page 485, at the top of Section 8.8:
“The first multiprocessors, circa 1960, had test and set instructions ... presumably the OS imple-
mentors worked out the appropriate algorithms, although Dijkstra is generally credited with inventing
semaphores many years later.”

[H87] “Aspects of Cache Memory and Instruction Buffer Performance”
Mark D. Hill
Ph.D. Dissertation, U.C. Berkeley, 1987
Hill’s dissertation work, for those obsessed with caching in early systems. A great example of a quanti-
tative dissertation.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

32

Common Concurrency Problems

Researchers have spent a great deal of time and effort looking into con-
currency bugs over many years. Much of the early work focused on
deadlock, a topic which we’ve touched on in the past chapters but will
now dive into deeply [C+71]. More recent work focuses on studying
other types of common concurrency bugs (i.e., non-deadlock bugs). In
this chapter, we take a brief look at some example concurrency problems
found in real code bases, to better understand what problems to look out
for. And thus our problem:

CRUX: HOW TO HANDLE COMMON CONCURRENCY BUGS

Concurrency bugs tend to come in a variety of common patterns.
Knowing which ones to look out for is the first step to writing more ro-
bust, correct concurrent code.

32.1 What Types Of Bugs Exist?

The first, and most obvious, question is this: what types of concur-
rency bugs manifest in complex, concurrent programs? This question is
difficult to answer in general, but fortunately, some others have done the
work for us. Specifically, we rely upon a study by Lu et al. [L+08], which
analyzes a number of popular concurrent applications in great detail to
understand what types of bugs arise in practice.

The study focuses on four major and important open-source applica-
tions: MySQL (a popular database management system), Apache (a well-
known web server), Mozilla (the famous web browser), and OpenOffice
(a free version of the MS Office suite, which some people actually use).
In the study, the authors examine concurrency bugs that have been found
and fixed in each of these code bases, turning the developers’ work into a
quantitative bug analysis; understanding these results can help you un-
derstand what types of problems actually occur in mature code bases.

359

360 COMMON CONCURRENCY PROBLEMS

Application What it does Non-Deadlock Deadlock
MySQL Database Server 14 9
Apache Web Server 13 4
Mozilla Web Browser 41 16
OpenOffice Office Suite 6 2
Total 74 31

Table 32.1: Bugs In Modern Applications

Table 32.1 shows a summary of the bugs Lu and colleagues studied.
From the table, you can see that there were 105 total bugs, most of which
were not deadlock (74); the remaining 31 were deadlock bugs. Further,
you can see that the number of bugs studied from each application; while
OpenOffice only had 8 total concurrency bugs, Mozilla had nearly 60.

We now dive into these different classes of bugs (non-deadlock, dead-
lock) a bit more deeply. For the first class of non-deadlock bugs, we use
examples from the study to drive our discussion. For the second class of
deadlock bugs, we discuss the long line of work that has been done in
either preventing, avoiding, or handling deadlock.

32.2 Non-Deadlock Bugs

Non-deadlock bugs make up a majority of concurrency bugs, accord-
ing to Lu’s study. But what types of bugs are these? How do they arise?
How can we fix them? We now discuss the two major types of non-
deadlock bugs found by Lu et al.: atomicity violation bugs and order
violation bugs.

Atomicity-Violation Bugs

The first type of problem encountered is referred to as an atomicity vi-
olation. Here is a simple example, found in MySQL. Before reading the
explanation, try figuring out what the bug is. Do it!

1 Thread 1::

2 if (thd->proc_info) {

3 ...

4 fputs(thd->proc_info, ...);

5 ...

6 }

7

8 Thread 2::

9 thd->proc_info = NULL;

In the example, two different threads access the field proc info in
the structure thd. The first thread checks if the value is non-NULL and
then prints its value; the second thread sets it to NULL. Clearly, if the
first thread performs the check but then is interrupted before the call to
fputs, the second thread could run in-between, thus setting the pointer
to NULL; when the first thread resumes, it will crash, as a NULL pointer
will be dereferenced by fputs.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

COMMON CONCURRENCY PROBLEMS 361

The more formal definition of an atomicity violation, according to Lu
et al, is this: “The desired serializability among multiple memory accesses
is violated (i.e. a code region is intended to be atomic, but the atomicity
is not enforced during execution).” In our example above, the code has
an atomicity assumption (in Lu’s words) about the check for non-NULL
of proc info and the usage of proc info in the fputs() call; when
assumption is broken, the code will not work as desired.

Finding a fix for this type of problem is often (but not always) straight-
forward. Can you think of how to fix the code above?

In this solution, we simply add locks around the shared-variable ref-
erences, ensuring that when either thread accesses the proc info field,
it has a lock held. Of course (not shown), any other code that accesses the
structure should also acquire this lock before doing so.

1 pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

2

3 Thread 1::

4 pthread_mutex_lock(&lock);

5 if (thd->proc_info) {

6 ...

7 fputs(thd->proc_info, ...);

8 ...

9 }

10 pthread_mutex_unlock(&lock);

11

12 Thread 2::

13 pthread_mutex_lock(&lock);

14 thd->proc_info = NULL;

15 pthread_mutex_unlock(&lock);

Order-Violation Bugs

Another common type of non-deadlock bug found by Lu et al. is known
as an order violation. Here is another simple example; once again, see if
you can figure out why the code below has a bug in it.

1 Thread 1::

2 void init() {

3 ...

4 mThread = PR_CreateThread(mMain, ...);

5 ...

6 }

7

8 Thread 2::

9 void mMain(...) {

10 ...

11 mState = mThread->State;

12 ...

13 }

As you probably figured out, the code in Thread 2 seems to assume
that the variable mThread has already been initialized (and is not NULL);
however, if Thread 1 does not happen to run first, we are out of luck, and
Thread 2 will likely crash with a NULL pointer dereference (assuming

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

362 COMMON CONCURRENCY PROBLEMS

that the value of mThread is initially NULL; if not, even stranger things
could happen as arbitrary memory locations are read through the deref-
erence in Thread 2).

The more formal definition of an order violation is this: “The desired
order between two (groups of) memory accesses is flipped (i.e., A should
always be executed before B, but the order is not enforced during execu-
tion).” [L+08]

The fix to this type of bug is generally to enforce ordering. As we
discussed in detail previously, using condition variables is an easy and
robust way to add this style of synchronization into modern code bases.
In the example above, we could thus rewrite the code as follows:

1 pthread_mutex_t mtLock = PTHREAD_MUTEX_INITIALIZER;

2 pthread_cond_t mtCond = PTHREAD_COND_INITIALIZER;

3 int mtInit = 0;

4

5 Thread 1::

6 void init() {

7 ...

8 mThread = PR_CreateThread(mMain, ...);

9

10 // signal that the thread has been created...

11 pthread_mutex_lock(&mtLock);

12 mtInit = 1;

13 pthread_cond_signal(&mtCond);

14 pthread_mutex_unlock(&mtLock);

15 ...

16 }

17

18 Thread 2::

19 void mMain(...) {

20 ...

21 // wait for the thread to be initialized...

22 pthread_mutex_lock(&mtLock);

23 while (mtInit == 0)

24 pthread_cond_wait(&mtCond, &mtLock);

25 pthread_mutex_unlock(&mtLock);

26

27 mState = mThread->State;

28 ...

29 }

In this fixed-up code sequence, we have added a lock (mtLock) and
corresponding condition variable (mtCond), as well as a state variable
(mtInit). When the initialization code runs, it sets the state of mtInit
to 1 and signals that it has done so. If Thread 2 had run before this point,
it will be waiting for this signal and corresponding state change; if it runs
later, it will check the state and see that the initialization has already oc-
curred (i.e., mtInit is set to 1), and thus continue as is proper. Note that
we could likely use mThread as the state variable itself, but do not do so
for the sake of simplicity here. When ordering matters between threads,
condition variables (or semaphores) can come to the rescue.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

COMMON CONCURRENCY PROBLEMS 363

Non-Deadlock Bugs: Summary

A large fraction (97%) of non-deadlock bugs studied by Lu et al. are either
atomicity or order violations. Thus, by carefully thinking about these
types of bug patterns, programmers can likely do a better job of avoiding
them. Moreover, as more automated code-checking tools develop, they
should likely focus on these two types of bugs as they constitute such a
large fraction of non-deadlock bugs found in deployment.

Unfortunately, not all bugs are as easily fixable as the examples we
looked at above. Some require a deeper understanding of what the pro-
gram is doing, or a larger amount of code or data structure reorganization
to fix. Read Lu et al.’s excellent (and readable) paper for more details.

32.3 Deadlock Bugs

Beyond the concurrency bugs mentioned above, a classic problem that
arises in many concurrent systems with complex locking protocols is known
as deadlock. Deadlock occurs, for example, when a thread (say Thread
1) is holding a lock (L1) and waiting for another one (L2); unfortunately,
the thread (Thread 2) that holds lock L2 is waiting for L1 to be released.
Here is a code snippet that demonstrates such a potential deadlock:

Thread 1: Thread 2:

lock(L1); lock(L2);

lock(L2); lock(L1);

Note that if this code runs, deadlock does not necessarily occur; rather,
it may occur, if, for example, Thread 1 grabs lock L1 and then a context
switch occurs to Thread 2. At that point, Thread 2 grabs L2, and tries to
acquire L1. Thus we have a deadlock, as each thread is waiting for the
other and neither can run. See Figure 32.1 for details; the presence of a
cycle in the graph is indicative of the deadlock.

The figure should make clear the problem. How should programmers
write code so as to handle deadlock in some way?

CRUX: HOW TO DEAL WITH DEADLOCK

How should we build systems to prevent, avoid, or at least detect and
recover from deadlock? Is this a real problem in systems today?

Why Do Deadlocks Occur?

As you may be thinking, simple deadlocks such as the one above seem
readily avoidable. For example, if Thread 1 and 2 both made sure to grab
locks in the same order, the deadlock would never arise. So why do dead-
locks happen?

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

364 COMMON CONCURRENCY PROBLEMS

Thread 1

Thread 2

Lock L1

Lock L2
Holds

Holds

W
a
n
te

d
 b

y

W
a
n
te

d
 b

y

Figure 32.1: The Deadlock Dependency Graph

One reason is that in large code bases, complex dependencies arise
between components. Take the operating system, for example. The vir-
tual memory system might need to access the file system in order to page
in a block from disk; the file system might subsequently require a page
of memory to read the block into and thus contact the virtual memory
system. Thus, the design of locking strategies in large systems must be
carefully done to avoid deadlock in the case of circular dependencies that
may occur naturally in the code.

Another reason is due to the nature of encapsulation. As software de-
velopers, we are taught to hide details of implementations and thus make
software easier to build in a modular way. Unfortunately, such modular-
ity does not mesh well with locking. As Jula et al. point out [J+08], some
seemingly innocuous interfaces almost invite you to deadlock. For exam-
ple, take the Java Vector class and the method AddAll(). This routine
would be called as follows:

Vector v1, v2;

v1.AddAll(v2);

Internally, because the method needs to be multi-thread safe, locks for
both the vector being added to (v1) and the parameter (v2) need to be
acquired. The routine acquires said locks in some arbitrary order (say v1
then v2) in order to add the contents of v2 to v1. If some other thread
calls v2.AddAll(v1) at nearly the same time, we have the potential for
deadlock, all in a way that is quite hidden from the calling application.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

COMMON CONCURRENCY PROBLEMS 365

Conditions for Deadlock

Four conditions need to hold for a deadlock to occur [C+71]:

• Mutual exclusion: Threads claim exclusive control of resources that
they require (e.g., a thread grabs a lock).

• Hold-and-wait: Threads hold resources allocated to them (e.g., locks
that they have already acquired) while waiting for additional re-
sources (e.g., locks that they wish to acquire).

• No preemption: Resources (e.g., locks) cannot be forcibly removed
from threads that are holding them.

• Circular wait: There exists a circular chain of threads such that
each thread holds one more resources (e.g., locks) that are being
requested by the next thread in the chain.

If any of these four conditions are not met, deadlock cannot occur.
Thus, we first explore techniques to prevent deadlock; each of these strate-
gies seeks to prevent one of the above conditions from arising and thus is
one approach to handling the deadlock problem.

Prevention

Circular Wait

Probably the most practical prevention technique (and certainly one that
is used frequently) is to write your locking code such that you never in-
duce a circular wait. The way to do that is to provide a total ordering on
lock acquisition. For example, if there are only two locks in the system (L1
and L2), we can prevent deadlock by always acquiring L1 before L2. Such
strict ordering ensures that no cyclical wait arises; hence, no deadlock.

As you can imagine, this approach requires careful design of global
locking strategies and must be done with great care. Further, it is just a
convention, and a sloppy programmer can easily ignore the locking pro-
tocol and potentially cause deadlock. Finally, it requires a deep under-
standing of the code base, and how various routines are called; just one
mistake could result in the wrong ordering of lock acquisition, and hence
deadlock.

Hold-and-wait

The hold-and-wait requirement for deadlock can be avoided by acquiring
all locks at once, atomically. In practice, this could be achieved as follows:

1 lock(prevention);

2 lock(L1);

3 lock(L2);

4 ...

5 unlock(prevention);

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

366 COMMON CONCURRENCY PROBLEMS

By first grabbing the lock prevention, this code guarantees that no
untimely thread switch can occur in the midst of lock acquisition and thus
deadlock can once again be avoided. Of course, it requires that any time
any thread grabs a lock, it first acquires the global prevention lock. For
example, if another thread was trying to grab locks L1 and L2 in a dif-
ferent order, it would be OK, because it would be holding the prevention
lock while doing so.

Note that the solution is problematic for a number of reasons. As be-
fore, encapsulation works against us: this approach requires us to know
when calling a routine exactly which locks must be held and to acquire
them ahead of time. Further, the approach likely decreases concurrency
as all locks must be acquired early on (at once) instead of when they are
truly needed.

No Preemption

Because we generally view locks as held until unlock is called, multiple
lock acquisition often gets us into trouble because when waiting for one
lock we are holding another. Many thread libraries provide a more flexi-
ble set of interfaces to help avoid this situation. Specifically, a trylock()
routine will grab the lock (if it is available) or return -1 indicating that the
lock is held right now and that you should try again later if you want to
grab that lock.

Such an interface could be used as follows to build a deadlock-free,
ordering-robust lock acquisition protocol:

1 top:

2 lock(L1);

3 if (trylock(L2) == -1) {

4 unlock(L1);

5 goto top;

6 }

Note that another thread could follow the same protocol but grab the
locks in the other order (L2 then L1) and the program would still be dead-
lock free. One new problem does arise, however: livelock. It is possible
(though perhaps unlikely) that two threads could both be repeatedly at-
tempting this sequence and repeatedly failing to acquire both locks. In
this case, both systems are running through this code sequence over and
over again (and thus it is not a deadlock), but progress is not being made,
hence the name livelock. There are solutions to the livelock problem, too:
for example, one could add a random delay before looping back and try-
ing the entire thing over again, thus decreasing the odds of repeated in-
terference among competing threads.

One final point about this solution: it skirts around the hard parts of
using a trylock approach. The first problem that would likely exist again
arises due to encapsulation: if one of these locks is buried in some routine
that is getting called, the jump back to the beginning becomes more com-
plex to implement. If the code had acquired some resources (other than

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

COMMON CONCURRENCY PROBLEMS 367

L1) along the way, it must make sure to carefully release them as well;
for example, if after acquiring L1, the code had allocated some memory,
it would have to release that memory upon failure to acquire L2, before
jumping back to the top to try the entire sequence again. However, in
limited circumstances (e.g., the Java vector method above), this type of
approach could work well.

Mutual Exclusion

The final prevention technique would be to avoid the need for mutual
exclusion at all. In general, we know this is difficult, because the code we
wish to run does indeed have critical sections. So what can we do?

Herlihy had the idea that one could design various data structures to
be wait-free [H91]. The idea here is simple: using powerful hardware in-
structions, you can build data structures in a manner that does not require
explicit locking.

As a simple example, let us assume we have a compare-and-swap in-
struction, which as you may recall is an atomic instruction provided by
the hardware that does the following:

1 int CompareAndSwap(int *address, int expected, int new) {

2 if (*address == expected) {

3 *address = new;

4 return 1; // success

5 }

6 return 0; // failure

7 }

Imagine we now wanted to atomically increment a value by a certain
amount. We could do it as follows:

1 void AtomicIncrement(int *value, int amount) {

2 do {

3 int old = *value;

4 } while (CompareAndSwap(value, old, old + amount) == 0);

5 }

Instead of acquiring a lock, doing the update, and then releasing it, we
have instead built an approach that repeatedly tries to update the value to
the new amount and uses the compare-and-swap to do so. In this manner,
no lock is acquired, and no deadlock can arise (though livelock is still a
possibility).

Let us consider a slightly more complex example: list insertion. Here
is code that inserts at the head of a list:

1 void insert(int value) {

2 node_t *n = malloc(sizeof(node_t));

3 assert(n != NULL);

4 n->value = value;

5 n->next = head;

6 head = n;

7 }

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

368 COMMON CONCURRENCY PROBLEMS

This code performs a simple insertion, but if called by multiple threads
at the “same time”, has a race condition (see if you can figure out why). Of
course, we could solve this by surrounding this code with a lock acquire
and release:

1 void insert(int value) {

2 node_t *n = malloc(sizeof(node_t));

3 assert(n != NULL);

4 n->value = value;

5 lock(listlock); // begin critical section

6 n->next = head;

7 head = n;

8 unlock(listlock); // end of critical section

9 }

In this solution, we are using locks in the traditional manner1. Instead,
let us try to perform this insertion in a wait-free manner simply using the
compare-and-swap instruction. Here is one possible approach:

1 void insert(int value) {

2 node_t *n = malloc(sizeof(node_t));

3 assert(n != NULL);

4 n->value = value;

5 do {

6 n->next = head;

7 } while (CompareAndSwap(&head, n->next, n));

8 }

The code here updates the next pointer to point to the current head,
and then tries to swap the newly-created node into position as the new
head of the list. However, this will fail if some other thread successfully
swapped in a new head in the meanwhile, causing this thread to retry
again with the new head.

Of course, building a useful list requires more than just a list insert,
and not surprisingly building a list that you can insert into, delete from,
and perform lookups on in a wait-free manner is non-trivial. Read the
rich literature on wait-free synchronization if you find this interesting.

Deadlock Avoidance via Scheduling

Instead of deadlock prevention, in some scenarios deadlock avoidance
is preferable. Avoidance requires some global knowledge of which locks
various threads might grab during their execution, and subsequently sched-
ules said threads in a way as to guarantee no deadlock can occur.

For example, assume we have two processors and four threads which
must be scheduled upon them. Assume further we know that Thread
1 (T1) grabs locks L1 and L2 (in some order, at some point during its
execution), T2 grabs L1 and L2 as well, T3 grabs just L2, and T4 grabs no

1The astute reader might be asking why we grabbed the lock so late, instead of right when
entering the insert() routine; can you, astute reader, figure out why that is likely OK?

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

COMMON CONCURRENCY PROBLEMS 369

locks at all. We can show these lock acquisition demands of the threads
in tabular form:

T1 T2 T3 T4

L1 yes yes no no

L2 yes yes yes no

A smart scheduler could thus compute that as long as T1 and T2 are
not run at the same time, no deadlock could ever arise. Here is one such
schedule:

CPU 1

CPU 2 T1 T2

T3 T4

Note that it is OK for (T3 and T1) or (T3 and T2) to overlap. Even
though T3 grabs lock L2, it can never cause a deadlock by running con-
currently with other threads because it only grabs one lock.

Let’s look at one more example. In this one, there is more contention
for the same resources (again, locks L1 and L2), as indicated by the fol-
lowing contention table:

T1 T2 T3 T4

L1 yes yes yes no

L2 yes yes yes no

In particular, threads T1, T2, and T3 all need to grab both locks L1 and
L2 at some point during their execution. Here is a possible schedule that
guarantees that no deadlock could ever occur:

CPU 1

CPU 2 T1 T2 T3

T4

As you can see, static scheduling leads to a conservative approach
where T1, T2, and T3 are all run on the same processor, and thus the
total time to complete the jobs is lengthened considerably. Though it may
have been possible to run these tasks concurrently, the fear of deadlock
prevents us from doing so, and the cost is performance.

One famous example of an approach like this is Dijkstra’s Banker’s Al-
gorithm [D64], and many similar approaches have been described in the
literature. Unfortunately, they are only useful in very limited environ-
ments, for example, in an embedded system where one has full knowl-
edge of the entire set of tasks that must be run and the locks that they
need. Further, such approaches can limit concurrency, as we saw in the
second example above. Thus, avoidance of deadlock via scheduling is
not a widely-used general-purpose solution.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

370 COMMON CONCURRENCY PROBLEMS

TIP: DON’T ALWAYS DO IT PERFECTLY (TOM WEST’S LAW)
Tom West, famous as the subject of the classic computer-industry book

“Soul of a New Machine” [K81], says famously: “Not everything worth
doing is worth doing well”, which is a terrific engineering maxim. If a
bad thing happens rarely, certainly one should not spend a great deal of
effort to prevent it, particularly if the cost of the bad thing occurring is
small.

Detect and Recover

One final general strategy is to allow deadlocks to occasionally occur, and
then take some action once such a deadlock has been detected. For exam-
ple, if an OS froze once a year, you would just reboot it and get happily (or
grumpily) on with your work. If deadlocks are rare, such a non-solution
is indeed quite pragmatic.

Many database systems employ deadlock detection and recovery tech-
niques. A deadlock detector runs periodically, building a resource graph
and checking it for cycles. In the event of a cycle (deadlock), the system
needs to be restarted. If more intricate repair of data structures is first
required, a human being may be involved to ease the process.

32.4 Summary

In this chapter, we have studied the types of bugs that occur in con-
current programs. The first type, non-deadlock bugs, are surprisingly
common, but often are easier to fix. They include atomicity violations,
in which a sequence of instructions that should have been executed to-
gether was not, and order violations, in which the needed order between
two threads was not enforced.

We have also briefly discussed deadlock: why it occurs, and what can
be done about it. The problem is as old as concurrency itself, and many
hundreds of papers have been written about the topic. The best solu-
tion in practice is to be careful, develop a lock acquisition total order,
and thus prevent deadlock from occurring in the first place. Wait-free
approaches also have promise, as some wait-free data structures are now
finding their way into commonly-used libraries and critical systems, in-
cluding Linux. However, their lack of generality and the complexity to
develop a new wait-free data structure will likely limit the overall util-
ity of this approach. Perhaps the best solution is to develop new concur-
rent programming models: in systems such as MapReduce (from Google)
[GD02], programmers can describe certain types of parallel computations
without any locks whatsoever. Locks are problematic by their very na-
ture; perhaps we should seek to avoid using them unless we truly must.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

COMMON CONCURRENCY PROBLEMS 371

References

[C+71] “System Deadlocks”
E.G. Coffman, M.J. Elphick, A. Shoshani
ACM Computing Surveys, 3:2, June 1971
The classic paper outlining the conditions for deadlock and how you might go about dealing with it.
There are certainly some earlier papers on this topic; see the references within this paper for details.

[D64] “Een algorithme ter voorkoming van de dodelijke omarming”
Circulated privately, around 1964
Available: http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD108.PDF
Indeed, not only did Dijkstra come up with a number of solutions to the deadlock problem, he was the
first to note its existence, at least in written form. However, he called it the “deadly embrace”, which
(thankfully) did not catch on.

[GD02] “MapReduce: Simplified Data Processing on Large Clusters”
Sanjay Ghemawhat and Jeff Dean
OSDI ’04, San Francisco, CA, October 2004
The MapReduce paper ushered in the era of large-scale data processing, and proposes a framework for
performing such computations on clusters of generally unreliable machines.

[H91] “Wait-free Synchronization”
Maurice Herlihy
ACM TOPLAS, 13(1), pages 124-149, January 1991
Herlihy’s work pioneers the ideas behind wait-free approaches to writing concurrent programs. These
approaches tend to be complex and hard, often more difficult than using locks correctly, probably limiting
their success in the real world.

[J+08] “Deadlock Immunity: Enabling Systems To Defend Against Deadlocks”
Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, George Candea
OSDI ’08, San Diego, CA, December 2008
An excellent recent paper on deadlocks and how to avoid getting caught in the same ones over and over
again in a particular system.

[K81] “Soul of a New Machine”
Tracy Kidder, 1980
A must-read for any systems builder or engineer, detailing the early days of how a team inside Data
General (DG), led by Tom West, worked to produce a “new machine.” Kidder’s other book are also
excellent, in particular, “Mountains beyond Mountains”. Or maybe you don’t agree with me, comma?

[L+08] “Learning from Mistakes – A Comprehensive Study on
Real World Concurrency Bug Characteristics”
Shan Lu, Soyeon Park, Eunsoo Seo, Yuanyuan Zhou
ASPLOS ’08, March 2008, Seattle, Washington
The first in-depth study of concurrency bugs in real software, and the basis for this chapter. Look at Y.Y.
Zhou’s or Shan Lu’s web pages for many more interesting papers on bugs.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

33

Event-based Concurrency (Advanced)

Thus far, we’ve written about concurrency as if the only way to build
concurrent applications is to use threads. Like many things in life, this
is not completely true. Specifically, a different style of concurrent pro-
gramming is often used in both GUI-based applications [O96] as well as
some types of internet servers [PDZ99]. This style, known as event-based
concurrency, has become popular in some modern systems, including
server-side frameworks such as node.js [N13], but its roots are found in
C/UNIX systems that we’ll discuss below.

The problem that event-based concurrency addresses is two-fold. The
first is that managing concurrency correctly in multi-threaded applica-
tions can be challenging; as we’ve discussed, missing locks, deadlock,
and other nasty problems can arise. The second is that in a multi-threaded
application, the developer has little or no control over what is scheduled
at a given moment in time; rather, the programmer simply creates threads
and then hopes that the underlying OS schedules them in a reasonable
manner across available CPUs. Given the difficulty of building a general-
purpose scheduler that works well in all cases for all workloads, some-
times the OS will schedule work in a manner that is less than optimal.
The crux:

THE CRUX:
HOW TO BUILD CONCURRENT SERVERS WITHOUT THREADS

How can we build a concurrent server without using threads, and thus
retain control over concurrency as well as avoid some of the problems
that seem to plague multi-threaded applications?

33.1 The Basic Idea: An Event Loop

The basic approach we’ll use, as stated above, is called event-based
concurrency. The approach is quite simple: you simply wait for some-
thing (i.e., an “event”) to occur; when it does, you check what type of

373

374 EVENT-BASED CONCURRENCY (ADVANCED)

event it is and do the small amount of work it requires (which may in-
clude issuing I/O requests, or scheduling other events for future han-
dling, etc.). That’s it!

Before getting into the details, let’s first examine what a canonical
event-based server looks like. Such applications are based around a sim-
ple construct known as the event loop. Pseudocode for an event loop
looks like this:

while (1) {

events = getEvents();

for (e in events)

processEvent(e);

}

It’s really that simple. The main loop simply waits for something to do
(by calling getEvents() in the code above) and then, for each event re-
turned, processes them, one at a time; the code that processes each event
is known as an event handler. Importantly, when a handler processes
an event, it is the only activity taking place in the system; thus, deciding
which event to handle next is equivalent to scheduling. This explicit con-
trol over scheduling is one of the fundamental advantages of the event-
based approach.

But this discussion leaves us with a bigger question: how exactly does
an event-based server determine which events are taking place, in par-
ticular with regards to network and disk I/O? Specifically, how can an
event server tell if a message has arrived for it?

33.2 An Important API: select() (or poll())

With that basic event loop in mind, we next must address the question
of how to receive events. In most systems, a basic API is available, via
either the select() or poll() system calls.

What these interfaces enable a program to do is simple: check whether
there is any incoming I/O that should be attended to. For example, imag-
ine that a network application (such as a web server) wishes to check
whether any network packets have arrived, in order to service them.
These system calls let you do exactly that.

Take select() for example. The manual page (on Mac OS X) de-
scribes the API in this manner:

int select(int nfds,

fd_set *restrict readfds,

fd_set *restrict writefds,

fd_set *restrict errorfds,

struct timeval *restrict timeout);

The actual description from the man page: select() examines the I/O de-
scriptor sets whose addresses are passed in readfds, writefds, and errorfds to see
if some of their descriptors are ready for reading, are ready for writing, or have

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

EVENT-BASED CONCURRENCY (ADVANCED) 375

ASIDE: BLOCKING VS. NON-BLOCKING INTERFACES

Blocking (or synchronous) interfaces do all of their work before returning
to the caller; non-blocking (or asynchronous) interfaces begin some work
but return immediately, thus letting whatever work that needs to be done
get done in the background.

The usual culprit in blocking calls is I/O of some kind. For example, if a
call must read from disk in order to complete, it might block, waiting for
the I/O request that has been sent to the disk to return.

Non-blocking interfaces can be used in any style of programming (e.g.,
with threads), but are essential in the event-based approach, as a call that
blocks will halt all progress.

an exceptional condition pending, respectively. The first nfds descriptors are
checked in each set, i.e., the descriptors from 0 through nfds-1 in the descriptor
sets are examined. On return, select() replaces the given descriptor sets with
subsets consisting of those descriptors that are ready for the requested operation.
select() returns the total number of ready descriptors in all the sets.

A couple of points about select(). First, note that it lets you check
whether descriptors can be read from as well as written to; the former
lets a server determine that a new packet has arrived and is in need of
processing, whereas the latter lets the service know when it is OK to reply
(i.e., the outbound queue is not full).

Second, note the timeout argument. One common usage here is to
set the timeout to NULL, which causes select() to block indefinitely,
until some descriptor is ready. However, more robust servers will usually
specify some kind of timeout; one common technique is to set the timeout
to zero, and thus use the call to select() to return immediately.

The poll() system call is quite similar. See its manual page, or Stevens
and Rago [SR05], for details.

Either way, these basic primitives give us a way to build a non-blocking
event loop, which simply checks for incoming packets, reads from sockets
with messages upon them, and replies as needed.

33.3 Using select()

To make this more concrete, let’s examine how to use select() to see
which network descriptors have incoming messages upon them. Figure
33.1 shows a simple example.

This code is actually fairly simple to understand. After some initial-
ization, the server enters an infinite loop. Inside the loop, it uses the
FD ZERO() macro to first clear the set of file descriptors, and then uses
FD SET() to include all of the file descriptors from minFD to maxFD in
the set. This set of descriptors might represent, for example, all of the net-

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

376 EVENT-BASED CONCURRENCY (ADVANCED)

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <sys/time.h>

4 #include <sys/types.h>

5 #include <unistd.h>

6

7 int main(void) {

8 // open and set up a bunch of sockets (not shown)

9 // main loop

10 while (1) {

11 // initialize the fd_set to all zero

12 fd_set readFDs;

13 FD_ZERO(&readFDs);

14

15 // now set the bits for the descriptors

16 // this server is interested in

17 // (for simplicity, all of them from min to max)

18 int fd;

19 for (fd = minFD; fd < maxFD; fd++)

20 FD_SET(fd, &readFDs);

21

22 // do the select

23 int rc = select(maxFD+1, &readFDs, NULL, NULL, NULL);

24

25 // check which actually have data using FD_ISSET()

26 int fd;

27 for (fd = minFD; fd < maxFD; fd++)

28 if (FD_ISSET(fd, &readFDs))

29 processFD(fd);

30 }

31 }

Figure 33.1: Simple Code using select()

work sockets to which the server is paying attention. Finally, the server
calls select() to see which of the connections have data available upon
them. By then using FD ISSET() in a loop, the event server can see
which of the descriptors have data ready and process the incoming data.

Of course, a real server would be more complicated than this, and
require logic to use when sending messages, issuing disk I/O, and many
other details. For further information, see Stevens and Rago [SR05] for
API information, or Pai et. al or Welsh et al. for a good overview of the
general flow of event-based servers [PDZ99, WCB01].

33.4 Why Simpler? No Locks Needed

With a single CPU and an event-based application, the problems found
in concurrent programs are no longer present. Specifically, because only
one event is being handled at a time, there is no need to acquire or release
locks; the event-based server cannot be interrupted by another thread be-
cause it is decidedly single threaded. Thus, concurrency bugs common in
threaded programs do not manifest in the basic event-based approach.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

EVENT-BASED CONCURRENCY (ADVANCED) 377

TIP: DON’T BLOCK IN EVENT-BASED SERVERS

Event-based servers enable fine-grained control over scheduling of tasks.
However, to maintain such control, no call that blocks the execution the
caller can ever be made; failing to obey this design tip will result in a
blocked event-based server, frustrated clients, and serious questions as to
whether you ever read this part of the book.

33.5 A Problem: Blocking System Calls

Thus far, event-based programming sounds great, right? You program
a simple loop, and handle events as they arise. You don’t even need to
think about locking! But there is an issue: what if an event requires that
you issue a system call that might block?

For example, imagine a request comes from a client into a server to
read a file from disk and return its contents to the requesting client (much
like a simple HTTP request). To service such a request, some event han-
dler will eventually have to issue an open() system call to open the file,
followed by a series of read() calls to read the file. When the file is read
into memory, the server will likely start sending the results to the client.

Both the open() and read() calls may issue I/O requests to the stor-
age system (when the needed metadata or data is not in memory already),
and thus may take a long time to service. With a thread-based server, this
is no issue: while the thread issuing the I/O request suspends (waiting
for the I/O to complete), other threads can run, thus enabling the server
to make progress. Indeed, this natural overlap of I/O and other computa-
tion is what makes thread-based programming quite natural and straight-
forward.

With an event-based approach, however, there are no other threads to
run: just the main event loop. And this implies that if an event handler
issues a call that blocks, the entire server will do just that: block until the
call completes. When the event loop blocks, the system sits idle, and thus
is a huge potential waste of resources. We thus have a rule that must be
obeyed in event-based systems: no blocking calls are allowed.

33.6 A Solution: Asynchronous I/O

To overcome this limit, many modern operating systems have intro-
duced new ways to issue I/O requests to the disk system, referred to
generically as asynchronous I/O. These interfaces enable an application
to issue an I/O request and return control immediately to the caller, be-
fore the I/O has completed; additional interfaces enable an application to
determine whether various I/Os have completed.

For example, let us examine the interface provided on Mac OS X (other
systems have similar APIs). The APIs revolve around a basic structure,

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

378 EVENT-BASED CONCURRENCY (ADVANCED)

the struct aiocb or AIO control block in common terminology. A
simplified version of the structure looks like this (see the manual pages
for more information):

struct aiocb {

int aio_fildes; /* File descriptor */

off_t aio_offset; /* File offset */

volatile void *aio_buf; /* Location of buffer */

size_t aio_nbytes; /* Length of transfer */

};

To issue an asynchronous read to a file, an application should first
fill in this structure with the relevant information: the file descriptor of
the file to be read (aio fildes), the offset within the file (aio offset)
as well as the length of the request (aio nbytes), and finally the tar-
get memory location into which the results of the read should be copied
(aio buf).

After this structure is filled in, the application must issue the asyn-
chronous call to read the file; on Mac OS X, this API is simply the asyn-
chronous read API:

int aio_read(struct aiocb *aiocbp);

This call tries to issue the I/O; if successful, it simply returns right
away and the application (i.e., the event-based server) can continue with
its work.

There is one last piece of the puzzle we must solve, however. How can
we tell when an I/O is complete, and thus that the buffer (pointed to by
aio buf) now has the requested data within it?

One last API is needed. On Mac OS X, it is referred to (somewhat
confusingly) as aio error(). The API looks like this:

int aio_error(const struct aiocb *aiocbp);

This system call checks whether the request referred to by aiocbp has
completed. If it has, the routine returns success (indicated by a zero);
if not, EINPROGRESS is returned. Thus, for every outstanding asyn-
chronous I/O, an application can periodically poll the system via a call
to aio error() to determine whether said I/O has yet completed.

One thing you might have noticed is that it is painful to check whether
an I/O has completed; if a program has tens or hundreds of I/Os issued
at a given point in time, should it simply keep checking each of them
repeatedly, or wait a little while first, or ... ?

To remedy this issue, some systems provide an approach based on the
interrupt. This method uses UNIX signals to inform applications when
an asynchronous I/O completes, thus removing the need to repeatedly
ask the system. This polling vs. interrupts issue is seen in devices too, as
you will see (or already have seen) in the chapter on I/O devices.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

EVENT-BASED CONCURRENCY (ADVANCED) 379

ASIDE: UNIX SIGNALS

A huge and fascinating infrastructure known as signals is present in all mod-
ern UNIX variants. At its simplest, signals provide a way to communicate with a
process. Specifically, a signal can be delivered to an application; doing so stops the
application from whatever it is doing to run a signal handler, i.e., some code in
the application to handle that signal. When finished, the process just resumes its
previous behavior.

Each signal has a name, such as HUP (hang up), INT (interrupt), SEGV (seg-
mentation violation), etc; see the manual page for details. Interestingly, sometimes
it is the kernel itself that does the signaling. For example, when your program en-
counters a segmentation violation, the OS sends it a SIGSEGV (prepending SIG
to signal names is common); if your program is configured to catch that signal,
you can actually run some code in response to this erroneous program behavior
(which can be useful for debugging). When a signal is sent to a process not config-
ured to handle that signal, some default behavior is enacted; for SEGV, the process
is killed.

Here is a simple program that goes into an infinite loop, but has first set up a
signal handler to catch SIGHUP:

#include <stdio.h>

#include <signal.h>

void handle(int arg) {

printf("stop wakin’ me up...\n");

}

int main(int argc, char *argv[]) {

signal(SIGHUP, handle);

while (1)

; // doin’ nothin’ except catchin’ some sigs

return 0;

}

You can send signals to it with the kill command line tool (yes, this is an odd
and aggressive name). Doing so will interrupt the main while loop in the program
and run the handler code handle():

prompt> ./main &

[3] 36705

prompt> kill -HUP 36705

stop wakin’ me up...

prompt> kill -HUP 36705

stop wakin’ me up...

prompt> kill -HUP 36705

stop wakin’ me up...

There is a lot more to learn about signals, so much that a single page, much
less a single chapter, does not nearly suffice. As always, there is one great source:
Stevens and Rago [SR05]. Read more if interested.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

380 EVENT-BASED CONCURRENCY (ADVANCED)

In systems without asynchronous I/O, the pure event-based approach
cannot be implemented. However, clever researchers have derived meth-
ods that work fairly well in their place. For example, Pai et al. [PDZ99]
describe a hybrid approach in which events are used to process network
packets, and a thread pool is used to manage outstanding I/Os. Read
their paper for details.

33.7 Another Problem: State Management

Another issue with the event-based approach is that such code is gen-
erally more complicated to write than traditional thread-based code. The
reason is as follows: when an event handler issues an asynchronous I/O,
it must package up some program state for the next event handler to use
when the I/O finally completes; this additional work is not needed in
thread-based programs, as the state the program needs is on the stack of
the thread. Adya et al. call this work manual stack management, and it
is fundamental to event-based programming [A+02].

To make this point more concrete, let’s look at a simple example in
which a thread-based server needs to read from a file descriptor (fd) and,
once complete, write the data that it read from the file to a network socket
descriptor (sd). The code (ignoring error checking) looks like this:

int rc = read(fd, buffer, size);

rc = write(sd, buffer, size);

As you can see, in a multi-threaded program, doing this kind of work
is trivial; when the read() finally returns, the code immediately knows
which socket to write to because that information is on the stack of the
thread (in the variable sd).

In an event-based system, life is not so easy. To perform the same task,
we’d first issue the read asynchronously, using the AIO calls described
above. Let’s say we then periodically check for completion of the read
using the aio error() call; when that call informs us that the read is
complete, how does the event-based server know what to do?

The solution, as described by Adya et al. [A+02], is to use an old pro-
gramming language construct known as a continuation [FHK84]. Though
it sounds complicated, the idea is rather simple: basically, record the
needed information to finish processing this event in some data struc-
ture; when the event happens (i.e., when the disk I/O completes), look
up the needed information and process the event.

In this specific case, the solution would be to record the socket de-
scriptor (sd) in some kind of data structure (e.g., a hash table), indexed
by the file descriptor (fd). When the disk I/O completes, the event han-
dler would use the file descriptor to look up the continuation, which will
return the value of the socket descriptor to the caller. At this point (fi-
nally), the server can then do the last bit of work to write the data to the
socket.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

EVENT-BASED CONCURRENCY (ADVANCED) 381

33.8 What Is Still Difficult With Events

There are a few other difficulties with the event-based approach that
we should mention. For example, when systems moved from a single
CPU to multiple CPUs, some of the simplicity of the event-based ap-
proach disappeared. Specifically, in order to utilize more than one CPU,
the event server has to run multiple event handlers in parallel; when do-
ing so, the usual synchronization problems (e.g., critical sections) arise,
and the usual solutions (e.g., locks) must be employed. Thus, on mod-
ern multicore systems, simple event handling without locks is no longer
possible.

Another problem with the event-based approach is that it does not
integrate well with certain kinds of systems activity, such as paging. For
example, if an event-handler page faults, it will block, and thus the server
will not make progress until the page fault completes. Even though the
server has been structured to avoid explicit blocking, this type of implicit
blocking due to page faults is hard to avoid and thus can lead to large
performance problems when prevalent.

A third issue is that event-based code can be hard to manage over time,
as the exact semantics of various routines changes [A+02]. For example,
if a routine changes from non-blocking to blocking, the event handler
that calls that routine must also change to accommodate its new nature,
by ripping itself into two pieces. Because blocking is so disastrous for
event-based servers, a programmer must always be on the lookout for
such changes in the semantics of the APIs each event uses.

Finally, though asynchronous disk I/O is now possible on most plat-
forms, it has taken a long time to get there [PDZ99], and it never quite
integrates with asynchronous network I/O in as simple and uniform a
manner as you might think. For example, while one would simply like
to use the select() interface to manage all outstanding I/Os, usually
some combination of select() for networking and the AIO calls for
disk I/O are required.

33.9 Summary

We’ve presented a bare bones introduction to a different style of con-
currency based on events. Event-based servers give control of schedul-
ing to the application itself, but do so at some cost in complexity and
difficulty of integration with other aspects of modern systems (e.g., pag-
ing). Because of these challenges, no single approach has emerged as
best; thus, both threads and events are likely to persist as two different
approaches to the same concurrency problem for many years to come.
Read some research papers (e.g., [A+02, PDZ99, vB+03, WCB01]) or bet-
ter yet, write some event-based code, to learn more.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

382 EVENT-BASED CONCURRENCY (ADVANCED)

References

[A+02] “Cooperative Task Management Without Manual Stack Management”
Atul Adya, Jon Howell, Marvin Theimer, William J. Bolosky, John R. Douceur
USENIX ATC ’02, Monterey, CA, June 2002
This gem of a paper is the first to clearly articulate some of the difficulties of event-based concurrency,
and suggests some simple solutions, as well explores the even crazier idea of combining the two types of
concurrency management into a single application!

[FHK84] “Programming With Continuations”
Daniel P. Friedman, Christopher T. Haynes, Eugene E. Kohlbecker
In Program Transformation and Programming Environments, Springer Verlag, 1984
The classic reference to this old idea from the world of programming languages. Now increasingly
popular in some modern languages.

[N13] “Node.js Documentation”
By the folks who build node.js
Available: http://nodejs.org/api/
One of the many cool new frameworks that help you readily build web services and applications. Every
modern systems hacker should be proficient in frameworks such as this one (and likely, more than one).
Spend the time and do some development in one of these worlds and become an expert.

[O96] “Why Threads Are A Bad Idea (for most purposes)”
John Ousterhout
Invited Talk at USENIX ’96, San Diego, CA, January 1996
A great talk about how threads aren’t a great match for GUI-based applications (but the ideas are more
general). Ousterhout formed many of these opinions while he was developing Tcl/Tk, a cool scripting
language and toolkit that made it 100x easier to develop GUI-based applications than the state of the
art at the time. While the Tk GUI toolkit lives on (in Python for example), Tcl seems to be slowly dying
(unfortunately).

[PDZ99] “Flash: An Efficient and Portable Web Server”
Vivek S. Pai, Peter Druschel, Willy Zwaenepoel
USENIX ’99, Monterey, CA, June 1999
A pioneering paper on how to structure web servers in the then-burgeoning Internet era. Read it to
understand the basics as well as to see the authors’ ideas on how to build hybrids when support for
asynchronous I/O is lacking.

[SR05] “Advanced Programming in the UNIX Environment”
W. Richard Stevens and Stephen A. Rago
Addison-Wesley, 2005
Once again, we refer to the classic must-have-on-your-bookshelf book of UNIX systems programming.
If there is some detail you need to know, it is in here.

[vB+03] “Capriccio: Scalable Threads for Internet Services”
Rob von Behren, Jeremy Condit, Feng Zhou, George C. Necula, Eric Brewer
SOSP ’03, Lake George, New York, October 2003
A paper about how to make threads work at extreme scale; a counter to all the event-based work ongoing
at the time.

[WCB01] “SEDA: An Architecture for Well-Conditioned, Scalable Internet Services”
Matt Welsh, David Culler, and Eric Brewer
SOSP ’01, Banff, Canada, October 2001
A nice twist on event-based serving that combines threads, queues, and event-based hanlding into one
streamlined whole. Some of these ideas have found their way into the infrastructures of companies such
as Google, Amazon, and elsewhere.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

34

Summary Dialogue on Concurrency

Professor: So, does your head hurt now?

Student: (taking two Motrin tablets) Well, some. It’s hard to think about all the
ways threads can interleave.

Professor: Indeed it is. I am always amazed at how so few line of code, when
concurrent execution is involved, can become nearly impossible to understand.

Student: Me too! It’s kind of embarrassing, as a Computer Scientist, not to be
able to make sense of five lines of code.

Professor: Oh, don’t feel too badly. If you look through the first papers on con-
current algorithms, they are sometimes wrong! And the authors often professors!

Student: (gasps) Professors can be ... umm... wrong?

Professor: Yes, it is true. Though don’t tell anybody – it’s one of our trade
secrets.

Student: I am sworn to secrecy. But if concurrent code is so hard to think about,
and so hard to get right, how are we supposed to write correct concurrent code?

Professor: Well that is the real question, isn’t it? I think it starts with a few
simple things. First, keep it simple! Avoid complex interactions between threads,
and use well-known and tried-and-true ways to manage thread interactions.

Student: Like simple locking, and maybe a producer-consumer queue?

Professor: Exactly! Those are common paradigms, and you should be able to
produce the working solutions given what you’ve learned. Second, only use con-
currency when absolutely needed; avoid it if at all possible. There is nothing
worse than premature optimization of a program.

Student: I see – why add threads if you don’t need them?

Professor: Exactly. Third, if you really need parallelism, seek it in other sim-
plified forms. For example, the Map-Reduce method for writing parallel data
analysis code is an excellent example of achieving parallelism without having to
handle any of the horrific complexities of locks, condition variables, and the other
nasty things we’ve talked about.

383

384 SUMMARY DIALOGUE ON CONCURRENCY

Student: Map-Reduce, huh? Sounds interesting – I’ll have to read more about
it on my own.

Professor: Good! You should. In the end, you’ll have to do a lot of that, as
what we learn together can only serve as the barest introduction to the wealth of
knowledge that is out there. Read, read, and read some more! And then try things
out, write some code, and then write some more too. As Gladwell talks about in
his book “Outliers”, you need to put roughly 10,000 hours into something in
order to become a real expert. You can’t do that all inside of class time!

Student: Wow, I’m not sure if that is depressing, or uplifting. But I’ll assume
the latter, and get to work! Time to write some more concurrent code...

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

Part III

Persistence

385

35

A Dialogue on Persistence

Professor: And thus we reach the third of our four ... err... three pillars of
operating systems: persistence.

Student: Did you say there were three pillars, or four? What is the fourth?

Professor: No. Just three, young student, just three. Trying to keep it simple
here.

Student: OK, fine. But what is persistence, oh fine and noble professor?

Professor: Actually, you probably know what it means in the traditional sense,
right? As the dictionary would say: “a firm or obstinate continuance in a course
of action in spite of difficulty or opposition.”

Student: It’s kind of like taking your class: some obstinance required.

Professor: Ha! Yes. But persistence here means something else. Let me explain.
Imagine you are outside, in a field, and you pick a –

Student: (interrupting) I know! A peach! From a peach tree!

Professor: I was going to say apple, from an apple tree. Oh well; we’ll do it your
way, I guess.

Student: (stares blankly)

Professor: Anyhow, you pick a peach; in fact, you pick many many peaches,
but you want to make them last for a long time. Winter is hard and cruel in
Wisconsin, after all. What do you do?

Student: Well, I think there are some different things you can do. You can pickle
it! Or bake a pie. Or make a jam of some kind. Lots of fun!

Professor: Fun? Well, maybe. Certainly, you have to do a lot more work to make
the peach persist. And so it is with information as well; making information
persist, despite computer crashes, disk failures, or power outages is a tough and
interesting challenge.

Student: Nice segue; you’re getting quite good at that.

Professor: Thanks! A professor can always use a few kind words, you know.

387

388 A DIALOGUE ON PERSISTENCE

Student: I’ll try to remember that. I guess it’s time to stop talking peaches, and
start talking computers?

Professor: Yes, it is that time...

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

36

I/O Devices

Before delving into the main content of this part of the book (on persis-
tence), we first introduce the concept of an input/output (I/O) device and
show how the operating system might interact with such an entity. I/O is
quite critical to computer systems, of course; imagine a program without
any input (it produces the same result each time); now imagine a pro-
gram with no output (what was the purpose of it running?). Clearly, for
computer systems to be interesting, both input and output are required.
And thus, our general problem:

CRUX: HOW TO INTEGRATE I/O INTO SYSTEMS

How should I/O be integrated into systems? What are the general
mechanisms? How can we make them efficient?

36.1 System Architecture

To begin our discussion, let’s look at the structure of a typical system
(Figure 36.1). The picture shows a single CPU attached to the main mem-
ory of the system via some kind of memory bus or interconnect. Some
devices are connected to the system via a general I/O bus, which in many
modern systems would be PCI (or one if its many derivatives); graph-
ics and some other higher-performance I/O devices might be found here.
Finally, even lower down are one or more of what we call a peripheral
bus, such as SCSI, SATA, or USB. These connect the slowest devices to
the system, including disks, mice, and other similar components.

One question you might ask is: why do we need a hierarchical struc-
ture like this? Put simply: physics, and cost. The faster a bus is, the
shorter it must be; thus, a high-performance memory bus does not have
much room to plug devices and such into it. In addition, engineering
a bus for high performance is quite costly. Thus, system designers have
adopted this hierarchical approach, where components that demands high
performance (such as the graphics card) are nearer the CPU. Lower per-

389

390 I/O DEVICES

Graphics

MemoryCPU

Memory Bus

(proprietary)

General I/O Bus

(e.g., PCI)

Peripheral I/O Bus

(e.g., SCSI, SATA, USB)

Figure 36.1: Prototypical System Architecture

formance components are further away. The benefits of placing disks and
other slow devices on a peripheral bus are manifold; in particular, you
can place a large number of devices on it.

36.2 A Canonical Device

Let us now look at a canonical device (not a real one), and use this
device to drive our understanding of some of the machinery required
to make device interaction efficient. From Figure 36.2, we can see that a
device has two important components. The first is the hardware interface
it presents to the rest of the system. Just like a piece of software, hardware
must also present some kind of interface that allows the system software
to control its operation. Thus, all devices have some specified interface
and protocol for typical interaction.

The second part of any device is its internal structure. This part of
the device is implementation specific and is responsible for implement-
ing the abstraction the device presents to the system. Very simple devices
will have one or a few hardware chips to implement their functionality;
more complex devices will include a simple CPU, some general purpose
memory, and other device-specific chips to get their job done. For exam-
ple, modern RAID controllers might consist of hundreds of thousands of
lines of firmware (i.e., software within a hardware device) to implement
its functionality.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

I/O DEVICES 391

Other Hardware-specific Chips

Memory (DRAM or SRAM or both)

Micro-controller (CPU)

Registers Status Command Data Interface

Internals

Figure 36.2: A Canonical Device

36.3 The Canonical Protocol

In the picture above, the (simplified) device interface is comprised of
three registers: a status register, which can be read to see the current sta-
tus of the device; a command register, to tell the device to perform a cer-
tain task; and a data register to pass data to the device, or get data from
the device. By reading and writing these registers, the operating system
can control device behavior.

Let us now describe a typical interaction that the OS might have with
the device in order to get the device to do something on its behalf. The
protocol is as follows:

While (STATUS == BUSY)

; // wait until device is not busy

Write data to DATA register

Write command to COMMAND register

(Doing so starts the device and executes the command)

While (STATUS == BUSY)

; // wait until device is done with your request

The protocol has four steps. In the first, the OS waits until the device is
ready to receive a command by repeatedly reading the status register; we
call this polling the device (basically, just asking it what is going on). Sec-
ond, the OS sends some data down to the data register; one can imagine
that if this were a disk, for example, that multiple writes would need to
take place to transfer a disk block (say 4KB) to the device. When the main
CPU is involved with the data movement (as in this example protocol),
we refer to it as programmed I/O (PIO). Third, the OS writes a command
to the command register; doing so implicitly lets the device know that
both the data is present and that it should begin working on the com-
mand. Finally, the OS waits for the device to finish by again polling it
in a loop, waiting to see if it is finished (it may then get an error code to
indicate success or failure).

This basic protocol has the positive aspect of being simple and work-
ing. However, there are some inefficiencies and inconveniences involved.
The first problem you might notice in the protocol is that polling seems
inefficient; specifically, it wastes a great deal of CPU time just waiting for
the (potentially slow) device to complete its activity, instead of switching
to another ready process and thus better utilizing the CPU.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

392 I/O DEVICES

THE CRUX: HOW TO AVOID THE COSTS OF POLLING

How can the OS check device status without frequent polling, and
thus lower the CPU overhead required to manage the device?

36.4 Lowering CPU Overhead With Interrupts

The invention that many engineers came upon years ago to improve
this interaction is something we’ve seen already: the interrupt. Instead
of polling the device repeatedly, the OS can issue a request, put the call-
ing process to sleep, and context switch to another task. When the device
is finally finished with the operation, it will raise a hardware interrupt,
causing the CPU to jump into the OS at a pre-determined interrupt ser-
vice routine (ISR) or more simply an interrupt handler. The handler is
just a piece of operating system code that will finish the request (for ex-
ample, by reading data and perhaps an error code from the device) and
wake the process waiting for the I/O, which can then proceed as desired.

Interrupts thus allow for overlap of computation and I/O, which is
key for improved utilization. This timeline shows the problem:

CPU

Disk 1 1 1 1 1

1 1 1 1 1 p p p p p 1 1 1 1 1

In the diagram, Process 1 runs on the CPU for some time (indicated by
a repeated 1 on the CPU line), and then issues an I/O request to the disk
to read some data. Without interrupts, the system simply spins, polling
the status of the device repeatedly until the I/O is complete (indicated by
a p). The disk services the request and finally Process 1 can run again.

If instead we utilize interrupts and allow for overlap, the OS can do
something else while waiting for the disk:

CPU

Disk 1 1 1 1 1

1 1 1 1 1 2 2 2 2 2 1 1 1 1 1

In this example, the OS runs Process 2 on the CPU while the disk ser-
vices Process 1’s request. When the disk request is finished, an interrupt
occurs, and the OS wakes up Process 1 and runs it again. Thus, both the
CPU and the disk are properly utilized during the middle stretch of time.

Note that using interrupts is not always the best solution. For example,
imagine a device that performs its tasks very quickly: the first poll usually
finds the device to be done with task. Using an interrupt in this case will
actually slow down the system: switching to another process, handling the
interrupt, and switching back to the issuing process is expensive. Thus, if
a device is fast, it may be best to poll; if it is slow, interrupts, which allow

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

I/O DEVICES 393

TIP: INTERRUPTS NOT ALWAYS BETTER THAN PIO
Although interrupts allow for overlap of computation and I/O, they only
really make sense for slow devices. Otherwise, the cost of interrupt han-
dling and context switching may outweigh the benefits interrupts pro-
vide. There are also cases where a flood of interrupts may overload a sys-
tem and lead it to livelock [MR96]; in such cases, polling provides more
control to the OS in its scheduling and thus is again useful.

overlap, are best. If the speed of the device is not known, or sometimes
fast and sometimes slow, it may be best to use a hybrid that polls for a
little while and then, if the device is not yet finished, uses interrupts. This
two-phased approach may achieve the best of both worlds.

Another reason not to use interrupts arises in networks [MR96]. When
a huge stream of incoming packets each generate an interrupt, it is pos-
sible for the OS to livelock, that is, find itself only processing interrupts
and never allowing a user-level process to run and actually service the
requests. For example, imagine a web server that suddenly experiences
a high load due to the “slashdot effect”. In this case, it is better to occa-
sionally use polling to better control what is happening in the system and
allow the web server to service some requests before going back to the
device to check for more packet arrivals.

Another interrupt-based optimization is coalescing. In such a setup, a
device which needs to raise an interrupt first waits for a bit before deliv-
ering the interrupt to the CPU. While waiting, other requests may soon
complete, and thus multiple interrupts can be coalesced into a single in-
terrupt delivery, thus lowering the overhead of interrupt processing. Of
course, waiting too long will increase the latency of a request, a common
trade-off in systems. See Ahmad et al. [A+11] for an excellent summary.

36.5 More Efficient Data Movement With DMA

Unfortunately, there is one other aspect of our canonical protocol that
requires our attention. In particular, when using programmed I/O (PIO)
to transfer a large chunk of data to a device, the CPU is once again over-
burdened with a rather trivial task, and thus wastes a lot of time and
effort that could better be spent running other processes. This timeline
illustrates the problem:

CPU

Disk 1 1 1 1 1

1 1 1 1 1 c c c 2 2 2 2 2 1 1

In the timeline, Process 1 is running and then wishes to write some data to
the disk. It then initiates the I/O, which must copy the data from memory
to the device explicitly, one word at a time (marked c in the diagram).
When the copy is complete, the I/O begins on the disk and the CPU can
finally be used for something else.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

394 I/O DEVICES

THE CRUX: HOW TO LOWER PIO OVERHEADS

With PIO, the CPU spends too much time moving data to and from
devices by hand. How can we offload this work and thus allow the CPU
to be more effectively utilized?

The solution to this problem is something we refer to as Direct Mem-
ory Access (DMA). A DMA engine is essentially a very specific device
within a system that can orchestrate transfers between devices and main
memory without much CPU intervention.

DMA works as follows. To transfer data to the device, for example, the
OS would program the DMA engine by telling it where the data lives in
memory, how much data to copy, and which device to send it to. At that
point, the OS is done with the transfer and can proceed with other work.
When the DMA is complete, the DMA controller raises an interrupt, and
the OS thus knows the transfer is complete. The revised timeline:

CPU

DMA

Disk 1 1 1 1 1

1 1 1 1 1 2 2 2 2 2 2 2 2 1 1

c c c

From the timeline, you can see that the copying of data is now handled
by the DMA controller. Because the CPU is free during that time, the OS
can do something else, here choosing to run Process 2. Process 2 thus gets
to use more CPU before Process 1 runs again.

36.6 Methods Of Device Interaction

Now that we have some sense of the efficiency issues involved with
performing I/O, there are a few other problems we need to handle to
incorporate devices into modern systems. One problem you may have
noticed thus far: we have not really said anything about how the OS ac-
tually communicates with the device! Thus, the problem:

THE CRUX: HOW TO COMMUNICATE WITH DEVICES

How should the hardware communicate with a device? Should there
be explicit instructions? Or are there other ways to do it?

Over time, two primary methods of device communication have de-
veloped. The first, oldest method (used by IBM mainframes for many
years) is to have explicit I/O instructions. These instructions specify a
way for the OS to send data to specific device registers and thus allow the
construction of the protocols described above.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

I/O DEVICES 395

For example, on x86, the in and out instructions can be used to com-
municate with devices. For example, to send data to a device, the caller
specifies a register with the data in it, and a specific port which names the
device. Executing the instruction leads to the desired behavior.

Such instructions are usually privileged. The OS controls devices, and
the OS thus is the only entity allowed to directly communicate with them.
Imagine if any program could read or write the disk, for example: total
chaos (as always), as any user program could use such a loophole to gain
complete control over the machine.

The second method to interact with devices is known as memory-
mapped I/O. With this approach, the hardware makes device registers
available as if they were memory locations. To access a particular register,
the OS issues a load (to read) or store (to write) the address; the hardware
then routes the load/store to the device instead of main memory.

There is not some great advantage to one approach or the other. The
memory-mapped approach is nice in that no new instructions are needed
to support it, but both approaches are still in use today.

36.7 Fitting Into The OS: The Device Driver

One final problem we will discuss: how to fit devices, each of which
have very specific interfaces, into the OS, which we would like to keep
as general as possible. For example, consider a file system. We’d like
to build a file system that worked on top of SCSI disks, IDE disks, USB
keychain drives, and so forth, and we’d like the file system to be relatively
oblivious to all of the details of how to issue a read or write request to
these difference types of drives. Thus, our problem:

THE CRUX: HOW TO BUILD A DEVICE-NEUTRAL OS
How can we keep most of the OS device-neutral, thus hiding the de-

tails of device interactions from major OS subsystems?

The problem is solved through the age-old technique of abstraction.
At the lowest level, a piece of software in the OS must know in detail
how a device works. We call this piece of software a device driver, and
any specifics of device interaction are encapsulated within.

Let us see how this abstraction might help OS design and implemen-
tation by examining the Linux file system software stack. Figure 36.3 is
a rough and approximate depiction of the Linux software organization.
As you can see from the diagram, a file system (and certainly, an appli-
cation above) is completely oblivious to the specifics of which disk class
it is using; it simply issues block read and write requests to the generic
block layer, which routes them to the appropriate device driver, which
handles the details of issuing the specific request. Although simplified,
the diagram shows how such detail can be hidden from most of the OS.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

396 I/O DEVICES

Application

File System

Generic Block Layer

Device Driver [SCSI, ATA, etc.]

POSIX API [open, read, write, close, etc.]

Generic Block Interface [block read/write]

Specific Block Interface [protocol-specific read/write]

u
s
e

r
k
e

rn
e

l
m

o
d

e

Figure 36.3: The File System Stack

Note that such encapsulation can have its downside as well. For ex-
ample, if there is a device that has many special capabilities, but has to
present a generic interface to the rest of the kernel, those special capabili-
ties will go unused. This situation arises, for example, in Linux with SCSI
devices, which have very rich error reporting; because other block de-
vices (e.g., ATA/IDE) have much simpler error handling, all that higher
levels of software ever receive is a generic EIO (generic IO error) error
code; any extra detail that SCSI may have provided is thus lost to the file
system [G08].

Interestingly, because device drivers are needed for any device you
might plug into your system, over time they have come to represent a
huge percentage of kernel code. Studies of the Linux kernel reveal that
over 70% of OS code is found in device drivers [C01]; for Windows-based
systems, it is likely quite high as well. Thus, when people tell you that the
OS has millions of lines of code, what they are really saying is that the OS
has millions of lines of device-driver code. Of course, for any given in-
stallation, most of that code may not be active (i.e., only a few devices are
connected to the system at a time). Perhaps more depressingly, as drivers
are often written by “amateurs” (instead of full-time kernel developers),
they tend to have many more bugs and thus are a primary contributor to
kernel crashes [S03].

36.8 Case Study: A Simple IDE Disk Driver

To dig a little deeper here, let’s take a quick look at an actual device: an
IDE disk drive [L94]. We summarize the protocol as described in this ref-
erence [W10]; we’ll also peek at the xv6 source code for a simple example
of a working IDE driver [CK+08].

An IDE disk presents a simple interface to the system, consisting of
four types of register: control, command block, status, and error. These
registers are available by reading or writing to specific “I/O addresses”
(such as 0x3F6 below) using (on x86) the in and out I/O instructions.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

I/O DEVICES 397

Control Register:

Address 0x3F6 = 0x80 (0000 1RE0): R=reset, E=0 means "enable interrupt"

Command Block Registers:

Address 0x1F0 = Data Port

Address 0x1F1 = Error

Address 0x1F2 = Sector Count

Address 0x1F3 = LBA low byte

Address 0x1F4 = LBA mid byte

Address 0x1F5 = LBA hi byte

Address 0x1F6 = 1B1D TOP4LBA: B=LBA, D=drive

Address 0x1F7 = Command/status

Status Register (Address 0x1F7):

7 6 5 4 3 2 1 0

BUSY READY FAULT SEEK DRQ CORR IDDEX ERROR

Error Register (Address 0x1F1): (check when Status ERROR==1)

7 6 5 4 3 2 1 0

BBK UNC MC IDNF MCR ABRT T0NF AMNF

BBK = Bad Block

UNC = Uncorrectable data error

MC = Media Changed

IDNF = ID mark Not Found

MCR = Media Change Requested

ABRT = Command aborted

T0NF = Track 0 Not Found

AMNF = Address Mark Not Found

Figure 36.4: The IDE Interface

The basic protocol to interact with the device is as follows, assuming
it has already been initialized.

• Wait for drive to be ready. Read Status Register (0x1F7) until drive
is not busy and READY.

• Write parameters to command registers. Write the sector count,
logical block address (LBA) of the sectors to be accessed, and drive
number (master=0x00 or slave=0x10, as IDE permits just two drives)
to command registers (0x1F2-0x1F6).

• Start the I/O. by issuing read/write to command register. Write
READ—WRITE command to command register (0x1F7).

• Data transfer (for writes): Wait until drive status is READY and
DRQ (drive request for data); write data to data port.

• Handle interrupts. In the simplest case, handle an interrupt for
each sector transferred; more complex approaches allow batching
and thus one final interrupt when the entire transfer is complete.

• Error handling. After each operation, read the status register. If the
ERROR bit is on, read the error register for details.

Most of this protocol is found in the xv6 IDE driver (Figure 36.5),
which (after initialization) works through four primary functions. The
first is ide rw(), which queues a request (if there are others pending),
or issues it directly to the disk (via ide start request()); in either

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

398 I/O DEVICES

static int ide_wait_ready() {

while (((int r = inb(0x1f7)) & IDE_BSY) || !(r & IDE_DRDY))

; // loop until drive isn’t busy

}

static void ide_start_request(struct buf *b) {

ide_wait_ready();

outb(0x3f6, 0); // generate interrupt

outb(0x1f2, 1); // how many sectors?

outb(0x1f3, b->sector & 0xff); // LBA goes here ...

outb(0x1f4, (b->sector >> 8) & 0xff); // ... and here

outb(0x1f5, (b->sector >> 16) & 0xff); // ... and here!

outb(0x1f6, 0xe0 | ((b->dev&1)<<4) | ((b->sector>>24)&0x0f));

if(b->flags & B_DIRTY){

outb(0x1f7, IDE_CMD_WRITE); // this is a WRITE

outsl(0x1f0, b->data, 512/4); // transfer data too!

} else {

outb(0x1f7, IDE_CMD_READ); // this is a READ (no data)

}

}

void ide_rw(struct buf *b) {

acquire(&ide_lock);

for (struct buf **pp = &ide_queue; *pp; pp=&(*pp)->qnext)

; // walk queue

*pp = b; // add request to end

if (ide_queue == b) // if q is empty

ide_start_request(b); // send req to disk

while ((b->flags & (B_VALID|B_DIRTY)) != B_VALID)

sleep(b, &ide_lock); // wait for completion

release(&ide_lock);

}

void ide_intr() {

struct buf *b;

acquire(&ide_lock);

if (!(b->flags & B_DIRTY) && ide_wait_ready(1) >= 0)

insl(0x1f0, b->data, 512/4); // if READ: get data

b->flags |= B_VALID;

b->flags &= ˜B_DIRTY;

wakeup(b); // wake waiting process

if ((ide_queue = b->qnext) != 0) // start next request

ide_start_request(ide_queue); // (if one exists)

release(&ide_lock);

}

Figure 36.5: The xv6 IDE Disk Driver (Simplified)

case, the routine waits for the request to complete and the calling pro-
cess is put to sleep. The second is ide start request(), which is
used to send a request (and perhaps data, in the case of a write) to the
disk; the in and out x86 instructions are called to read and write device
registers, respectively. The start request routine uses the third function,
ide wait ready(), to ensure the drive is ready before issuing a request
to it. Finally, ide intr() is invoked when an interrupt takes place; it
reads data from the device (if the request is a read, not a write), wakes the
process waiting for the I/O to complete, and (if there are more requests
in the I/O queue), launches the next I/O via ide start request().

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

I/O DEVICES 399

36.9 Historical Notes

Before ending, we include a brief historical note on the origin of some
of these fundamental ideas. If you are interested in learning more, read
Smotherman’s excellent summary [S08].

Interrupts are an ancient idea, existing on the earliest of machines. For
example, the UNIVAC in the early 1950’s had some form of interrupt vec-
toring, although it is unclear in exactly which year this feature was avail-
able [S08]. Sadly, even in its infancy, we are beginning to lose the origins
of computing history.

There is also some debate as to which machine first introduced the idea
of DMA. For example, Knuth and others point to the DYSEAC (a “mo-
bile” machine, which at the time meant it could be hauled in a trailer),
whereas others think the IBM SAGE may have been the first [S08]. Ei-
ther way, by the mid 50’s, systems with I/O devices that communicated
directly with memory and interrupted the CPU when finished existed.

The history here is difficult to trace because the inventions are tied to
real, and sometimes obscure, machines. For example, some think that the
Lincoln Labs TX-2 machine was first with vectored interrupts [S08], but
this is hardly clear.

Because the ideas are relatively obvious – no Einsteinian leap is re-
quired to come up with the idea of letting the CPU do something else
while a slow I/O is pending – perhaps our focus on “who first?” is mis-
guided. What is certainly clear: as people built these early machines, it
became obvious that I/O support was needed. Interrupts, DMA, and re-
lated ideas are all direct outcomes of the nature of fast CPUs and slow
devices; if you were there at the time, you might have had similar ideas.

36.10 Summary

You should now have a very basic understanding of how an OS inter-
acts with a device. Two techniques, the interrupt and DMA, have been
introduced to help with device efficiency, and two approaches to access-
ing device registers, explicit I/O instructions and memory-mapped I/O,
have been described. Finally, the notion of a device driver has been pre-
sented, showing how the OS itself can encapsulate low-level details and
thus make it easier to build the rest of the OS in a device-neutral fashion.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

400 I/O DEVICES

References

[A+11] “vIC: Interrupt Coalescing for Virtual Machine Storage Device IO”
Irfan Ahmad, Ajay Gulati, Ali Mashtizadeh
USENIX ’11
A terrific survey of interrupt coalescing in traditional and virtualized environments.

[C01] “An Empirical Study of Operating System Errors”
Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, Dawson Engler
SOSP ’01
One of the first papers to systematically explore how many bugs are in modern operating systems.
Among other neat findings, the authors show that device drivers have something like seven times more
bugs than mainline kernel code.

[CK+08] “The xv6 Operating System”
Russ Cox, Frans Kaashoek, Robert Morris, Nickolai Zeldovich
From: http://pdos.csail.mit.edu/6.828/2008/index.html
See ide.c for the IDE device driver, with a few more details therein.

[D07] “What Every Programmer Should Know About Memory”
Ulrich Drepper
November, 2007
Available: http://www.akkadia.org/drepper/cpumemory.pdf
A fantastic read about modern memory systems, starting at DRAM and going all the way up to virtu-
alization and cache-optimized algorithms.

[G08] “EIO: Error-handling is Occasionally Correct”
Haryadi Gunawi, Cindy Rubio-Gonzalez, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau,
Ben Liblit
FAST ’08, San Jose, CA, February 2008
Our own work on building a tool to find code in Linux file systems that does not handle error return
properly. We found hundreds and hundreds of bugs, many of which have now been fixed.

[L94] “AT Attachment Interface for Disk Drives”
Lawrence J. Lamers, X3T10 Technical Editor
Available: ftp://ftp.t10.org/t13/project/d0791r4c-ATA-1.pdf
Reference number: ANSI X3.221 - 1994 A rather dry document about device interfaces. Read it at
your own peril.

[MR96] “Eliminating Receive Livelock in an Interrupt-driven Kernel”
Jeffrey Mogul and K. K. Ramakrishnan
USENIX ’96, San Diego, CA, January 1996
Mogul and colleagues did a great deal of pioneering work on web server network performance. This
paper is but one example.

[S08] “Interrupts”
Mark Smotherman, as of July ’08
Available: http://people.cs.clemson.edu/˜mark/interrupts.html
A treasure trove of information on the history of interrupts, DMA, and related early ideas in computing.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

I/O DEVICES 401

[S03] “Improving the Reliability of Commodity Operating Systems”
Michael M. Swift, Brian N. Bershad, and Henry M. Levy
SOSP ’03
Swift’s work revived interest in a more microkernel-like approach to operating systems; minimally, it
finally gave some good reasons why address-space based protection could be useful in a modern OS.

[W10] “Hard Disk Driver”
Washington State Course Homepage
Available: http://eecs.wsu.edu/˜cs460/cs560/HDdriver.html
A nice summary of a simple IDE disk drive’s interface and how to build a device driver for it.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

37

Hard Disk Drives

The last chapter introduced the general concept of an I/O device and
showed you how the OS might interact with such a beast. In this chapter,
we dive into more detail about one device in particular: the hard disk
drive. These drives have been the main form of persistent data storage in
computer systems for decades and much of the development of file sys-
tem technology (coming soon) is predicated on their behavior. Thus, it
is worth understanding the details of a disk’s operation before building
the file system software that manages it. Many of these details are avail-
able in excellent papers by Ruemmler and Wilkes [RW92] and Anderson,
Dykes, and Riedel [ADR03].

CRUX: HOW TO STORE AND ACCESS DATA ON DISK

How do modern hard-disk drives store data? What is the interface?
How is the data actually laid out and accessed? How does disk schedul-
ing improve performance?

37.1 The Interface

Let’s start by understanding the interface to a modern disk drive. The
basic interface for all modern drives is straightforward. The drive consists
of a large number of sectors (512-byte blocks), each of which can be read
or written. The sectors are numbered from 0 to n − 1 on a disk with n
sectors. Thus, we can view the disk as an array of sectors; 0 to n − 1 is
thus the address space of the drive.

Multi-sector operations are possible; indeed, many file systems will
read or write 4KB at a time (or more). However, when updating the
disk, the only guarantee drive manufactures make is that a single 512-
byte write is atomic (i.e., it will either complete in its entirety or it won’t
complete at all); thus, if an untimely power loss occurs, only a portion of
a larger write may complete (sometimes called a torn write).

403

404 HARD DISK DRIVES

0

11

10
9

8

7

6

5

4
3

2

1

Spindle

Figure 37.1: A Disk With Just A Single Track

There are some assumptions most clients of disk drives make, but
that are not specified directly in the interface; Schlosser and Ganger have
called this the “unwritten contract” of disk drives [SG04]. Specifically,
one can usually assume that accessing two blocks that are near one-another
within the drive’s address space will be faster than accessing two blocks
that are far apart. One can also usually assume that accessing blocks in
a contiguous chunk (i.e., a sequential read or write) is the fastest access
mode, and usually much faster than any more random access pattern.

37.2 Basic Geometry
Let’s start to understand some of the components of a modern disk.

We start with a platter, a circular hard surface on which data is stored
persistently by inducing magnetic changes to it. A disk may have one
or more platters; each platter has 2 sides, each of which is called a sur-
face. These platters are usually made of some hard material (such as
aluminum), and then coated with a thin magnetic layer that enables the
drive to persistently store bits even when the drive is powered off.

The platters are all bound together around the spindle, which is con-
nected to a motor that spins the platters around (while the drive is pow-
ered on) at a constant (fixed) rate. The rate of rotation is often measured in
rotations per minute (RPM), and typical modern values are in the 7,200
RPM to 15,000 RPM range. Note that we will often be interested in the
time of a single rotation, e.g., a drive that rotates at 10,000 RPM means
that a single rotation takes about 6 milliseconds (6 ms).

Data is encoded on each surface in concentric circles of sectors; we call
one such concentric circle a track. A single surface contains many thou-
sands and thousands of tracks, tightly packed together, with hundreds of
tracks fitting into the width of a human hair.

To read and write from the surface, we need a mechanism that allows
us to either sense (i.e., read) the magnetic patterns on the disk or to in-
duce a change in (i.e., write) them. This process of reading and writing is
accomplished by the disk head; there is one such head per surface of the
drive. The disk head is attached to a single disk arm, which moves across
the surface to position the head over the desired track.

37.3 A Simple Disk Drive
Let’s understand how disks work by building up a model one track at

a time. Assume we have a simple disk with a single track (Figure 37.1).

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

HARD DISK DRIVES 405

Head

A
rm

0

11

10
9

8

7

6

5

4
3

2

1

Spindle

Rotates this way

Figure 37.2: A Single Track Plus A Head

This track has just 12 sectors, each of which is 512 bytes in size (our
typical sector size, recall) and addressed therefore by the numbers 0 through
11. The single platter we have here rotates around the spindle, to which
a motor is attached. Of course, the track by itself isn’t too interesting; we
want to be able to read or write those sectors, and thus we need a disk
head, attached to a disk arm, as we now see (Figure 37.2).

In the figure, the disk head, attached to the end of the arm, is posi-
tioned over sector 6, and the surface is rotating counter-clockwise.

Single-track Latency: The Rotational Delay

To understand how a request would be processed on our simple, one-
track disk, imagine we now receive a request to read block 0. How should
the disk service this request?

In our simple disk, the disk doesn’t have to do much. In particular, it
must just wait for the desired sector to rotate under the disk head. This
wait happens often enough in modern drives, and is an important enough
component of I/O service time, that it has a special name: rotational de-
lay (sometimes rotation delay, though that sounds weird). In the exam-
ple, if the full rotational delay is R, the disk has to incur a rotational delay
of about R

2
to wait for 0 to come under the read/write head (if we start at

6). A worst-case request on this single track would be to sector 5, causing
nearly a full rotational delay in order to service such a request.

Multiple Tracks: Seek Time

So far our disk just has a single track, which is not too realistic; modern
disks of course have many millions. Let’s thus look at ever-so-slightly
more realistic disk surface, this one with three tracks (Figure 37.3, left).

In the figure, the head is currently positioned over the innermost track
(which contains sectors 24 through 35); the next track over contains the
next set of sectors (12 through 23), and the outermost track contains the
first sectors (0 through 11).

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

406 HARD DISK DRIVES

0

11

10
9

8

7

6

5

4
3

2

1

12

23

22
21

20

19

18

17

16
15

14

13

24

35

34
33

32

31

30

29

28
27

26

25

Spindle

Rotates this way

Seek

R
em

ai
ni

ng
 r
ot

at
io

n

3

2

1
0

11

10

9

8

7
6

5

4

15

14

13
12

23

22

21

20

19
18

17

16

27

26

25
24

35

34

33

32

31
30

29

28

Spindle

Rotates this way

Figure 37.3: Three Tracks Plus A Head (Right: With Seek)

To understand how the drive might access a given sector, we now trace
what would happen on a request to a distant sector, e.g., a read to sector
11. To service this read, the drive has to first move the disk arm to the cor-
rect track (in this case, the outermost one), in a process known as a seek.
Seeks, along with rotations, are one of the most costly disk operations.

The seek, it should be noted, has many phases: first an acceleration
phase as the disk arm gets moving; then coasting as the arm is moving
at full speed, then deceleration as the arm slows down; finally settling as
the head is carefully positioned over the correct track. The settling time
is often quite significant, e.g., 0.5 to 2 ms, as the drive must be certain to
find the right track (imagine if it just got close instead!).

After the seek, the disk arm has positioned the head over the right
track. A depiction of the seek is found in Figure 37.3 (right).

As we can see, during the seek, the arm has been moved to the desired
track, and the platter of course has rotated, in this case about 3 sectors.
Thus, sector 9 is just about to pass under the disk head, and we must
only endure a short rotational delay to complete the transfer.

When sector 11 passes under the disk head, the final phase of I/O
will take place, known as the transfer, where data is either read from or
written to the surface. And thus, we have a complete picture of I/O time:
first a seek, then waiting for the rotational delay, and finally the transfer.

Some Other Details

Though we won’t spend too much time on it, there are some other inter-
esting details about how hard drives operate. Many drives employ some
kind of track skew to make sure that sequential reads can be properly
serviced even when crossing track boundaries. In our simple example
disk, this might appear as seen in Figure 37.4.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

HARD DISK DRIVES 407

Track skew: 2 blocks

0

11

10
9

8

7

6

5

4
3

2

1

22

21

20
19

18

17

16

15

14
13

12

23

32

31

30
29

28

27

26

25

24
35

34

33

Spindle

Rotates this way

Figure 37.4: Three Tracks: Track Skew Of 2

Sectors are often skewed like this because when switching from one
track to another, the disk needs time to reposition the head (even to neigh-
boring tracks). Without such skew, the head would be moved to the next
track but the desired next block would have already rotated under the
head, and thus the drive would have to wait almost the entire rotational
delay to access the next block.

Another reality is that outer tracks tend to have more sectors than
inner tracks, which is a result of geometry; there is simply more room
out there. These tracks are often referred to as multi-zoned disk drives,
where the disk is organized into multiple zones, and where a zone is con-
secutive set of tracks on a surface. Each zone has the same number of
sectors per track, and outer zones have more sectors than inner zones.

Finally, an important part of any modern disk drive is its cache, for
historical reasons sometimes called a track buffer. This cache is just some
small amount of memory (usually around 8 or 16 MB) which the drive
can use to hold data read from or written to the disk. For example, when
reading a sector from the disk, the drive might decide to read in all of the
sectors on that track and cache them in its memory; doing so allows the
drive to quickly respond to any subsequent requests to the same track.

On writes, the drive has a choice: should it acknowledge the write has
completed when it has put the data in its memory, or after the write has
actually been written to disk? The former is called write back caching
(or sometimes immediate reporting), and the latter write through. Write
back caching sometimes makes the drive appear “faster”, but can be dan-
gerous; if the file system or applications require that data be written to
disk in a certain order for correctness, write-back caching can lead to
problems (read the chapter on file-system journaling for details).

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

408 HARD DISK DRIVES

ASIDE: DIMENSIONAL ANALYSIS

Remember in Chemistry class, how you solved virtually every prob-
lem by simply setting up the units such that they canceled out, and some-
how the answers popped out as a result? That chemical magic is known
by the highfalutin name of dimensional analysis and it turns out it is
useful in computer systems analysis too.

Let’s do an example to see how dimensional analysis works and why
it is useful. In this case, assume you have to figure out how long, in mil-
liseconds, a single rotation of a disk takes. Unfortunately, you are given
only the RPM of the disk, or rotations per minute. Let’s assume we’re
talking about a 10K RPM disk (i.e., it rotates 10,000 times per minute).
How do we set up the dimensional analysis so that we get time per rota-
tion in milliseconds?

To do so, we start by putting the desired units on the left; in this case,
we wish to obtain the time (in milliseconds) per rotation, so that is ex-

actly what we write down: Time (ms)
1 Rotation

. We then write down everything
we know, making sure to cancel units where possible. First, we obtain

1 minute
10,000 Rotations

(keeping rotation on the bottom, as that’s where it is on

the left), then transform minutes into seconds with 60 seconds
1 minute

, and then

finally transform seconds in milliseconds with 1000 ms
1 second

. The final result is
this equation, with units nicely canceled, is:

Time (ms)
1 Rot.

= 1���minute
10,000 Rot.

· 60���
seconds

1���minute
· 1000 ms

1���second
= 60,000 ms

10,000 Rot.
= 6 ms

Rotation

As you can see from this example, dimensional analysis makes what
seems obvious into a simple and repeatable process. Beyond the RPM
calculation above, it comes in handy with I/O analysis regularly. For
example, you will often be given the transfer rate of a disk, e.g.,
100 MB/second, and then asked: how long does it take to transfer a
512 KB block (in milliseconds)? With dimensional analysis, it’s easy:

Time (ms)
1 Request

= 512��KB
1 Request

· 1��MB

1024��KB
· 1���second

100��MB
· 1000 ms

1���second
= 5 ms

Request

37.4 I/O Time: Doing The Math

Now that we have an abstract model of the disk, we can use a little
analysis to better understand disk performance. In particular, we can
now represent I/O time as the sum of three major components:

TI/O = Tseek + Trotation + Ttransfer (37.1)

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

HARD DISK DRIVES 409

Cheetah 15K.5 Barracuda
Capacity 300 GB 1 TB
RPM 15,000 7,200
Average Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s
Platters 4 4
Cache 16 MB 16/32 MB
Connects via SCSI SATA

Table 37.1: Disk Drive Specs: SCSI Versus SATA

Note that the rate of I/O (RI/O), which is often more easily used for
comparison between drives (as we will do below), is easily computed
from the time. Simply divide the size of the transfer by the time it took:

RI/O =
SizeTransfer

TI/O

(37.2)

To get a better feel for I/O time, let us perform the following calcu-
lation. Assume there are two workloads we are interested in. The first,
known as the random workload, issues small (e.g., 4KB) reads to random
locations on the disk. Random workloads are common in many impor-
tant applications, including database management systems. The second,
known as the sequential workload, simply reads a large number of sec-
tors consecutively from the disk, without jumping around. Sequential
access patterns are quite common and thus important as well.

To understand the difference in performance between random and se-
quential workloads, we need to make a few assumptions about the disk
drive first. Let’s look at a couple of modern disks from Seagate. The first,
known as the Cheetah 15K.5 [S09b], is a high-performance SCSI drive.
The second, the Barracuda [S09a], is a drive built for capacity. Details on
both are found in Table 37.1.

As you can see, the drives have quite different characteristics, and
in many ways nicely summarize two important components of the disk
drive market. The first is the “high performance” drive market, where
drives are engineered to spin as fast as possible, deliver low seek times,
and transfer data quickly. The second is the “capacity” market, where
cost per byte is the most important aspect; thus, the drives are slower but
pack as many bits as possible into the space available.

From these numbers, we can start to calculate how well the drives
would do under our two workloads outlined above. Let’s start by looking
at the random workload. Assuming each 4 KB read occurs at a random
location on disk, we can calculate how long each such read would take.
On the Cheetah:

Tseek = 4 ms, Trotation = 2 ms, Ttransfer = 30 microsecs (37.3)

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

410 HARD DISK DRIVES

TIP: USE DISKS SEQUENTIALLY

When at all possible, transfer data to and from disks in a sequential man-
ner. If sequential is not possible, at least think about transferring data
in large chunks: the bigger, the better. If I/O is done in little random
pieces, I/O performance will suffer dramatically. Also, users will suffer.
Also, you will suffer, knowing what suffering you have wrought with
your careless random I/Os.

The average seek time (4 milliseconds) is just taken as the average time
reported by the manufacturer; note that a full seek (from one end of the
surface to the other) would likely take two or three times longer. The
average rotational delay is calculated from the RPM directly. 15000 RPM
is equal to 250 RPS (rotations per second); thus, each rotation takes 4 ms.
On average, the disk will encounter a half rotation and thus 2 ms is the
average time. Finally, the transfer time is just the size of the transfer over
the peak transfer rate; here it is vanishingly small (30 microseconds; note
that we need 1000 microseconds just to get 1 millisecond!).

Thus, from our equation above, TI/O for the Cheetah roughly equals
6 ms. To compute the rate of I/O, we just divide the size of the transfer
by the average time, and thus arrive at RI/O for the Cheetah under the
random workload of about 0.66 MB/s. The same calculation for the Bar-
racuda yields a TI/O of about 13.2 ms, more than twice as slow, and thus
a rate of about 0.31 MB/s.

Now let’s look at the sequential workload. Here we can assume there
is a single seek and rotation before a very long transfer. For simplicity,
assume the size of the transfer is 100 MB. Thus, TI/O for the Barracuda
and Cheetah is about 800 ms and 950 ms, respectively. The rates of I/O
are thus very nearly the peak transfer rates of 125 MB/s and 105 MB/s,
respectively. Table 37.2 summarizes these numbers.

The table shows us a number of important things. First, and most
importantly, there is a huge gap in drive performance between random
and sequential workloads, almost a factor of 200 or so for the Cheetah
and more than a factor 300 difference for the Barracuda. And thus we
arrive at the most obvious design tip in the history of computing.

A second, more subtle point: there is a large difference in performance
between high-end “performance” drives and low-end “capacity” drives.
For this reason (and others), people are often willing to pay top dollar for
the former while trying to get the latter as cheaply as possible.

Cheetah Barracuda
RI/O Random 0.66 MB/s 0.31 MB/s
RI/O Sequential 125 MB/s 105 MB/s

Table 37.2: Disk Drive Performance: SCSI Versus SATA

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

HARD DISK DRIVES 411

ASIDE: COMPUTING THE “AVERAGE” SEEK

In many books and papers, you will see average disk-seek time cited
as being roughly one-third of the full seek time. Where does this come
from?

Turns out it arises from a simple calculation based on average seek
distance, not time. Imagine the disk as a set of tracks, from 0 to N . The
seek distance between any two tracks x and y is thus computed as the
absolute value of the difference between them: |x − y|.

To compute the average seek distance, all you need to do is to first add
up all possible seek distances:

N
∑

x=0

N
∑

y=0

|x − y|. (37.4)

Then, divide this by the number of different possible seeks: N2. To
compute the sum, we’ll just use the integral form:

∫ N

x=0

∫ N

y=0

|x − y|dy dx. (37.5)

To compute the inner integral, let’s break out the absolute value:

∫ x

y=0

(x − y) dy +

∫ N

y=x

(y − x) dy. (37.6)

Solving this leads to (xy − 1
2
y2)

∣

∣

x

0
+ (1

2
y2 − xy)

∣

∣

N

x
which can be sim-

plified to (x2 −Nx + 1
2
N2). Now we have to compute the outer integral:

∫ N

x=0

(x2 − Nx +
1

2
N2) dx, (37.7)

which results in:

(
1

3
x3 −

N

2
x2 +

N2

2
x)

∣

∣

∣

∣

N

0

=
N3

3
. (37.8)

Remember that we still have to divide by the total number of seeks

(N2) to compute the average seek distance: (N3

3
)/(N2) = 1

3
N . Thus the

average seek distance on a disk, over all possible seeks, is one-third the
full distance. And now when you hear that an average seek is one-third
of a full seek, you’ll know where it came from.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

412 HARD DISK DRIVES

0

11

10
9

8

7

6

5

4
3

2

1

12

23

22
21

20

19

18

17

16
15

14

13

24

35

34
33

32

31

30

29

28
27

26

25

Spindle

Rotates this way

Figure 37.5: SSTF: Scheduling Requests 21 And 2

37.5 Disk Scheduling

Because of the high cost of I/O, the OS has historically played a role in
deciding the order of I/Os issued to the disk. More specifically, given a
set of I/O requests, the disk scheduler examines the requests and decides
which one to schedule next [SCO90, JW91].

Unlike job scheduling, where the length of each job is usually un-
known, with disk scheduling, we can make a good guess at how long
a “job” (i.e., disk request) will take. By estimating the seek and possible
the rotational delay of a request, the disk scheduler can know how long
each request will take, and thus (greedily) pick the one that will take the
least time to service first. Thus, the disk scheduler will try to follow the
principle of SJF (shortest job first) in its operation.

SSTF: Shortest Seek Time First

One early disk scheduling approach is known as shortest-seek-time-first
(SSTF) (also called shortest-seek-first or SSF). SSTF orders the queue of
I/O requests by track, picking requests on the nearest track to complete
first. For example, assuming the current position of the head is over the
inner track, and we have requests for sectors 21 (middle track) and 2
(outer track), we would then issue the request to 21 first, wait for it to
complete, and then issue the request to 2 (Figure 37.5).

SSTF works well in this example, seeking to the middle track first and
then the outer track. However, SSTF is not a panacea, for the following
reasons. First, the drive geometry is not available to the host OS; rather,
it sees an array of blocks. Fortunately, this problem is rather easily fixed.
Instead of SSTF, an OS can simply implement nearest-block-first (NBF),
which schedules the request with the nearest block address next.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

HARD DISK DRIVES 413

The second problem is more fundamental: starvation. Imagine in
our example above if there were a steady stream of requests to the in-
ner track, where the head currently is positioned. Requests to any other
tracks would then be ignored completely by a pure SSTF approach. And
thus the crux of the problem:

CRUX: HOW TO HANDLE DISK STARVATION

How can we implement SSTF-like scheduling but avoid starvation?

Elevator (a.k.a. SCAN or C-SCAN)

The answer to this query was developed some time ago (see [CKR72]
for example), and is relatively straightforward. The algorithm, originally
called SCAN, simply moves across the disk servicing requests in order
across the tracks. Let us call a single pass across the disk a sweep. Thus, if
a request comes for a block on a track that has already been serviced on
this sweep of the disk, it is not handled immediately, but rather queued
until the next sweep.

SCAN has a number of variants, all of which do about the same thing.
For example, Coffman et al. introduced F-SCAN, which freezes the queue
to be serviced when it is doing a sweep [CKR72]; this action places re-
quests that come in during the sweep into a queue to be serviced later.
Doing so avoids starvation of far-away requests, by delaying the servic-
ing of late-arriving (but nearer by) requests.

C-SCAN is another common variant, short for Circular SCAN. In-
stead of sweeping in one direction across the disk, the algorithm sweeps
from outer-to-inner, and then inner-to-outer, etc.

For reasons that should now be obvious, this algorithm (and its vari-
ants) is sometimes referred to as the elevator algorithm, because it be-
haves like an elevator which is either going up or down and not just ser-
vicing requests to floors based on which floor is closer. Imagine how an-
noying it would be if you were going down from floor 10 to 1, and some-
body got on at 3 and pressed 4, and the elevator went up to 4 because it
was “closer” than 1! As you can see, the elevator algorithm, when used
in real life, prevents fights from taking place on elevators. In disks, it just
prevents starvation.

Unfortunately, SCAN and its cousins do not represent the best schedul-
ing technology. In particular, SCAN (or SSTF even) do not actually adhere
as closely to the principle of SJF as they could. In particular, they ignore
rotation. And thus, another crux:

CRUX: HOW TO ACCOUNT FOR DISK ROTATION COSTS

How can we implement an algorithm that more closely approximates SJF
by taking both seek and rotation into account?

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

414 HARD DISK DRIVES

0

11

10
9

8

7

6

5

4
3

2

1

12

23

22
21

20

19

18

17

16
15

14

13

24

35

34
33

32

31

30

29

28
27

26

25

Spindle

Rotates this way

Figure 37.6: SSTF: Sometimes Not Good Enough

SPTF: Shortest Positioning Time First

Before discussing shortest positioning time first or SPTF scheduling (some-
times also called shortest access time first or SATF), which is the solution
to our problem, let us make sure we understand the problem in more de-
tail. Figure 37.6 presents an example.

In the example, the head is currently positioned over sector 30 on the
inner track. The scheduler thus has to decide: should it schedule sector 16
(on the middle track) or sector 8 (on the outer track) for its next request.
So which should it service next?

The answer, of course, is “it depends”. In engineering, it turns out
“it depends” is almost always the answer, reflecting that trade-offs are
part of the life of the engineer; such maxims are also good in a pinch,
e.g., when you don’t know an answer to your boss’s question, you might
want to try this gem. However, it is almost always better to know why it
depends, which is what we discuss here.

What it depends on here is the relative time of seeking as compared
to rotation. If, in our example, seek time is much higher than rotational
delay, then SSTF (and variants) are just fine. However, imagine if seek is
quite a bit faster than rotation. Then, in our example, it would make more
sense to seek further to service request 8 on the outer track than it would
to perform the shorter seek to the middle track to service 16, which has to
rotate all the way around before passing under the disk head.

On modern drives, as we saw above, both seek and rotation are roughly
equivalent (depending, of course, on the exact requests), and thus SPTF
is useful and improves performance. However, it is even more difficult
to implement in an OS, which generally does not have a good idea where
track boundaries are or where the disk head currently is (in a rotational
sense). Thus, SPTF is usually performed inside a drive, described below.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

HARD DISK DRIVES 415

TIP: IT ALWAYS DEPENDS (LIVNY’S LAW)
Almost any question can be answered with “it depends”, as our colleague
Miron Livny always says. However, use with caution, as if you answer
too many questions this way, people will stop asking you questions alto-
gether. For example, somebody asks: “want to go to lunch?” You reply:
“it depends, are you coming along?”

Other Scheduling Issues

There are many other issues we do not discuss in this brief description
of basic disk operation, scheduling, and related topics. One such is-
sue is this: where is disk scheduling performed on modern systems? In
older systems, the operating system did all the scheduling; after looking
through the set of pending requests, the OS would pick the best one, and
issue it to the disk. When that request completed, the next one would be
chosen, and so forth. Disks were simpler then, and so was life.

In modern systems, disks can accommodate multiple outstanding re-
quests, and have sophisticated internal schedulers themselves (which can
implement SPTF accurately; inside the disk controller, all relevant details
are available, including exact head position). Thus, the OS scheduler usu-
ally picks what it thinks the best few requests are (say 16) and issues them
all to disk; the disk then uses its internal knowledge of head position and
detailed track layout information to service said requests in the best pos-
sible (SPTF) order.

Another important related task performed by disk schedulers is I/O
merging. For example, imagine a series of requests to read blocks 33,
then 8, then 34, as in Figure 37.6. In this case, the scheduler should merge
the requests for blocks 33 and 34 into a single two-block request; any re-
ordering that the scheduler does is performed upon the merged requests.
Merging is particularly important at the OS level, as it reduces the num-
ber of requests sent to the disk and thus lowers overheads.

One final problem that modern schedulers address is this: how long
should the system wait before issuing an I/O to disk? One might naively
think that the disk, once it has even a single I/O, should immediately
issue the request to the drive; this approach is called work-conserving, as
the disk will never be idle if there are requests to serve. However, research
on anticipatory disk scheduling has shown that sometimes it is better to
wait for a bit [ID01], in what is called a non-work-conserving approach.
By waiting, a new and “better” request may arrive at the disk, and thus
overall efficiency is increased. Of course, deciding when to wait, and for
how long, can be tricky; see the research paper for details, or check out
the Linux kernel implementation to see how such ideas are transitioned
into practice (if you are the ambitious sort).

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

416 HARD DISK DRIVES

37.6 Summary

We have presented a summary of how disks work. The summary is
actually a detailed functional model; it does not describe the amazing
physics, electronics, and material science that goes into actual drive de-
sign. For those interested in even more details of that nature, we suggest
a different major (or perhaps minor); for those that are happy with this
model, good! We can now proceed to using the model to build more in-
teresting systems on top of these incredible devices.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

HARD DISK DRIVES 417

References

[ADR03] “More Than an Interface: SCSI vs. ATA”
Dave Anderson, Jim Dykes, Erik Riedel
FAST ’03, 2003
One of the best recent-ish references on how modern disk drives really work; a must read for anyone
interested in knowing more.

[CKR72] “Analysis of Scanning Policies for Reducing Disk Seek Times”
E.G. Coffman, L.A. Klimko, B. Ryan
SIAM Journal of Computing, September 1972, Vol 1. No 3.
Some of the early work in the field of disk scheduling.

[ID01] “Anticipatory Scheduling: A Disk-scheduling Framework
To Overcome Deceptive Idleness In Synchronous I/O”
Sitaram Iyer, Peter Druschel
SOSP ’01, October 2001
A cool paper showing how waiting can improve disk scheduling: better requests may be on their way!

[JW91] “Disk Scheduling Algorithms Based On Rotational Position”
D. Jacobson, J. Wilkes
Technical Report HPL-CSP-91-7rev1, Hewlett-Packard (February 1991)
A more modern take on disk scheduling. It remains a technical report (and not a published paper)
because the authors were scooped by Seltzer et al. [SCO90].

[RW92] “An Introduction to Disk Drive Modeling”
C. Ruemmler, J. Wilkes
IEEE Computer, 27:3, pp. 17-28, March 1994
A terrific introduction to the basics of disk operation. Some pieces are out of date, but most of the basics
remain.

[SCO90] “Disk Scheduling Revisited”
Margo Seltzer, Peter Chen, John Ousterhout
USENIX 1990
A paper that talks about how rotation matters too in the world of disk scheduling.

[SG04] “MEMS-based storage devices and standard disk interfaces: A square peg in a round
hole?”
Steven W. Schlosser, Gregory R. Ganger
FAST ’04, pp. 87-100, 2004
While the MEMS aspect of this paper hasn’t yet made an impact, the discussion of the contract between
file systems and disks is wonderful and a lasting contribution.

[S09a] “Barracuda ES.2 data sheet”
http://www.seagate.com/docs/pdf/datasheet/disc/ds cheetah 15k 5.pdfA data
sheet; read at your own risk. Risk of what? Boredom.

[S09b] “Cheetah 15K.5”
http://www.seagate.com/docs/pdf/datasheet/disc/ds barracuda es.pdf See above
commentary on data sheets.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

418 HARD DISK DRIVES

Homework

This homework uses disk.py to familiarize you with how a modern
hard drive works. It has a lot of different options, and unlike most of
the other simulations, has a graphical animator to show you exactly what
happens when the disk is in action. See the README for details.

1. Compute the seek, rotation, and transfer times for the following
sets of requests: -a 0, -a 6, -a 30, -a 7,30,8, and finally -a

10,11,12,13.
2. Do the same requests above, but change the seek rate to different

values: -S 2, -S 4, -S 8, -S 10, -S 40, -S 0.1. How do the
times change?

3. Do the same requests above, but change the rotation rate: -R 0.1,
-R 0.5, -R 0.01. How do the times change?

4. You might have noticed that some request streams would be bet-
ter served with a policy better than FIFO. For example, with the
request stream -a 7,30,8, what order should the requests be pro-
cessed in? Now run the shortest seek-time first (SSTF) scheduler
(-p SSTF) on the same workload; how long should it take (seek,
rotation, transfer) for each request to be served?

5. Now do the same thing, but using the shortest access-time first
(SATF) scheduler (-p SATF). Does it make any difference for the
set of requests as specified by -a 7,30,8? Find a set of requests
where SATF does noticeably better than SSTF; what are the condi-
tions for a noticeable difference to arise?

6. You might have noticed that the request stream -a 10,11,12,13

wasn’t particularly well handled by the disk. Why is that? Can you
introduce a track skew to address this problem (-o skew, where
skew is a non-negative integer)? Given the default seek rate, what
should the skew be to minimize the total time for this set of re-
quests? What about for different seek rates (e.g., -S 2, -S 4)? In
general, could you write a formula to figure out the skew, given the
seek rate and sector layout information?

7. Multi-zone disks pack more sectors into the outer tracks. To config-
ure this disk in such a way, run with the -z flag. Specifically, try
running some requests against a disk run with -z 10,20,30 (the
numbers specify the angular space occupied by a sector, per track;
in this example, the outer track will be packed with a sector every
10 degrees, the middle track every 20 degrees, and the inner track
with a sector every 30 degrees). Run some random requests (e.g.,
-a -1 -A 5,-1,0, which specifies that random requests should
be used via the -a -1 flag and that five requests ranging from 0 to
the max be generated), and see if you can compute the seek, rota-
tion, and transfer times. Use different random seeds (-s 1, -s 2,
etc.). What is the bandwidth (in sectors per unit time) on the outer,
middle, and inner tracks?

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

HARD DISK DRIVES 419

8. Scheduling windows determine how many sector requests a disk
can examine at once in order to determine which sector to serve
next. Generate some random workloads of a lot of requests (e.g.,
-A 1000,-1,0, with different seeds perhaps) and see how long
the SATF scheduler takes when the scheduling window is changed
from 1 up to the number of requests (e.g., -w 1 up to -w 1000,
and some values in between). How big of scheduling window is
needed to approach the best possible performance? Make a graph
and see. Hint: use the -c flag and don’t turn on graphics with -G

to run these more quickly. When the scheduling window is set to 1,
does it matter which policy you are using?

9. Avoiding starvation is important in a scheduler. Can you think of a
series of requests such that a particular sector is delayed for a very
long time given a policy such as SATF? Given that sequence, how
does it perform if you use a bounded SATF or BSATF scheduling
approach? In this approach, you specify the scheduling window
(e.g., -w 4) as well as the BSATF policy (-p BSATF); the scheduler
then will only move onto the next window of requests when all of
the requests in the current window have been serviced. Does this
solve the starvation problem? How does it perform, as compared
to SATF? In general, how should a disk make this trade-off between
performance and starvation avoidance?

10. All the scheduling policies we have looked at thus far are greedy,
in that they simply pick the next best option instead of looking for
the optimal schedule over a set of requests. Can you find a set of
requests in which this greedy approach is not optimal?

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

38

Redundant Arrays of Inexpensive Disks
(RAIDs)

When we use a disk, we sometimes wish it to be faster; I/O operations
are slow and thus can be the bottleneck for the entire system. When we
use a disk, we sometimes wish it to be larger; more and more data is being
put online and thus our disks are getting fuller and fuller. When we use
a disk, we sometimes wish for it to be more reliable; when a disk fails, if
our data isn’t backed up, all that valuable data is gone.

CRUX: HOW TO MAKE A LARGE, FAST, RELIABLE DISK

How can we make a large, fast, and reliable storage system? What are
the key techniques? What are trade-offs between different approaches?

In this chapter, we introduce the Redundant Array of Inexpensive
Disks better known as RAID [P+88], a technique to use multiple disks in
concert to build a faster, bigger, and more reliable disk system. The term
was introduced in the late 1980s by a group of researchers at U.C. Berke-
ley (led by Professors David Patterson and Randy Katz and then student
Garth Gibson); it was around this time that many different researchers si-
multaneously arrived upon the basic idea of using multiple disks to build
a better storage system [BG88, K86,K88,PB86,SG86].

Externally, a RAID looks like a disk: a group of blocks one can read
or write. Internally, the RAID is a complex beast, consisting of multiple
disks, memory (both volatile and non-), and one or more processors to
manage the system. A hardware RAID is very much like a computer
system, specialized for the task of managing a group of disks.

RAIDs offer a number of advantages over a single disk. One advan-
tage is performance. Using multiple disks in parallel can greatly speed
up I/O times. Another benefit is capacity. Large data sets demand large
disks. Finally, RAIDs can improve reliability; spreading data across mul-
tiple disks (without RAID techniques) makes the data vulnerable to the
loss of a single disk; with some form of redundancy, RAIDs can tolerate
the loss of a disk and keep operating as if nothing were wrong.

421

422 REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS)

TIP: TRANSPARENCY ENABLES DEPLOYMENT

When considering how to add new functionality to a system, one should
always consider whether such functionality can be added transparently,
in a way that demands no changes to the rest of the system. Requiring a
complete rewrite of the existing software (or radical hardware changes)
lessens the chance of impact of an idea. RAID is a perfect example, and
certainly its transparency contributed to its success; administrators could
install a SCSI-based RAID storage array instead of a SCSI disk, and the
rest of the system (host computer, OS, etc.) did not have to change one bit
to start using it. By solving this problem of deployment, RAID was made
more successful from day one.

Amazingly, RAIDs provide these advantages transparently to systems
that use them, i.e., a RAID just looks like a big disk to the host system. The
beauty of transparency, of course, is that it enables one to simply replace
a disk with a RAID and not change a single line of software; the operat-
ing system and client applications continue to operate without modifica-
tion. In this manner, transparency greatly improves the deployability of
RAID, enabling users and administrators to put a RAID to use without
worries of software compatibility.

We now discuss some of the important aspects of RAIDs. We begin
with the interface, fault model, and then discuss how one can evaluate a
RAID design along three important axes: capacity, reliability, and perfor-
mance. We then discuss a number of other issues that are important to
RAID design and implementation.

38.1 Interface And RAID Internals

To a file system above, a RAID looks like a big, (hopefully) fast, and
(hopefully) reliable disk. Just as with a single disk, it presents itself as
a linear array of blocks, each of which can be read or written by the file
system (or other client).

When a file system issues a logical I/O request to the RAID, the RAID
internally must calculate which disk (or disks) to access in order to com-
plete the request, and then issue one or more physical I/Os to do so. The
exact nature of these physical I/Os depends on the RAID level, as we will
discuss in detail below. However, as a simple example, consider a RAID
that keeps two copies of each block (each one on a separate disk); when
writing to such a mirrored RAID system, the RAID will have to perform
two physical I/Os for every one logical I/O it is issued.

A RAID system is often built as a separate hardware box, with a stan-
dard connection (e.g., SCSI, or SATA) to a host. Internally, however,
RAIDs are fairly complex, consisting of a microcontroller that runs firmware
to direct the operation of the RAID, volatile memory such as DRAM
to buffer data blocks as they are read and written, and in some cases,

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS) 423

non-volatile memory to buffer writes safely and perhaps even special-
ized logic to perform parity calculations (useful in some RAID levels, as
we will also see below). At a high level, a RAID is very much a special-
ized computer system: it has a processor, memory, and disks; however,
instead of running applications, it runs specialized software designed to
operate the RAID.

38.2 Fault Model

To understand RAID and compare different approaches, we must have
a fault model in mind. RAIDs are designed to detect and recover from
certain kinds of disk faults; thus, knowing exactly which faults to expect
is critical in arriving upon a working design.

The first fault model we will assume is quite simple, and has been
called the fail-stop fault model [S84]. In this model, a disk can be in
exactly one of two states: working or failed. With a working disk, all
blocks can be read or written. In contrast, when a disk has failed, we
assume it is permanently lost.

One critical aspect of the fail-stop model is what it assumes about fault
detection. Specifically, when a disk has failed, we assume that this is
easily detected. For example, in a RAID array, we would assume that the
RAID controller hardware (or software) can immediately observe when a
disk has failed.

Thus, for now, we do not have to worry about more complex “silent”
failures such as disk corruption. We also do not have to worry about a sin-
gle block becoming inaccessible upon an otherwise working disk (some-
times called a latent sector error). We will consider these more complex
(and unfortunately, more realistic) disk faults later.

38.3 How To Evaluate A RAID

As we will soon see, there are a number of different approaches to
building a RAID. Each of these approaches has different characteristics
which are worth evaluating, in order to understand their strengths and
weaknesses.

Specifically, we will evaluate each RAID design along three axes. The
first axis is capacity; given a set of N disks, how much useful capacity is
available to systems that use the RAID? Without redundancy, the answer
is obviously N; however, if we have a system that keeps a two copies of
each block, we will obtain a useful capacity of N/2. Different schemes
(e.g., parity-based ones) tend to fall in between.

The second axis of evaluation is reliability. How many disk faults can
the given design tolerate? In alignment with our fault model, we assume
only that an entire disk can fail; in later chapters (i.e., on data integrity),
we’ll think about how to handle more complex failure modes.

Finally, the third axis is performance. Performance is somewhat chal-

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

424 REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS)

lenging to evaluate, because it depends heavily on the workload pre-
sented to the disk array. Thus, before evaluating performance, we will
first present a set of typical workloads that one should consider.

We now consider three important RAID designs: RAID Level 0 (strip-
ing), RAID Level 1 (mirroring), and RAID Levels 4/5 (parity-based re-
dundancy). The naming of each of these designs as a “level” stems from
the pioneering work of Patterson, Gibson, and Katz at Berkeley [P+88].

38.4 RAID Level 0: Striping

The first RAID level is actually not a RAID level at all, in that there is
no redundancy. However, RAID level 0, or striping as it is better known,
serves as an excellent upper-bound on performance and capacity and
thus is worth understanding.

The simplest form of striping will stripe blocks across the disks of the
system as follows (assume here a 4-disk array):

Disk 0 Disk 1 Disk 2 Disk 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Table 38.1: RAID-0: Simple Striping

From Table 38.1, you get the basic idea: spread the blocks of the array
across the disks in a round-robin fashion. This approach is designed to
extract the most parallelism from the array when requests are made for
contiguous chunks of the array (as in a large, sequential read, for exam-
ple). We call the blocks in the same row a stripe; thus, blocks 0, 1, 2, and
3 are in the same stripe above.

In the example, we have made the simplifying assumption that only 1
block (each of say size 4KB) is placed on each disk before moving on to
the next. However, this arrangement need not be the case. For example,
we could arrange the blocks across disks as in Table 38.2:

Disk 0 Disk 1 Disk 2 Disk 3

0 2 4 6 chunk size:

1 3 5 7 2 blocks
8 10 12 14
9 11 13 15

Table 38.2: Striping with a Bigger Chunk Size

In this example, we place two 4KB blocks on each disk before moving
on to the next disk. Thus, the chunk size of this RAID array is 8KB, and
a stripe thus consists of 4 chunks or 32KB of data.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS) 425

ASIDE: THE RAID MAPPING PROBLEM

Before studying the capacity, reliability, and performance characteristics
of the RAID, we first present an aside on what we call the mapping prob-
lem. This problem arises in all RAID arrays; simply put, given a logical
block to read or write, how does the RAID know exactly which physical
disk and offset to access?
For these simple RAID levels, we do not need much sophistication in
order to correctly map logical blocks onto their physical locations. Take
the first striping example above (chunk size = 1 block = 4KB). In this case,
given a logical block address A, the RAID can easily compute the desired
disk and offset with two simple equations:

Disk = A % number_of_disks

Offset = A / number_of_disks

Note that these are all integer operations (e.g., 4 / 3 = 1 not 1.33333...).
Let’s see how these equations work for a simple example. Imagine in the
first RAID above that a request arrives for block 14. Given that there are
4 disks, this would mean that the disk we are interested in is (14 % 4 = 2):
disk 2. The exact block is calculated as (14 / 4 = 3): block 3. Thus, block
14 should be found on the fourth block (block 3, starting at 0) of the third
disk (disk 2, starting at 0), which is exactly where it is.
You can think about how these equations would be modified to support
different chunk sizes. Try it! It’s not too hard.

Chunk Sizes

Chunk size mostly affects performance of the array. For example, a small
chunk size implies that many files will get striped across many disks, thus
increasing the parallelism of reads and writes to a single file; however, the
positioning time to access blocks across multiple disks increases, because
the positioning time for the entire request is determined by the maximum
of the positioning times of the requests across all drives.

A big chunk size, on the other hand, reduces such intra-file paral-
lelism, and thus relies on multiple concurrent requests to achieve high
throughput. However, large chunk sizes reduce positioning time; if, for
example, a single file fits within a chunk and thus is placed on a single
disk, the positioning time incurred while accessing it will just be the po-
sitioning time of a single disk.

Thus, determining the “best” chunk size is hard to do, as it requires a
great deal of knowledge about the workload presented to the disk system
[CL95]. For the rest of this discussion, we will assume that the array uses
a chunk size of a single block (4KB). Most arrays use larger chunk sizes
(e.g., 64 KB), but for the issues we discuss below, the exact chunk size
does not matter; thus we use a single block for the sake of simplicity.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

426 REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS)

Back To RAID-0 Analysis

Let us now evaluate the capacity, reliability, and performance of striping.
From the perspective of capacity, it is perfect: given N disks, striping de-
livers N disks worth of useful capacity. From the standpoint of reliability,
striping is also perfect, but in the bad way: any disk failure will lead to
data loss. Finally, performance is excellent: all disks are utilized, often in
parallel, to service user I/O requests.

Evaluating RAID Performance

In analyzing RAID performance, one can consider two different perfor-
mance metrics. The first is single-request latency. Understanding the la-
tency of a single I/O request to a RAID is useful as it reveals how much
parallelism can exist during a single logical I/O operation. The second
is steady-state throughput of the RAID, i.e., the total bandwidth of many
concurrent requests. Because RAIDs are often used in high-performance
environments, the steady-state bandwidth is critical, and thus will be the
main focus of our analyses.

To understand throughput in more detail, we need to put forth some
workloads of interest. We will assume, for this discussion, that there
are two types of workloads: sequential and random. With a sequential
workload, we assume that requests to the array come in large contiguous
chunks; for example, a request (or series of requests) that accesses 1 MB
of data, starting at block (B) and ending at block (B + 1 MB), would be
deemed sequential. Sequential workloads are common in many environ-
ments (think of searching through a large file for a keyword), and thus
are considered important.

For random workloads, we assume that each request is rather small,
and that each request is to a different random location on disk. For exam-
ple, a random stream of requests may first access 4KB at logical address
10, then at logical address 550,000, then at 20,100, and so forth. Some im-
portant workloads, such as transactional workloads on a database man-
agement system (DBMS), exhibit this type of access pattern, and thus it is
considered an important workload.

Of course, real workloads are not so simple, and often have a mix
of sequential and random-seeming components as well as behaviors in-
between the two. For simplicity, we just consider these two possibilities.

As you can tell, sequential and random workloads will result in widely
different performance characteristics from a disk. With sequential access,
a disk operates in its most efficient mode, spending little time seeking and
waiting for rotation and most of its time transferring data. With random
access, just the opposite is true: most time is spent seeking and waiting
for rotation and relatively little time is spent transferring data. To capture
this difference in our analysis, we will assume that a disk can transfer
data at S MB/s under a sequential workload, and R MB/s when under a
random workload. In general, S is much greater than R.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS) 427

To make sure we understand this difference, let’s do a simple exer-
cise. Specifically, lets calculate S and R given the following disk charac-
teristics. Assume a sequential transfer of size 10 MB on average, and a
random transfer of 10 KB on average. Also, assume the following disk
characteristics:

Average seek time 7 ms
Average rotational delay 3 ms

Transfer rate of disk 50 MB/s

To compute S, we need to first figure out how time is spent in a typical
10 MB transfer. First, we spend 7 ms seeking, and then 3 ms rotating.
Finally, transfer begins; 10 MB @ 50 MB/s leads to 1/5th of a second, or
200 ms, spent in transfer. Thus, for each 10 MB request, we spend 210 ms
completing the request. To compute S, we just need to divide:

S = Amount of Data
Time to access

= 10 MB
210 ms

= 47.62 MB/s

As we can see, because of the large time spent transferring data, S is
very near the peak bandwidth of the disk (the seek and rotational costs
have been amortized).

We can compute R similarly. Seek and rotation are the same; we then
compute the time spent in transfer, which is 10 KB @ 50 MB/s, or 0.195
ms.

R = Amount of Data
Time to access

= 10 KB
10.195 ms

= 0.981 MB/s

As we can see, R is less than 1 MB/s, and S/R is almost 50.

Back To RAID-0 Analysis, Again

Let’s now evaluate the performance of striping. As we said above, it is
generally good. From a latency perspective, for example, the latency of a
single-block request should be just about identical to that of a single disk;
after all, RAID-0 will simply redirect that request to one of its disks.

From the perspective of steady-state throughput, we’d expect to get
the full bandwidth of the system. Thus, throughput equals N (the number
of disks) multiplied by S (the sequential bandwidth of a single disk). For
a large number of random I/Os, we can again use all of the disks, and
thus obtain N · R MB/s. As we will see below, these values are both
the simplest to calculate and will serve as an upper bound in comparison
with other RAID levels.

38.5 RAID Level 1: Mirroring

Our first RAID level beyond striping is known as RAID level 1, or
mirroring. With a mirrored system, we simply make more than one copy
of each block in the system; each copy should be placed on a separate
disk, of course. By doing so, we can tolerate disk failures.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

428 REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS)

In a typical mirrored system, we will assume that for each logical
block, the RAID keeps two physical copies of it. Here is an example:

Disk 0 Disk 1 Disk 2 Disk 3
0 0 1 1
2 2 3 3
4 4 5 5
6 6 7 7

Table 38.3: Simple RAID-1: Mirroring

In the example, disk 0 and disk 1 have identical contents, and disk 2
and disk 3 do as well; the data is striped across these mirror pairs. In fact,
you may have noticed that there are a number of different ways to place
block copies across the disks. The arrangement above is a common one
and is sometimes called RAID-10 or (RAID 1+0) because it uses mirrored
pairs (RAID-1) and then stripes (RAID-0) on top of them; another com-
mon arrangement is RAID-01 (or RAID 0+1), which contains two large
striping (RAID-0) arrays, and then mirrors (RAID-1) on top of them. For
now, we will just talk about mirroring assuming the above layout.

When reading a block from a mirrored array, the RAID has a choice: it
can read either copy. For example, if a read to logical block 5 is issued to
the RAID, it is free to read it from either disk 2 or disk 3. When writing
a block, though, no such choice exists: the RAID must update both copies
of the data, in order to preserve reliability. Do note, though, that these
writes can take place in parallel; for example, a write to logical block 5
could proceed to disks 2 and 3 at the same time.

RAID-1 Analysis

Let us assess RAID-1. From a capacity standpoint, RAID-1 is expensive;
with the mirroring level = 2, we only obtain half of our peak useful ca-
pacity. Thus, with N disks, the useful capacity of mirroring is N/2.

From a reliability standpoint, RAID-1 does well. It can tolerate the fail-
ure of any one disk. You may also notice RAID-1 can actually do better
than this, with a little luck. Imagine, in the figure above, that disk 0 and
disk 2 both failed. In such a situation, there is no data loss! More gen-
erally, a mirrored system (with mirroring level of 2) can tolerate 1 disk
failure for certain, and up to N/2 failures depending on which disks fail.
In practice, we generally don’t like to leave things like this to chance; thus
most people consider mirroring to be good for handling a single failure.

Finally, we analyze performance. From the perspective of the latency
of a single read request, we can see it is the same as the latency on a single
disk; all the RAID-1 does is direct the read to one of its copies. A write
is a little different: it requires two physical writes to complete before it
is done. These two writes happen in parallel, and thus the time will be
roughly equivalent to the time of a single write; however, because the
logical write must wait for both physical writes to complete, it suffers the
worst-case seek and rotational delay of the two requests, and thus (on
average) will be slightly higher than a write to a single disk.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS) 429

ASIDE: THE RAID CONSISTENT-UPDATE PROBLEM

Before analyzing RAID-1, let us first discuss a problem that arises in
any multi-disk RAID system, known as the consistent-update problem
[DAA05]. The problem occurs on a write to any RAID that has to up-
date multiple disks during a single logical operation. In this case, let us
assume we are considering a mirrored disk array.
Imagine the write is issued to the RAID, and then the RAID decides that
it must be written to two disks, disk 0 and disk 1. The RAID then issues
the write to disk 0, but just before the RAID can issue the request to disk
1, a power loss (or system crash) occurs. In this unfortunate case, let us
assume that the request to disk 0 completed (but clearly the request to
disk 1 did not, as it was never issued).
The result of this untimely power loss is that the two copies of the block
are now inconsistent; the copy on disk 0 is the new version, and the copy
on disk 1 is the old. What we would like to happen is for the state of both
disks to change atomically, i.e., either both should end up as the new
version or neither.
The general way to solve this problem is to use a write-ahead log of some
kind to first record what the RAID is about to do (i.e., update two disks
with a certain piece of data) before doing it. By taking this approach, we
can ensure that in the presence of a crash, the right thing will happen; by
running a recovery procedure that replays all pending transactions to the
RAID, we can ensure that no two mirrored copies (in the RAID-1 case)
are out of sync.
One last note: because logging to disk on every write is prohibitively
expensive, most RAID hardware includes a small amount of non-volatile
RAM (e.g., battery-backed) where it performs this type of logging. Thus,
consistent update is provided without the high cost of logging to disk.

To analyze steady-state throughput, let us start with the sequential
workload. When writing out to disk sequentially, each logical write must
result in two physical writes; for example, when we write logical block
0 (in the figure above), the RAID internally would write it to both disk
0 and disk 1. Thus, we can conclude that the maximum bandwidth ob-
tained during sequential writing to a mirrored array is (N

2
·S), or half the

peak bandwidth.
Unfortunately, we obtain the exact same performance during a se-

quential read. One might think that a sequential read could do better,
because it only needs to read one copy of the data, not both. However,
let’s use an example to illustrate why this doesn’t help much. Imagine we
need to read blocks 0, 1, 2, 3, 4, 5, 6, and 7. Let’s say we issue the read of
0 to disk 0, the read of 1 to disk 2, the read of 2 to disk 1, and the read of
3 to disk 3. We continue by issuing reads to 4, 5, 6, and 7 to disks 0, 2, 1,
and 3, respectively. One might naively think that because we are utilizing
all disks, we are achieving the full bandwidth of the array.

To see that this is not the case, however, consider the requests a single

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

430 REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS)

disk receives (say disk 0). First, it gets a request for block 0; then, it gets a
request for block 4 (skipping block 2). In fact, each disk receives a request
for every other block. While it is rotating over the skipped block, it is
not delivering useful bandwidth to the client. Thus, each disk will only
deliver half its peak bandwidth. And thus, the sequential read will only
obtain a bandwidth of (N

2
· S) MB/s.

Random reads are the best case for a mirrored RAID. In this case, we
can distribute the reads across all the disks, and thus obtain the full pos-
sible bandwidth. Thus, for random reads, RAID-1 delivers N · R MB/s.

Finally, random writes perform as you might expect: N
2
·R MB/s. Each

logical write must turn into two physical writes, and thus while all the
disks will be in use, the client will only perceive this as half the available
bandwidth. Even though a write to logical block X turns into two parallel
writes to two different physical disks, the bandwidth of many small re-
quests only achieves half of what we saw with striping. As we will soon
see, getting half the available bandwidth is actually pretty good!

38.6 RAID Level 4: Saving Space With Parity

We now present a different method of adding redundancy to a disk ar-
ray known as parity. Parity-based approaches attempt to use less capac-
ity and thus overcome the huge space penalty paid by mirrored systems.
They do so at a cost, however: performance.

In a five-disk RAID-4 system, we might observe the following layout:

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4

0 1 2 3 P0

4 5 6 7 P1

8 9 10 11 P2

12 13 14 15 P3

As you can see, for each stripe of data, we have added a single par-
ity block that stores the redundant information for that stripe of blocks.
For example, parity block P1 has redundant information that it calculated
from blocks 4, 5, 6, and 7.

To compute parity, we need to use a mathematical function that en-
ables us to withstand the loss of any one block from our stripe. It turns
out the simple function XOR does the trick quite nicely. For a given set of
bits, the XOR of all of those bits returns a 0 if there are an even number of
1’s in the bits, and a 1 if there are an odd number of 1’s. For example:

C0 C1 C2 C3 P
0 0 1 1 XOR(0,0,1,1) = 0
0 1 0 0 XOR(0,1,0,0) = 1

In the first row (0,0,1,1), there are two 1’s (C2, C3), and thus XOR of
all of those values will be 0 (P); similarly, in the second row there is only

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS) 431

one 1 (C1), and thus the XOR must be 1 (P). You can remember this in a
very simple way: that the number of 1’s in any row must be an even (not
odd) number; that is the invariant that the RAID must maintain in order
for parity to be correct.

From the example above, you might also be able to guess how parity
information can be used to recover from a failure. Imagine the column la-
beled C2 is lost. To figure out what values must have been in the column,
we simply have to read in all the other values in that row (including the
XOR’d parity bit) and reconstruct the right answer. Specifically, assume
the first row’s value in column C2 is lost (it is a 1); by reading the other
values in that row (0 from C0, 0 from C1, 1 from C3, and 0 from the parity
column P), we get the values 0, 0, 1, and 0. Because we know that XOR
keeps an even number of 1’s in each row, we know what the missing data
must be: a 1. And that is how reconstruction works in a XOR-based par-
ity scheme! Note also how we compute the reconstructed value: we just
XOR the data bits and the parity bits together, in the same way that we
calculated the parity in the first place.

Now you might be wondering: we are talking about XORing all of
these bits, and yet above we know that the RAID places 4KB (or larger)
blocks on each disk; how do we apply XOR to a bunch of blocks to com-
pute the parity? It turns out this is easy as well. Simply perform a bitwise
XOR across each bit of the data blocks; put the result of each bitwise XOR
into the corresponding bit slot in the parity block. For example, if we had
blocks of size 4 bits (yes, this is still quite a bit smaller than a 4KB block,
but you get the picture), they might look something like this:

Block0 Block1 Block2 Block3 Parity
00 10 11 10 11
10 01 00 01 10

As you can see from the figure, the parity is computed for each bit of
each block and the result placed in the parity block.

RAID-4 Analysis

Let us now analyze RAID-4. From a capacity standpoint, RAID-4 uses 1
disk for parity information for every group of disks it is protecting. Thus,
our useful capacity for a RAID group is (N-1).

Reliability is also quite easy to understand: RAID-4 tolerates 1 disk
failure and no more. If more than one disk is lost, there is simply no way
to reconstruct the lost data.

Finally, there is performance. This time, let us start by analyzing steady-
state throughput. Sequential read performance can utilize all of the disks
except for the parity disk, and thus deliver a peak effective bandwidth of
(N − 1) · S MB/s (an easy case).

To understand the performance of sequential writes, we must first un-
derstand how they are done. When writing a big chunk of data to disk,

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

432 REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS)

RAID-4 can perform a simple optimization known as a full-stripe write.
For example, imagine the case where the blocks 0, 1, 2, and 3 have been
sent to the RAID as part of a write request (Table 38.4).

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4

0 1 2 3 P0
4 5 6 7 P1
8 9 10 11 P2

12 13 14 15 P3

Table 38.4: Full-stripe Writes In RAID-4

In this case, the RAID can simply calculate the new value of P0 (by
performing an XOR across the blocks 0, 1, 2, and 3) and then write all of
the blocks (including the parity block) to the five disks above in parallel
(highlighted in gray in the figure). Thus, full-stripe writes are the most
efficient way for RAID-4 to write to disk.

Once we understand the full-stripe write, calculating the performance
of sequential writes on RAID-4 is easy; the effective bandwidth is also
(N −1) ·S MB/s. Even though the parity disk is constantly in use during
the operation, the client does not gain performance advantage from it.

Now let us analyze the performance of random reads. As you can also
see from the figure above, a set of 1-block random reads will be spread
across the data disks of the system but not the parity disk. Thus, the
effective performance is: (N − 1) · R MB/s.

Random writes, which we have saved for last, present the most in-
teresting case for RAID-4. Imagine we wish to overwrite block 1 in the
example above. We could just go ahead and overwrite it, but that would
leave us with a problem: the parity block P0 would no longer accurately
reflect the correct parity value for the stripe. Thus, in this example, P0
must also be updated. But how can we update it both correctly and effi-
ciently?

It turns out there are two methods. The first, known as additive parity,
requires us to do the following. To compute the value of the new parity
block, read in all of the other data blocks in the stripe in parallel (in the
example, blocks 0, 2, and 3) and XOR those with the new block (1). The
result is your new parity block. To complete the write, you can then write
the new data and new parity to their respective disks, also in parallel.

The problem with this technique is that it scales with the number of
disks, and thus in larger RAIDs requires a high number of reads to com-
pute parity. Thus, the subtractive parity method.

For example, imagine this string of bits (4 data bits, one parity):

C0 C1 C2 C3 P
0 0 1 1 XOR(0,0,1,1) = 0

Let’s imagine that we wish to overwrite bit C2 with a new value which
we will call C2(new). The subtractive method works in three steps. First,
we read in the old data at C2 (C2(old) = 1) and the old parity (P(old) =

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS) 433

0). Then, we compare the old data and the new data; if they are the same
(e.g., C2(new) = C2(old)), then we know the parity bit will also remain
the same (i.e., P(new) = P(old)). If, however, they are different, then we
must flip the old parity bit to the opposite of its current state, that is, if
(P(old) == 1), P(new) will be set to 0; if (P(old) == 0), P(new) will be set to
1. We can express this whole mess neatly with XOR as it turns out (if you
understand XOR, this will now make sense to you):

P(new) = (C(old) XOR C(new)) XOR P(old)

Because we are dealing with blocks, not bits, we perform this calcula-
tion over all the bits in the block (e.g., 4096 bytes in each block multiplied
by 8 bits per byte). Thus, in most cases, the new block will be different
than the old block and thus the new parity block will too.

You should now be able to figure out when we would use the additive
parity calculation and when we would use the subtractive method. Think
about how many disks would need to be in the system so that the additive
method performs fewer I/Os than the subtractive method; what is the
cross-over point?

For this performance analysis, let us assume we are using the subtrac-
tive method. Thus, for each write, the RAID has to perform 4 physical
I/Os (two reads and two writes). Now imagine there are lots of writes
submitted to the RAID; how many can RAID-4 perform in parallel? To
understand, let us again look at the RAID-4 layout (Figure 38.5).

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4
0 1 2 3 P0
∗4 5 6 7 +P1
8 9 10 11 P2

12 ∗13 14 15 +P3

Table 38.5: Example: Writes To 4, 13, And Respective Parity Blocks

Now imagine there were 2 small writes submitted to the RAID-4 at
about the same time, to blocks 4 and 13 (marked with ∗ in the diagram).
The data for those disks is on disks 0 and 1, and thus the read and write
to data could happen in parallel, which is good. The problem that arises
is with the parity disk; both the requests have to read the related parity
blocks for 4 and 13, parity blocks 1 and 3 (marked with +). Hopefully, the
issue is now clear: the parity disk is a bottleneck under this type of work-
load; we sometimes thus call this the small-write problem for parity-
based RAIDs. Thus, even though the data disks could be accessed in
parallel, the parity disk prevents any parallelism from materializing; all
writes to the system will be serialized because of the parity disk. Because
the parity disk has to perform two I/Os (one read, one write) per logical
I/O, we can compute the performance of small random writes in RAID-4
by computing the parity disk’s performance on those two I/Os, and thus
we achieve (R/2) MB/s. RAID-4 throughput under random small writes
is terrible; it does not improve as you add disks to the system.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

434 REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS)

We conclude by analyzing I/O latency in RAID-4. As you now know,
a single read (assuming no failure) is just mapped to a single disk, and
thus its latency is equivalent to the latency of a single disk request. The
latency of a single write requires two reads and then two writes; the reads
can happen in parallel, as can the writes, and thus total latency is about
twice that of a single disk (with some differences because we have to wait
for both reads to complete and thus get the worst-case positioning time,
but then the updates don’t incur seek cost and thus may be a better-than-
average positioning cost).

38.7 RAID Level 5: Rotating Parity

To address the small-write problem (at least, partially), Patterson, Gib-
son, and Katz introduced RAID-5. RAID-5 works almost identically to
RAID-4, except that it rotates the parity block across drives (Figure 38.6).

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4

0 1 2 3 P0

5 6 7 P1 4

10 11 P2 8 9

15 P3 12 13 14

P4 16 17 18 19

Table 38.6: RAID-5 With Rotated Parity

As you can see, the parity block for each stripe is now rotated across
the disks, in order to remove the parity-disk bottleneck for RAID-4.

RAID-5 Analysis

Much of the analysis for RAID-5 is identical to RAID-4. For example, the
effective capacity and failure tolerance of the two levels are identical. So
are sequential read and write performance. The latency of a single request
(whether a read or a write) is also the same as RAID-4.

Random read performance is a little better, because we can utilize all of
the disks. Finally, random write performance improves noticeably over
RAID-4, as it allows for parallelism across requests. Imagine a write to
block 1 and a write to block 10; this will turn into requests to disk 1 and
disk 4 (for block 1 and its parity) and requests to disk 0 and disk 2 (for
block 10 and its parity). Thus, they can proceed in parallel. In fact, we
can generally assume that that given a large number of random requests,
we will be able to keep all the disks about evenly busy. If that is the case,
then our total bandwidth for small writes will be N

4
· R MB/s. The factor

of four loss is due to the fact that each RAID-5 write still generates 4 total
I/O operations, which is simply the cost of using parity-based RAID.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS) 435

RAID-0 RAID-1 RAID-4 RAID-5
Capacity N N/2 N − 1 N − 1
Reliability 0 1 (for sure) 1 1

N
2

(if lucky)

Throughput
Sequential Read N · S (N/2) · S (N − 1) · S (N − 1) · S
Sequential Write N · S (N/2) · S (N − 1) · S (N − 1) · S
Random Read N · R N · R (N − 1) · R N · R

Random Write N · R (N/2) · R 1
2
· R N

4
R

Latency
Read D D D D
Write D D 2D 2D

Table 38.7: RAID Capacity, Reliability, and Performance

Because RAID-5 is basically identical to RAID-4 except in the few cases
where it is better, it has almost completely replaced RAID-4 in the market-
place. The only place where it has not is in systems that know they will
never perform anything other than a large write, thus avoiding the small-
write problem altogether [HLM94]; in those cases, RAID-4 is sometimes
used as it is slightly simpler to build.

38.8 RAID Comparison: A Summary

We now summarize our simplified comparison of RAID levels in Ta-
ble 38.7. Note that we have omitted a number of details to simplify our
analysis. For example, when writing in a mirrored system, the average
seek time is a little higher than when writing to just a single disk, because
the seek time is the max of two seeks (one on each disk). Thus, random
write performance to two disks will generally be a little less than random
write performance of a single disk. Also, when updating the parity disk
in RAID-4/5, the first read of the old parity will likely cause a full seek
and rotation, but the second write of the parity will only result in rotation.

However, our comparison does capture the essential differences, and
is useful for understanding tradeoffs across RAID levels. We present a
summary in the table below; for the latency analysis, we simply use D to
represent the time that a request to a single disk would take.

To conclude, if you strictly want performance and do not care about
reliability, striping is obviously best. If, however, you want random I/O
performance and reliability, mirroring is the best; the cost you pay is in
lost capacity. If capacity and reliability are your main goals, then RAID-
5 is the winner; the cost you pay is in small-write performance. Finally,
if you are always doing sequential I/O and want to maximize capacity,
RAID-5 also makes the most sense.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

436 REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS)

38.9 Other Interesting RAID Issues

There are a number of other interesting ideas that one could (and per-
haps should) discuss when thinking about RAID. Here are some things
we might eventually write about.

For example, there are many other RAID designs, including Levels 2
and 3 from the original taxonomy, and Level 6 to tolerate multiple disk
faults [C+04]. There is also what the RAID does when a disk fails; some-
times it has a hot spare sitting around to fill in for the failed disk. What
happens to performance under failure, and performance during recon-
struction of the failed disk? There are also more realistic fault models,
to take into account latent sector errors or block corruption [B+08], and
lots of techniques to handle such faults (see the data integrity chapter for
details). Finally, you can even build raid as a software layer: such soft-
ware RAID systems are cheaper but have other problems, including the
consistent-update problem [DAA05].

38.10 Summary

We have discussed RAID. RAID transforms a number of independent
disks into a large, more capacious, and more reliable single entity; impor-
tantly, it does so transparently, and thus hardware and software above is
relatively oblivious to the change.

There are many possible RAID levels to choose from, and the exact
RAID level to use depends heavily on what is important to the end-user.
For example, mirrored RAID is simple, reliable, and generally provides
good performance but at a high capacity cost. RAID-5, in contrast, is
reliable and better from a capacity standpoint, but performs quite poorly
when there are small writes in the workload. Picking a RAID and setting
its parameters (chunk size, number of disks, etc.) properly for a particular
workload is challenging, and remains more of an art than a science.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS) 437

References

[B+08] “An Analysis of Data Corruption in the Storage Stack”
Lakshmi N. Bairavasundaram, Garth R. Goodson, Bianca Schroeder, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau
FAST ’08, San Jose, CA, February 2008
Our own work analyzing how often disks actually corrupt your data. Not often, but sometimes! And
thus something a reliable storage system must consider.

[BJ88] “Disk Shadowing”
D. Bitton and J. Gray
VLDB 1988
One of the first papers to discuss mirroring, herein called “shadowing”.

[CL95] “Striping in a RAID level 5 disk array”
Peter M. Chen, Edward K. Lee
SIGMETRICS 1995
A nice analysis of some of the important parameters in a RAID-5 disk array.

[C+04] “Row-Diagonal Parity for Double Disk Failure Correction”
P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, S. Sankar
FAST ’04, February 2004
Though not the first paper on a RAID system with two disks for parity, it is a recent and highly-
understandable version of said idea. Read it to learn more.

[DAA05] “Journal-guided Resynchronization for Software RAID”
Timothy E. Denehy, A. Arpaci-Dusseau, R. Arpaci-Dusseau
FAST 2005
Our own work on the consistent-update problem. Here we solve it for Software RAID by integrating
the journaling machinery of the file system above with the software RAID beneath it.

[HLM94] “File System Design for an NFS File Server Appliance”
Dave Hitz, James Lau, Michael Malcolm
USENIX Winter 1994, San Francisco, California, 1994
The sparse paper introducing a landmark product in storage, the write-anywhere file layout or WAFL
file system that underlies the NetApp file server.

[K86] “Synchronized Disk Interleaving”
M.Y. Kim.
IEEE Transactions on Computers, Volume C-35: 11, November 1986
Some of the earliest work on RAID is found here.

[K88] “Small Disk Arrays - The Emerging Approach to High Performance”
F. Kurzweil.
Presentation at Spring COMPCON ’88, March 1, 1988, San Francisco, California
Another early RAID reference.

[P+88] “Redundant Arrays of Inexpensive Disks”
D. Patterson, G. Gibson, R. Katz.
SIGMOD 1988
This is considered the RAID paper, written by famous authors Patterson, Gibson, and Katz. The paper
has since won many test-of-time awards and ushered in the RAID era, including the name RAID itself!

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

438 REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS)

[PB86] “Providing Fault Tolerance in Parallel Secondary Storage Systems”
A. Park and K. Balasubramaniam
Department of Computer Science, Princeton, CS-TR-O57-86, November 1986
Another early work on RAID.

[SG86] “Disk Striping”
K. Salem and H. Garcia-Molina.
IEEE International Conference on Data Engineering, 1986
And yes, another early RAID work. There are a lot of these, which kind of came out of the woodwork
when the RAID paper was published in SIGMOD.

[S84] “Byzantine Generals in Action: Implementing Fail-Stop Processors”
F.B. Schneider.
ACM Transactions on Computer Systems, 2(2):145154, May 1984
Finally, a paper that is not about RAID! This paper is actually about how systems fail, and how to make
something behave in a fail-stop manner.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS) 439

Homework

This section introduces raid.py, a simple RAID simulator you can
use to shore up your knowledge of how RAID systems work. See the
README for details.

Questions

1. Use the simulator to perform some basic RAID mapping tests. Run
with different levels (0, 1, 4, 5) and see if you can figure out the
mappings of a set of requests. For RAID-5, see if you can figure out
the difference between left-symmetric and left-asymmetric layouts.
Use some different random seeds to generate different problems
than above.

2. Do the same as the first problem, but this time vary the chunk size
with -C. How does chunk size change the mappings?

3. Do the same as above, but use the -r flag to reverse the nature of
each problem.

4. Now use the reverse flag but increase the size of each request with
the -S flag. Try specifying sizes of 8k, 12k, and 16k, while varying
the RAID level. What happens to the underlying I/O pattern when
the size of the request increases? Make sure to try this with the
sequential workload too (-W sequential); for what request sizes
are RAID-4 and RAID-5 much more I/O efficient?

5. Use the timing mode of the simulator (-t) to estimate the perfor-
mance of 100 random reads to the RAID, while varying the RAID
levels, using 4 disks.

6. Do the same as above, but increase the number of disks. How does
the performance of each RAID level scale as the number of disks
increases?

7. Do the same as above, but use all writes (-w 100) instead of reads.
How does the performance of each RAID level scale now? Can you
do a rough estimate of the time it will take to complete the workload
of 100 random writes?

8. Run the timing mode one last time, but this time with a sequen-
tial workload (-W sequential). How does the performance vary
with RAID level, and when doing reads versus writes? How about
when varying the size of each request? What size should you write
to a RAID when using RAID-4 or RAID-5?

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

39

Interlude: File and Directories

Thus far we have seen the development of two key operating system ab-
stractions: the process, which is a virtualization of the CPU, and the ad-
dress space, which is a virtualization of memory. In tandem, these two
abstractions allow a program to run as if it is in its own private, isolated
world; as if it has its own processor (or processors); as if it has its own
memory. This illusion makes programming the system much easier and
thus is prevalent today not only on desktops and servers but increasingly
on all programmable platforms including mobile phones and the like.

In this section, we add one more critical piece to the virtualization puz-
zle: persistent storage. A persistent-storage device, such as a classic hard
disk drive or a more modern solid-state storage device, stores informa-
tion permanently (or at least, for a long time). Unlike memory, whose
contents are lost when there is a power loss, a persistent-storage device
keeps such data intact. Thus, the OS must take extra care with such a
device: this is where users keep data that they really care about.

CRUX: HOW TO MANAGE A PERSISTENT DEVICE

How should the OS manage a persistent device? What are the APIs?
What are the important aspects of the implementation?

Thus, in the next few chapters, we will explore critical techniques for
managing persistent data, focusing on methods to improve performance
and reliability. We begin, however, with an overview of the API: the in-
terfaces you’ll expect to see when interacting with a UNIX file system.

39.1 Files and Directories

Two key abstractions have developed over time in the virtualization
of storage. The first is the file. A file is simply a linear array of bytes,
each of which you can read or write. Each file has some kind of low-level

441

442 INTERLUDE: FILE AND DIRECTORIES

name, usually a number of some kind; often, the user is not aware of
this name (as we will see). For historical reasons, the low-level name of a
file is often referred to as its inode number. We’ll be learning a lot more
about inodes in future chapters; for now, just assume that each file has an
inode number associated with it.

In most systems, the OS does not know much about the structure of
the file (e.g., whether it is a picture, or a text file, or C code); rather, the
responsibility of the file system is simply to store such data persistently
on disk and make sure that when you request the data again, you get
what you put there in the first place. Doing so is not as simple as it seems!

The second abstraction is that of a directory. A directory, like a file,
also has a low-level name (i.e., an inode number), but its contents are
quite specific: it contains a list of (user-readable name, low-level name)
pairs. For example, let’s say there is a file with the low-level name “10”,
and it is referred to by the user-readable name of “foo”. The directory
“foo” resides in thus would have an entry (“foo”, “10”) that maps the
user-readable name to the low-level name. Each entry in a directory refers
to either files or other directories. By placing directories within other di-
rectories, users are able to build an arbitrary directory tree (or directory
hierarchy), under which all files and directories are stored.

/

foo

bar.txt

bar

foobar

bar.txt

Figure 39.1: An Example Directory Tree

The directory hierarchy starts at a root directory (in UNIX-based sys-
tems, the root directory is simply referred to as /) and uses some kind
of separator to name subsequent sub-directories until the desired file or
directory is named. For example, if a user created a directory foo in the
root directory /, and then created a file bar.txt in the directory foo,
we could refer to the file by its absolute pathname, which in this case
would be /foo/bar.txt. See Figure 39.1 for a more complex directory
tree; valid directories in the example are /, /foo, /bar, /bar/bar,

/bar/foo and valid files are /foo/bar.txt and /bar/foo/bar.txt.
Directories and files can have the same name as long as they are in dif-
ferent locations in the file-system tree (e.g., there are two files named
bar.txt in the figure, /foo/bar.txt and /bar/foo/bar.txt).

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTERLUDE: FILE AND DIRECTORIES 443

TIP: THINK CAREFULLY ABOUT NAMING

Naming is an important aspect of computer systems [SK09]. In UNIX

systems, virtually everything that you can think of is named through the
file system. Beyond just files, devices, pipes, and even processes [K84]
can be found in what looks like a plain old file system. This uniformity
of naming eases your conceptual model of the system, and makes the
system simpler and more modular. Thus, whenever creating a system or
interface, think carefully about what names you are using.

You may also notice that the file name in this example often has two
parts: bar and txt, separated by a period. The first part is an arbitrary
name, whereas the second part of the file name is usually used to indi-
cate the type of the file, e.g., whether it is C code (e.g., .c), or an image
(e.g., .jpg), or a music file (e.g., .mp3). However, this is usually just a
convention: there is usually no enforcement that the data contained in a
file named main.c is indeed C source code.

Thus, we can see one great thing provided by the file system: a conve-
nient way to name all the files we are interested in. Names are important
in systems as the first step to accessing any resource is being able to name
it. In UNIX systems, the file system thus provides a unified way to access
files on disk, USB stick, CD-ROM, many other devices, and in fact many
other things, all located under the single directory tree.

39.2 The File System Interface

Let’s now discuss the file system interface in more detail. We’ll start
with the basics of creating, accessing, and deleting files. You may think
this straightforward, but along the way we’ll discover the mysterious call
that is used to remove files, known as unlink(). Hopefully, by the end
of this chapter, this mystery won’t be so mysterious to you!

39.3 Creating Files

We’ll start with the most basic of operations: creating a file. This can be
accomplished with the open system call; by calling open() and passing
it the O CREAT flag, a program can create a new file. Here is some exam-
ple code to create a file called “foo” in the current working directory.

int fd = open("foo", O_CREAT | O_WRONLY | O_TRUNC);

The routine open() takes a number of different flags. In this exam-
ple, the program creates the file (O CREAT), can only write to that file
while opened in this manner (O WRONLY), and, if the file already exists,
first truncate it to a size of zero bytes thus removing any existing content
(O TRUNC).

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

444 INTERLUDE: FILE AND DIRECTORIES

ASIDE: THE CREAT() SYSTEM CALL

The older way of creating a file is to call creat(), as follows:

int fd = creat("foo");

You can think of creat() as open() with the following flags:
O CREAT | O WRONLY | O TRUNC. Because open() can create a file,
the usage of creat() has somewhat fallen out of favor (indeed, it could
just be implemented as a library call to open()); however, it does hold a
special place in UNIX lore. Specifically, when Ken Thompson was asked
what he would do differently if he were redesigning UNIX, he replied:
“I’d spell creat with an e.”

One important aspect of open() is what it returns: a file descriptor. A
file descriptor is just an integer, private per process, and is used in UNIX

systems to access files; thus, once a file is opened, you use the file de-
scriptor to read or write the file, assuming you have permission to do so.
In this way, a file descriptor is a capability [L84], i.e., an opaque handle
that gives you the power to perform certain operations. Another way to
think of a file descriptor is as a pointer to an object of type file; once you
have such an object, you can call other “methods” to access the file, like
read() and write(). We’ll see just how a file descriptor is used below.

39.4 Reading and Writing Files

Once we have some files, of course we might like to read or write them.
Let’s start by reading an existing file. If we were typing at a command
line, we might just use the program cat to dump the contents of the file
to the screen.

prompt> echo hello > foo

prompt> cat foo

hello

prompt>

In this code snippet, we redirect the output of the program echo to
the file foo, which then contains the word “hello” in it. We then use cat
to see the contents of the file. But how does the cat program access the
file foo?

To find this out, we’ll use an incredibly useful tool to trace the system
calls made by a program. On Linux, the tool is called strace; other sys-
tems have similar tools (see dtruss on Mac OS X, or truss on some older
UNIX variants). What strace does is trace every system call made by a
program while it runs, and dump the trace to the screen for you to see.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTERLUDE: FILE AND DIRECTORIES 445

TIP: USE STRACE (AND SIMILAR TOOLS)
The strace tool provides an awesome way to see what programs are up
to. By running it, you can trace which system calls a program makes, see
the arguments and return codes, and generally get a very good idea of
what is going on.
The tool also takes some arguments which can be quite useful. For ex-
ample, -f follows any fork’d children too; -t reports the time of day
at each call; -e trace=open,close,read,write only traces calls to
those system calls and ignores all others. There are many more powerful
flags – read the man pages and find out how to harness this wonderful
tool.

Here is an example of using strace to figure out what cat is doing
(some calls removed for readability):

prompt> strace cat foo

...

open("foo", O_RDONLY|O_LARGEFILE) = 3

read(3, "hello\n", 4096) = 6

write(1, "hello\n", 6) = 6

hello

read(3, "", 4096) = 0

close(3) = 0

...

prompt>

The first thing that cat does is open the file for reading. A couple
of things we should note about this; first, that the file is only opened for
reading (not writing), as indicated by the O RDONLY flag; second, that
the 64-bit offset be used (O LARGEFILE); third, that the call to open()

succeeds and returns a file descriptor, which has the value of 3.
Why does the first call to open() return 3, not 0 or perhaps 1 as you

might expect? As it turns out, each running process already has three
files open, standard input (which the process can read to receive input),
standard output (which the process can write to in order to dump infor-
mation to the screen), and standard error (which the process can write
error messages to). These are represented by file descriptors 0, 1, and 2,
respectively. Thus, when you first open another file (as cat does above),
it will almost certainly be file descriptor 3.

After the open succeeds, cat uses the read() system call to repeat-
edly read some bytes from a file. The first argument to read() is the file
descriptor, thus telling the file system which file to read; a process can of
course have multiple files open at once, and thus the descriptor enables
the operating system to know which file a particular read refers to. The
second argument points to a buffer where the result of the read()will be
placed; in the system-call trace above, strace shows the results of the read
in this spot (“hello”). The third argument is the size of the buffer, which

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

446 INTERLUDE: FILE AND DIRECTORIES

in this case is 4 KB. The call to read() returns successfully as well, here
returning the number of bytes it read (6, which includes 5 for the letters
in the word “hello” and one for an end-of-line marker).

At this point, you see another interesting result of the strace: a single
call to the write() system call, to the file descriptor 1. As we mentioned
above, this descriptor is known as the standard output, and thus is used
to write the word “hello” to the screen as the program cat is meant to
do. But does it call write() directly? Maybe (if it is highly optimized).
But if not, what cat might do is call the library routine printf(); in-
ternally, printf() figures out all the formatting details passed to it, and
eventually calls write on the standard output to print the results to the
screen.

The cat program then tries to read more from the file, but since there
are no bytes left in the file, the read() returns 0 and the program knows
that this means it has read the entire file. Thus, the program calls close()
to indicate that it is done with the file “foo”, passing in the corresponding
file descriptor. The file is thus closed, and the reading of it thus complete.

Writing a file is accomplished via a similar set of steps. First, a file
is opened for writing, then the write() system call is called, perhaps
repeatedly for larger files, and then close(). Use strace to trace writes
to a file, perhaps of a program you wrote yourself, or by tracing the dd
utility, e.g., dd if=foo of=bar.

39.5 Reading And Writing, But Not Sequentially

Thus far, we’ve discussed how to read and write files, but all access
has been sequential; that is, we have either read a file from the beginning
to the end, or written a file out from beginning to end.

Sometimes, however, it is useful to be able to read or write to a spe-
cific offset within a file; for example, if you build an index over a text
document, and use it to look up a specific word, you may end up reading
from some random offsets within the document. To do so, we will use
the lseek() system call. Here is the function prototype:

off_t lseek(int fildes, off_t offset, int whence);

The first argument is familiar (a file descriptor). The second argu-
ment is the offset, which positions the file offset to a particular location
within the file. The third argument, called whence for historical reasons,
determines exactly how the seek is performed. From the man page:

If whence is SEEK_SET, the offset is set to offset bytes.

If whence is SEEK_CUR, the offset is set to its current

location plus offset bytes.

If whence is SEEK_END, the offset is set to the size of

the file plus offset bytes.

As you can tell from this description, for each file a process opens, the
OS tracks a “current” offset, which determines where the next read or

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTERLUDE: FILE AND DIRECTORIES 447

ASIDE: CALLING LSEEK() DOES NOT PERFORM A DISK SEEK

The poorly-named system call lseek() confuses many a student try-
ing to understand disks and how the file systems atop them work. Do
not confuse the two! The lseek() call simply changes a variable in OS
memory that tracks, for a particular process, at which offset to which its
next read or write will start. A disk seek occurs when a read or write
issued to the disk is not on the same track as the last read or write, and
thus necessitates a head movement. Making this even more confusing is
the fact that calling lseek() to read or write from/to random parts of a
file, and then reading/writing to those random parts, will indeed lead to
more disk seeks. Thus, calling lseek() can certainly lead to a seek in an
upcoming read or write, but absolutely does not cause any disk I/O to
occur itself.

write will begin reading from or writing to within the file. Thus, part
of the abstraction of an open file is that it has a current offset, which
is updated in one of two ways. The first is when a read or write of N
bytes takes place, N is added to the current offset; thus each read or write
implicitly updates the offset. The second is explicitly with lseek, which
changes the offset as specified above.

Note that this call lseek() has nothing to do with the seek operation
of a disk, which moves the disk arm. The call to lseek() simply changes
the value of a variable within the kernel; when the I/O is performed,
depending on where the disk head is, the disk may or may not perform
an actual seek to fulfill the request.

39.6 Writing Immediately with fsync()

Most times when a program calls write(), it is just telling the file
system: please write this data to persistent storage, at some point in the
future. The file system, for performance reasons, will buffer such writes
in memory for some time (say 5 seconds, or 30); at that later point in
time, the write(s) will actually be issued to the storage device. From the
perspective of the calling application, writes seem to complete quickly,
and only in rare cases (e.g., the machine crashes after the write() call
but before the write to disk) will data be lost.

However, some applications require something more than this even-
tual guarantee. For example, in a database management system (DBMS),
development of a correct recovery protocol requires the ability to force
writes to disk from time to time.

To support these types of applications, most file systems provide some
additional control APIs. In the UNIX world, the interface provided to ap-
plications is known as fsync(int fd). When a process calls fsync()
for a particular file descriptor, the file system responds by forcing all dirty
(i.e., not yet written) data to disk, for the file referred to by the specified

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

448 INTERLUDE: FILE AND DIRECTORIES

file descriptor. The fsync() routine returns once all of these writes are
complete.

Here is a simple example of how to use fsync(). The code opens
the file foo, writes a single chunk of data to it, and then calls fsync()
to ensure the writes are forced immediately to disk. Once the fsync()
returns, the application can safely move on, knowing that the data has
been persisted (if fsync() is correctly implemented, that is).

int fd = open("foo", O_CREAT | O_WRONLY | O_TRUNC);

assert(fd > -1);

int rc = write(fd, buffer, size);

assert(rc == size);

rc = fsync(fd);

assert(rc == 0);

Interestingly, this sequence does not guarantee everything that you
might expect; in some cases, you also need to fsync() the directory that
contains the file foo. Adding this step ensures not only that the file itself
is on disk, but that the file, if newly created, also is durably a part of the
directory. Not surprisingly, this type of detail is often overlooked, leading
to many application-level bugs [P+13].

39.7 Renaming Files

Once we have a file, it is sometimes useful to be able to give a file a
different name. When typing at the command line, this is accomplished
with mv command; in this example, the file foo is renamed bar:

prompt> mv foo bar

Using strace, we can see that mv uses the system call rename(char

*old, char *new), which takes precisely two arguments: the original
name of the file (old) and the new name (new).

One interesting guarantee provided by the rename() call is that it is
(usually) implemented as an atomic call with respect to system crashes;
if the system crashes during the renaming, the file will either be named
the old name or the new name, and no odd in-between state can arise.
Thus, rename() is critical for supporting certain kinds of applications
that require an atomic update to file state.

Let’s be a little more specific here. Imagine that you are using a file ed-
itor (e.g., emacs), and you insert a line into the middle of a file. The file’s
name, for the example, is foo.txt. The way the editor might update the
file to guarantee that the new file has the original contents plus the line
inserted is as follows (ignoring error-checking for simplicity):

int fd = open("foo.txt.tmp", O_WRONLY|O_CREAT|O_TRUNC);

write(fd, buffer, size); // write out new version of file

fsync(fd);

close(fd);

rename("foo.txt.tmp", "foo.txt");

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTERLUDE: FILE AND DIRECTORIES 449

What the editor does in this example is simple: write out the new
version of the file under temporary name (foot.txt.tmp), force it to
disk with fsync(), and then, when the application is certain the new
file metadata and contents are on the disk, rename the temporary file to
the original file’s name. This last step atomically swaps the new file into
place, while concurrently deleting the old version of the file, and thus an
atomic file update is achieved.

39.8 Getting Information About Files

Beyond file access, we expect the file system to keep a fair amount of
information about each file it is storing. We generally call such data about
files metadata. To see the metadata for a certain file, we can use stat()
or fstat() system call – read their man pages for details on how to call
them. These calls take a pathname (or file descriptor) to a file and fill in a
stat structure as seen here:

struct stat {

dev_t st_dev; /* ID of device containing file */

ino_t st_ino; /* inode number */

mode_t st_mode; /* protection */

nlink_t st_nlink; /* number of hard links */

uid_t st_uid; /* user ID of owner */

gid_t st_gid; /* group ID of owner */

dev_t st_rdev; /* device ID (if special file) */

off_t st_size; /* total size, in bytes */

blksize_t st_blksize; /* blocksize for filesystem I/O */

blkcnt_t st_blocks; /* number of blocks allocated */

time_t st_atime; /* time of last access */

time_t st_mtime; /* time of last modification */

time_t st_ctime; /* time of last status change */

};

You can see that there is a lot of information kept about each file, in-
cluding its size (in bytes), its low-level name (i.e., inode number), some
ownership information, and some information about when the file was
accessed or modified, among other things. To see this information, you
can use the command line tool stat:

prompt> echo hello > file

prompt> stat file

File: ‘file’

Size: 6 Blocks: 8 IO Block: 4096 regular file

Device: 811h/2065d Inode: 67158084 Links: 1

Access: (0640/-rw-r-----) Uid: (30686/ remzi) Gid: (30686/ remzi)

Access: 2011-05-03 15:50:20.157594748 -0500

Modify: 2011-05-03 15:50:20.157594748 -0500

Change: 2011-05-03 15:50:20.157594748 -0500

As it turns out, each file system usually keeps this type of information

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

450 INTERLUDE: FILE AND DIRECTORIES

in a structure called an inode1. We’ll be learning a lot more about inodes
when we talk about file system implementation. For now, you should just
think of an inode as a persistent data structure kept by the file system that
has information like we see above inside of it.

39.9 Removing Files

At this point, we know how to create files and access them, either se-
quentially or not. But how do you delete files? If you’ve used UNIX, you
probably think you know: just run the program rm. But what system call
does rm use to remove a file?

Let’s use our old friend strace again to find out. Here we remove
that pesky file “foo”:

prompt> strace rm foo

...

unlink("foo") = 0

...

We’ve removed a bunch of unrelated cruft from the traced output,
leaving just a single call to the mysteriously-named system call unlink().
As you can see, unlink() just takes the name of the file to be removed,
and returns zero upon success. But this leads us to a great puzzle: why
is this system call named “unlink”? Why not just “remove” or “delete”.
To understand the answer to this puzzle, we must first understand more
than just files, but also directories.

39.10 Making Directories

Beyond files, a set of directory-related system calls enable you to make,
read, and delete directories. Note you can never write to a directory di-
rectly; because the format of the directory is considered file system meta-
data, you can only update a directory indirectly by, for example, creating
files, directories, or other object types within it. In this way, the file system
makes sure that the contents of the directory always are as expected.

To create a directory, a single system call, mkdir(), is available. The
eponymous mkdir program can be used to create such a directory. Let’s
take a look at what happens when we run the mkdir program to make a
simple directory called foo:

prompt> strace mkdir foo

...

mkdir("foo", 0777) = 0

...

prompt>

1Some file systems call these structures similar, but slightly different, names, such as
dnodes; the basic idea is similar however.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTERLUDE: FILE AND DIRECTORIES 451

TIP: BE WARY OF POWERFUL COMMANDS
The program rm provides us with a great example of powerful com-
mands, and how sometimes too much power can be a bad thing. For
example, to remove a bunch of files at once, you can type something like:

prompt> rm *

where the * will match all files in the current directory. But sometimes
you want to also delete the directories too, and in fact all of their contents.
You can do this by telling rm to recursively descend into each directory,
and remove its contents too:

prompt> rm -rf *

Where you get into trouble with this small string of characters is when
you issue the command, accidentally, from the root directory of a file sys-
tem, thus removing every file and directory from it. Oops!

Thus, remember the double-edged sword of powerful commands; while
they give you the ability to do a lot of work with a small number of
keystrokes, they also can quickly and readily do a great deal of harm.

When such a directory is created, it is considered “empty”, although it
does have a bare minimum of contents. Specifically, an empty directory
has two entries: one entry that refers to itself, and one entry that refers
to its parent. The former is referred to as the “.” (dot) directory, and the
latter as “..” (dot-dot). You can see these directories by passing a flag (-a)
to the program ls:

prompt> ls -a

./ ../

prompt> ls -al

total 8

drwxr-x--- 2 remzi remzi 6 Apr 30 16:17 ./

drwxr-x--- 26 remzi remzi 4096 Apr 30 16:17 ../

39.11 Reading Directories

Now that we’ve created a directory, we might wish to read one too.
Indeed, that is exactly what the program ls does. Let’s write our own
little tool like ls and see how it is done.

Instead of just opening a directory as if it were a file, we instead use
a new set of calls. Below is an example program that prints the contents
of a directory. The program uses three calls, opendir(), readdir(),
and closedir(), to get the job done, and you can see how simple the
interface is; we just use a simple loop to read one directory entry at a time,
and print out the name and inode number of each file in the directory.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

452 INTERLUDE: FILE AND DIRECTORIES

int main(int argc, char *argv[]) {

DIR *dp = opendir(".");

assert(dp != NULL);

struct dirent *d;

while ((d = readdir(dp)) != NULL) {

printf("%d %s\n", (int) d->d_ino, d->d_name);

}

closedir(dp);

return 0;

}

The declaration below shows the information available within each
directory entry in the struct dirent data structure:

struct dirent {

char d_name[256]; /* filename */

ino_t d_ino; /* inode number */

off_t d_off; /* offset to the next dirent */

unsigned short d_reclen; /* length of this record */

unsigned char d_type; /* type of file */

};

Because directories are light on information (basically, just mapping
the name to the inode number, along with a few other details), a program
may want to call stat() on each file to get more information on each,
such as its length or other detailed information. Indeed, this is exactly
what ls does when you pass it the -l flag; try strace on ls with and
without that flag to see for yourself.

39.12 Deleting Directories

Finally, you can delete a directory with a call to rmdir() (which is
used by the program of the same name, rmdir). Unlike file deletion,
however, removing directories is more dangerous, as you could poten-
tially delete a large amount of data with a single command. Thus, rmdir()
has the requirement that the directory be empty (i.e., only has “.” and “..”
entries) before it is deleted. If you try to delete a non-empty directory, the
call to rmdir() simply will fail.

39.13 Hard Links

We now come back to the mystery of why removing a file is performed
via unlink(), by understanding a new way to make an entry in the
file system tree, through a system call known as link(). The link()

system call takes two arguments, an old pathname and a new one; when
you “link” a new file name to an old one, you essentially create another
way to refer to the same file. The command-line program ln is used to
do this, as we see in this example:

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTERLUDE: FILE AND DIRECTORIES 453

prompt> echo hello > file

prompt> cat file

hello

prompt> ln file file2

prompt> cat file2

hello

Here we created a file with the word “hello” in it, and called the file
file

2. We then create a hard link to that file using the ln program. After
this, we can examine the file by either opening file or file2.

The way link works is that it simply creates another name in the di-
rectory you are creating the link to, and refers it to the same inode number
(i.e., low-level name) of the original file. The file is not copied in any way;
rather, you now just have two human names (file and file2) that both
refer to the same file. We can even see this in the directory itself, by print-
ing out the inode number of each file:

prompt> ls -i file file2

67158084 file

67158084 file2

prompt>

By passing the -i flag to ls, it prints out the inode number of each file
(as well as the file name). And thus you can see what link really has done:
just make a new reference to the same exact inode number (67158084 in
this example).

By now you might be starting to see why unlink() is called unlink().
When you create a file, you are really doing two things. First, you are
making a structure (the inode) that will track virtually all relevant infor-
mation about the file, including its size, where its blocks are on disk, and
so forth. Second, you are linking a human-readable name to that file, and
putting that link into a directory.

After creating a hard link to a file, to the file system, there is no dif-
ference between the original file name (file) and the newly created file
name (file2); indeed, they are both just links to the underlying meta-
data about the file, which is found in inode number 67158084.

Thus, to remove a file from the file system, we call unlink(). In the
example above, we could for example remove the file named file, and
still access the file without difficulty:

prompt> rm file

removed ‘file’

prompt> cat file2

hello

The reason this works is because when the file system unlinks file, it
checks a reference count within the inode number. This reference count

2Note how creative the authors of this book are. We also used to have a cat named “Cat”
(true story). However, she died, and we now have a hamster named “Hammy.”

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

454 INTERLUDE: FILE AND DIRECTORIES

(sometimes called the link count) allows the file system to track how
many different file names have been linked to this particular inode. When
unlink() is called, it removes the “link” between the human-readable
name (the file that is being deleted) to the given inode number, and decre-
ments the reference count; only when the reference count reaches zero
does the file system also free the inode and related data blocks, and thus
truly “delete” the file.

You can see the reference count of a file using stat() of course. Let’s
see what it is when we create and delete hard links to a file. In this exam-
ple, we’ll create three links to the same file, and then delete them. Watch
the link count!

prompt> echo hello > file

prompt> stat file

... Inode: 67158084 Links: 1 ...

prompt> ln file file2

prompt> stat file

... Inode: 67158084 Links: 2 ...

prompt> stat file2

... Inode: 67158084 Links: 2 ...

prompt> ln file2 file3

prompt> stat file

... Inode: 67158084 Links: 3 ...

prompt> rm file

prompt> stat file2

... Inode: 67158084 Links: 2 ...

prompt> rm file2

prompt> stat file3

... Inode: 67158084 Links: 1 ...

prompt> rm file3

39.14 Symbolic Links

There is one other type of link that is really useful, and it is called a
symbolic link or sometimes a soft link. As it turns out, hard links are
somewhat limited: you can’t create one to a directory (for fear that you
will create a cycle in the directory tree); you can’t hard link to files in
other disk partitions (because inode numbers are only unique within a
particular file system, not across file systems); etc. Thus, a new type of
link called the symbolic link was created.

To create such a link, you can use the same program ln, but with the
-s flag. Here is an example:

prompt> echo hello > file

prompt> ln -s file file2

prompt> cat file2

hello

As you can see, creating a soft link looks much the same, and the orig-
inal file can now be accessed through the file name file as well as the
symbolic link name file2.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTERLUDE: FILE AND DIRECTORIES 455

However, beyond this surface similarity, symbolic links are actually
quite different from hard links. The first difference is that a symbolic
link is actually a file itself, of a different type. We’ve already talked about
regular files and directories; symbolic links are a third type the file system
knows about. A stat on the symlink reveals all:

prompt> stat file

... regular file ...

prompt> stat file2

... symbolic link ...

Running ls also reveals this fact. If you look closely at the first char-
acter of the long-form of the output from ls, you can see that the first
character in the left-most column is a - for regular files, a d for directo-
ries, and an l for soft links. You can also see the size of the symbolic link
(4 bytes in this case), as well as what the link points to (the file named
file).

prompt> ls -al

drwxr-x--- 2 remzi remzi 29 May 3 19:10 ./

drwxr-x--- 27 remzi remzi 4096 May 3 15:14 ../

-rw-r----- 1 remzi remzi 6 May 3 19:10 file

lrwxrwxrwx 1 remzi remzi 4 May 3 19:10 file2 -> file

The reason that file2 is 4 bytes is because the way a symbolic link is
formed is by holding the pathname of the linked-to file as the data of the
link file. Because we’ve linked to a file named file, our link file file2
is small (4 bytes). If we link to a longer pathname, our link file would be
bigger:

prompt> echo hello > alongerfilename

prompt> ln -s alongerfilename file3

prompt> ls -al alongerfilename file3

-rw-r----- 1 remzi remzi 6 May 3 19:17 alongerfilename

lrwxrwxrwx 1 remzi remzi 15 May 3 19:17 file3 -> alongerfilename

Finally, because of the way symbolic links are created, they leave the
possibility for what is known as a dangling reference:

prompt> echo hello > file

prompt> ln -s file file2

prompt> cat file2

hello

prompt> rm file

prompt> cat file2

cat: file2: No such file or directory

As you can see in this example, quite unlike hard links, removing the
original file named file causes the link to point to a pathname that no
longer exists.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

456 INTERLUDE: FILE AND DIRECTORIES

39.15 Making and Mounting a File System

We’ve now toured the basic interfaces to access files, directories, and
certain types of special types of links. But there is one more topic we
should discuss: how to assemble a full directory tree from many under-
lying file systems. This task is accomplished via first making file systems,
and then mounting them to make their contents accessible.

To make a file system, most file systems provide a tool, usually re-
ferred to as mkfs (pronounced “make fs”), that performs exactly this task.
The idea is as follows: give the tool, as input, a device (such as a disk
partition, e.g., /dev/sda1) a file system type (e.g., ext3), and it simply
writes an empty file system, starting with a root directory, onto that disk
partition. And mkfs said, let there be a file system!

However, once such a file system is created, it needs to be made ac-
cessible within the uniform file-system tree. This task is achieved via the
mount program (which makes the underlying system call mount() to do
the real work). What mount does, quite simply is take an existing direc-
tory as a target mount point and essentially paste a new file system onto
the directory tree at that point.

An example here might be useful. Imagine we have an unmounted
ext3 file system, stored in device partition /dev/sda1, that has the fol-
lowing contents: a root directory which contains two sub-directories, a
and b, each of which in turn holds a single file named foo. Let’s say we
wish to mount this file system at the mount point /home/users. We
would type something like this:

prompt> mount -t ext3 /dev/sda1 /home/users

If successful, the mount would thus make this new file system avail-
able. However, note how the new file system is now accessed. To look at
the contents of the root directory, we would use ls like this:

prompt> ls /home/users/

a b

As you can see, the pathname /home/users/ now refers to the root
of the newly-mounted directory. Similarly, we could access files a and
b with the pathnames /home/users/a and /home/users/b. Finally,
the files named foo could be accessed via /home/users/a/foo and
/home/users/b/foo. And thus the beauty of mount: instead of having
a number of separate file systems, mount unifies all file systems into one
tree, making naming uniform and convenient.

To see what is mounted on your system, and at which points, simply
run the mount program. You’ll see something like this:

/dev/sda1 on / type ext3 (rw)

proc on /proc type proc (rw)

sysfs on /sys type sysfs (rw)

/dev/sda5 on /tmp type ext3 (rw)

/dev/sda7 on /var/vice/cache type ext3 (rw)

tmpfs on /dev/shm type tmpfs (rw)

AFS on /afs type afs (rw)

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTERLUDE: FILE AND DIRECTORIES 457

This crazy mix shows that a whole number of different file systems,
including ext3 (a standard disk-based file system), the proc file system (a
file system for accessing information about current processes), tmpfs (a
file system just for temporary files), and AFS (a distributed file system)
are all glued together onto this one machine’s file-system tree.

39.16 Summary

The file system interface in UNIX systems (and indeed, in any system)
is seemingly quite rudimentary, but there is a lot to understand if you
wish to master it. Nothing is better, of course, than simply using it (a lot).
So please do so! Of course, read more; as always, Stevens [SR05] is the
place to begin.

We’ve toured the basic interfaces, and hopefully understood a little bit
about how they work. Even more interesting is how to implement a file
system that meets the needs of the API, a topic we will delve into in great
detail next.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

458 INTERLUDE: FILE AND DIRECTORIES

References

[K84] “Processes as Files”
Tom J. Killian
USENIX, June 1984
The paper that introduced the /proc file system, where each process can be treated as a file within a
pseudo file system. A clever idea that you can still see in modern UNIX systems.

[L84] “Capability-Based Computer Systems”
Henry M. Levy
Digital Press, 1984
Available: http://homes.cs.washington.edu/ levy/capabook
An excellent overview of early capability-based systems.

[P+13] “Towards Efficient, Portable Application-Level Consistency”
Thanumalayan S. Pillai, Vijay Chidambaram, Joo-Young Hwang, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau
HotDep ’13, November 2013
Our own work that shows how readily applications can make mistakes in committing data to disk; in
particular, assumptions about the file system creep into applications and thus make the applications
work correctly only if they are running on a specific file system.

[SK09] “Principles of Computer System Design”
Jerome H. Saltzer and M. Frans Kaashoek
Morgan-Kaufmann, 2009
This tour de force of systems is a must-read for anybody interested in the field. It’s how they teach
systems at MIT. Read it once, and then read it a few more times to let it all soak in.

[SR05] “Advanced Programming in the UNIX Environment”
W. Richard Stevens and Stephen A. Rago
Addison-Wesley, 2005
We have probably referenced this book a few hundred thousand times. It is that useful to you, if you care
to become an awesome systems programmer.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

INTERLUDE: FILE AND DIRECTORIES 459

Homework

In this homework, we’ll just familiarize ourselves with how the APIs
described in the chapter work. To do so, you’ll just write a few different
programs, mostly based on various UNIX utilities.

Questions

1. Stat: Write your own version of the command line program stat,
which simply calls the stat() system call on a given file or di-
rectory. Print out file size, number of blocks allocated, reference
(link) count, and so forth. What is the link count of a directory, as
the number of entries in the directory changes? Useful interfaces:
stat()

2. List Files: Write a program that lists files in the given directory.
When called without any arguments, the program should just print
the file names. When invoked with the -l flag, the program should
print out information about each file, such as the owner, group, per-
missions, and other information obtained from the stat() system
call. The program should take one additional argument, which is
the directory to read, e.g., myls -l directory. If no directory is
given, the program should just use the current working directory.
Useful interfaces: stat(), opendir(), readdir(), getcwd().

3. Tail: Write a program that prints out the last few lines of a file. The
program should be efficient, in that it seeks to near the end of the
file, reads in a block of data, and then goes backwards until it finds
the requested number of lines; at this point, it should print out those
lines from beginning to the end of the file. To invoke the program,
one should type: mytail -n file, where n is the number of lines
at the end of the file to print. Useful interfaces: stat(), lseek(),
open(), read(), close().

4. Recursive Search: Write a program that prints out the names of
each file and directory in the file system tree, starting at a given
point in the tree. For example, when run without arguments, the
program should start with the current working directory and print
its contents, as well as the contents of any sub-directories, etc., until
the entire tree, root at the CWD, is printed. If given a single argu-
ment (of a directory name), use that as the root of the tree instead.
Refine your recursive search with more fun options, similar to the
powerful find command line tool. Useful interfaces: you figure it
out.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

40

File System Implementation

In this chapter, we introduce a simple file system implementation, known
as vsfs (the Very Simple File System). This file system is a simplified
version of a typical UNIX file system and thus serves to introduce some
of the basic on-disk structures, access methods, and various policies that
you will find in many file systems today.

The file system is pure software; unlike our development of CPU and
memory virtualization, we will not be adding hardware features to make
some aspect of the file system work better (though we will want to pay at-
tention to device characteristics to make sure the file system works well).
Because of the great flexibility we have in building a file system, many
different ones have been built, literally from AFS (the Andrew File Sys-
tem) [H+88] to ZFS (Sun’s Zettabyte File System) [B07]. All of these file
systems have different data structures and do some things better or worse
than their peers. Thus, the way we will be learning about file systems is
through case studies: first, a simple file system (vsfs) in this chapter to
introduce most concepts, and then a series of studies of real file systems
to understand how they can differ in practice.

THE CRUX: HOW TO IMPLEMENT A SIMPLE FILE SYSTEM

How can we build a simple file system? What structures are needed
on the disk? What do they need to track? How are they accessed?

40.1 The Way To Think

To think about file systems, we usually suggest thinking about two
different aspects of them; if you understand both of these aspects, you
probably understand how the file system basically works.

The first is the data structures of the file system. In other words, what
types of on-disk structures are utilized by the file system to organize its
data and metadata? The first file systems we’ll see (including vsfs below)
employ simple structures, like arrays of blocks or other objects, whereas

461

462 FILE SYSTEM IMPLEMENTATION

ASIDE: MENTAL MODELS OF FILE SYSTEMS

As we’ve discussed before, mental models are what you are really trying
to develop when learning about systems. For file systems, your mental
model should eventually include answers to questions like: what on-disk
structures store the file system’s data and metadata? What happens when
a process opens a file? Which on-disk structures are accessed during a
read or write? By working on and improving your mental model, you
develop an abstract understanding of what is going on, instead of just
trying to understand the specifics of some file-system code (though that
is also useful, of course!).

more sophisticated file systems, like SGI’s XFS, use more complicated
tree-based structures [S+96].

The second aspect of a file system is its access methods. How does
it map the calls made by a process, such as open(), read(), write(),
etc., onto its structures? Which structures are read during the execution
of a particular system call? Which are written? How efficiently are all of
these steps performed?

If you understand the data structures and access methods of a file sys-
tem, you have developed a good mental model of how it truly works, a
key part of the systems mindset. Try to work on developing your mental
model as we delve into our first implementation.

40.2 Overall Organization

We now develop the overall on-disk organization of the data struc-
tures of the vsfs file system. The first thing we’ll need to do is divide the
disk into blocks; simple file systems use just one block size, and that’s
exactly what we’ll do here. Let’s choose a commonly-used size of 4 KB.

Thus, our view of the disk partition where we’re building our file sys-
tem is simple: a series of blocks, each of size 4 KB. The blocks are ad-
dressed from 0 to N − 1, in a partition of size N 4-KB blocks. Assume we
have a really small disk, with just 64 blocks:

0 7 8 15 16 23 24 31

32 39 40 47 48 55 56 63

Let’s now think about what we need to store in these blocks to build
a file system. Of course, the first thing that comes to mind is user data.
In fact, most of the space in any file system is (and should be) user data.
Let’s call the region of the disk we use for user data the data region, and,

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

FILE SYSTEM IMPLEMENTATION 463

again for simplicity, reserve a fixed portion of the disk for these blocks,
say the last 56 of 64 blocks on the disk:

0 7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

As we learned about (a little) last chapter, the file system has to track
information about each file. This information is a key piece of metadata,
and tracks things like which data blocks (in the data region) comprise
a file, the size of the file, its owner and access rights, access and mod-
ify times, and other similar kinds of information. To store this informa-
tion, file system usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
looks like this picture, assuming that we use 5 of our 64 blocks for inodes
(denoted by I’s in the diagram):

0
I I I I I

7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

Inodes

We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

464 FILE SYSTEM IMPLEMENTATION

simple structure: each bit is used to indicate whether the corresponding
object/block is free (0) or in-use (1). And thus our new on-disk layout,
with an inode bitmap (i) and a data bitmap (d):

0
i d I I I I I

7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

Inodes

You may notice that it is a bit of overkill to use an entire 4-KB block for
these bitmaps; such a bitmap can track whether 32K objects are allocated,
and yet we only have 80 inodes and 56 data blocks. However, we just use
an entire 4-KB block for each of these bitmaps for simplicity.

The careful reader (i.e., the reader who is still awake) may have no-
ticed there is one block left in the design of the on-disk structure of our
very simple file system. We reserve this for the superblock, denoted by
an S in the diagram below. The superblock contains information about
this particular file system, including, for example, how many inodes and
data blocks are in the file system (80 and 56, respectively in this instance),
where the inode table begins (block 3), and so forth. It will likely also
include a magic number of some kind to identify the file system type (in
this case, vsfs).

S
0

i d I I I I I

7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

Inodes

Thus, when mounting a file system, the operating system will read
the superblock first, to initialize various parameters, and then attach the
volume to the file-system tree. When files within the volume are accessed,
the system will thus know exactly where to look for the needed on-disk
structures.

40.3 File Organization: The Inode

One of the most important on-disk structures of a file system is the
inode; virtually all file systems have a structure similar to this. The name
inode is short for index node, the historical name given to it by UNIX in-
ventor Ken Thompson [RT74], used because these nodes were originally
arranged in an array, and the array indexed into when accessing a partic-
ular inode.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

FILE SYSTEM IMPLEMENTATION 465

ASIDE: DATA STRUCTURE – THE INODE

The inode is the generic name that is used in many file systems to de-
scribe the structure that holds the metadata for a given file, such as its
length, permissions, and the location of its constituent blocks. The name
goes back at least as far as UNIX (and probably further back to Multics
if not earlier systems); it is short for index node, as the inode number is
used to index into an array of on-disk inodes in order to find the inode
of that number. As we’ll see, design of the inode is one key part of file
system design. Most modern systems have some kind of structure like
this for every file they track, but perhaps call them different things (such
as dnodes, fnodes, etc.).

Each inode is implicitly referred to by a number (called the inumber),
which we’ve earlier called the low-level name of the file. In vsfs (and
other simple file systems), given an i-number, you should directly be able
to calculate where on the disk the corresponding inode is located. For ex-
ample, take the inode table of vsfs as above: 20-KB in size (5 4-KB blocks)
and thus consisting of 80 inodes (assuming each inode is 256 bytes); fur-
ther assume that the inode region starts at 12KB (i.e, the superblock starts
at 0KB, the inode bitmap is at address 4KB, the data bitmap at 8KB, and
thus the inode table comes right after). In vsfs, we thus have the following
layout for the beginning of the file system partition (in closeup view):

Super i-bmap d-bmap

0KB 4KB 8KB 12KB 16KB 20KB 24KB 28KB 32KB

The Inode Table (Closeup)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

32 33 34 35

36 37 38 39

40 41 42 43

44 45 46 47

48 49 50 51

52 53 54 55

56 57 58 59

60 61 62 63

64 65 66 67

68 69 70 71

72 73 74 75

76 77 78 79

iblock 0 iblock 1 iblock 2 iblock 3 iblock 4

To read inode number 32, the file system would first calculate the offset
into the inode region (32·sizeof(inode) or 8192, add it to the start address
of the inode table on disk (inodeStartAddr = 12KB), and thus arrive
upon the correct byte address of the desired block of inodes: 20KB. Re-
call that disks are not byte addressable, but rather consist of a large num-
ber of addressable sectors, usually 512 bytes. Thus, to fetch the block of
inodes that contains inode 32, the file system would issue a read to sector
20×1024

512
, or 40, to fetch the desired inode block. More generally, the sector

address iaddr of the inode block can be calculated as follows:

blk = (inumber * sizeof(inode_t)) / blockSize;

sector = ((blk * blockSize) + inodeStartAddr) / sectorSize;

Inside each inode is virtually all of the information you need about a
file: its type (e.g., regular file, directory, etc.), its size, the number of blocks

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

466 FILE SYSTEM IMPLEMENTATION

Size Name What is this inode field for?
2 mode can this file be read/written/executed?
2 uid who owns this file?
4 size how many bytes are in this file?
4 time what time was this file last accessed?
4 ctime what time was this file created?
4 mtime what time was this file last modified?
4 dtime what time was this inode deleted?
2 gid which group does this file belong to?
2 links count how many hard links are there to this file?
4 blocks how many blocks have been allocated to this file?
4 flags how should ext2 use this inode?
4 osd1 an OS-dependent field

60 block a set of disk pointers (15 total)
4 generation file version (used by NFS)
4 file acl a new permissions model beyond mode bits
4 dir acl called access control lists
4 faddr an unsupported field

12 i osd2 another OS-dependent field

Table 40.1: The ext2 inode

allocated to it, protection information (such as who owns the file, as well
as who can access it), some time information, including when the file was
created, modified, or last accessed, as well as information about where its
data blocks reside on disk (e.g., pointers of some kind). We refer to all
such information about a file as metadata; in fact, any information inside
the file system that isn’t pure user data is often referred to as such. An
example inode from ext2 [P09] is shown below in Table 40.1.

One of the most important decisions in the design of the inode is how
it refers to where data blocks are. One simple approach would be to
have one or more direct pointers (disk addresses) inside the inode; each
pointer refers to one disk block that belongs to the file. Such an approach
is limited: for example, if you want to have a file that is really big (e.g.,
bigger than the size of a block multiplied by the number of direct point-
ers), you are out of luck.

The Multi-Level Index

To support bigger files, file system designers have had to introduce dif-
ferent structures within inodes. One common idea is to have a special
pointer known as an indirect pointer. Instead of pointing to a block that
contains user data, it points to a block that contains more pointers, each
of which point to user data. Thus, an inode may have some fixed number
of direct pointers (e.g., 12), and a single indirect pointer. If a file grows
large enough, an indirect block is allocated (from the data-block region
of the disk), and the inode’s slot for an indirect pointer is set to point to
it. Assuming that a block is 4KB and 4-byte disk addresses, that adds
another 1024 pointers; the file can grow to be (12 + 1024) · 4K or 4144KB.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

FILE SYSTEM IMPLEMENTATION 467

TIP: CONSIDER EXTENT-BASED APPROACHES

A different approach is to use extents instead of pointers. An extent is
simply a disk pointer plus a length (in blocks); thus, instead of requiring
a pointer for every block of a file, all one needs is a pointer and a length
to specify the on-disk location of a file. Just a single extent is limiting, as
one may have trouble finding a contiguous chunk of on-disk free space
when allocating a file. Thus, extent-based file systems often allow for
more than one extent, thus giving more freedom to the file system during
file allocation.

In comparing the two approaches, pointer-based approaches are the most
flexible but use a large amount of metadata per file (particularly for large
files). Extent-based approaches are less flexible but more compact; in par-
ticular, they work well when there is enough free space on the disk and
files can be laid out contiguously (which is the goal for virtually any file
allocation policy anyhow).

Not surprisingly, in such an approach, you might want to support
even larger files. To do so, just add another pointer to the inode: the dou-
ble indirect pointer. This pointer refers to a block that contains pointers
to indirect blocks, each of which contain pointers to data blocks. A dou-
ble indirect block thus adds the possibility to grow files with an additional
1024 · 1024 or 1-million 4KB blocks, in other words supporting files that
are over 4GB in size. You may want even more, though, and we bet you
know where this is headed: the triple indirect pointer.

Overall, this imbalanced tree is referred to as the multi-level index ap-
proach to pointing to file blocks. Let’s examine an example with twelve
direct pointers, as well as both a single and a double indirect block. As-
suming a block size of 4 KB, and 4-byte pointers, this structure can accom-
modate a file of just over 4 GB in size (i.e., (12 + 1024 + 10242) × 4 KB).
Can you figure out how big of a file can be handled with the addition of
a triple-indirect block? (hint: pretty big)

Many file systems use a multi-level index, including commonly-used
file systems such as Linux ext2 [P09] and ext3, NetApp’s WAFL, as well as
the original UNIX file system. Other file systems, including SGI XFS and
Linux ext4, use extents instead of simple pointers; see the earlier aside for
details on how extent-based schemes work (they are akin to segments in
the discussion of virtual memory).

You might be wondering: why use an imbalanced tree like this? Why
not a different approach? Well, as it turns out, many researchers have
studied file systems and how they are used, and virtually every time they
find certain “truths” that hold across the decades. One such finding is
that most files are small. This imbalanced design reflects such a reality; if
most files are indeed small, it makes sense to optimize for this case. Thus,
with a small number of direct pointers (12 is a typical number), an inode

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

468 FILE SYSTEM IMPLEMENTATION

ASIDE: LINKED-BASED APPROACHES

Another simpler approach in designing inodes is to use a linked list.
Thus, inside an inode, instead of having multiple pointers, you just need
one, to point to the first block of the file. To handle larger files, add an-
other pointer at the end of that data block, and so on, and thus you can
support large files.

As you might have guessed, linked file allocation performs poorly for
some workloads; think about reading the last block of a file, for example,
or just doing random access. Thus, to make linked allocation work better,
some systems will keep an in-memory table of link information, instead
of storing the next pointers with the data blocks themselves. The table
is indexed by the address of a data block D; the content of an entry is
simply D’s next pointer, i.e., the address of the next block in a file which
follows D. A null-value could be there too (indicating an end-of-file), or
some other marker to indicate that a particular block is free. Having such
a table of next pointers makes it so that a linked allocation scheme can
effectively do random file accesses, simply by first scanning through the
(in memory) table to find the desired block, and then accessing (on disk)
it directly.

Does such a table sound familiar? What we have described is the basic
structure of what is known as the file allocation table, or FAT file system.
Yes, this classic old Windows file system, before NTFS [C94], is based on a
simple linked-based allocation scheme. There are other differences from
a standard UNIX file system too; for example, there are no inodes per se,
but rather directory entries which store metadata about a file and refer
directly to the first block of said file, which makes creating hard links
impossible. See Brouwer [B02] for more of the inelegant details.

can directly point to 48 KB of data, needing one (or more) indirect blocks
for larger files. See Agrawal et. al [A+07] for a recent study; Table 40.2
summarizes those results.

Of course, in the space of inode design, many other possibilities ex-
ist; after all, the inode is just a data structure, and any data structure that
stores the relevant information, and can query it effectively, is sufficient.
As file system software is readily changed, you should be willing to ex-
plore different designs should workloads or technologies change.

Most files are small Roughly 2K is the most common size
Average file size is growing Almost 200K is the average
Most bytes are stored in large files A few big files use most of the space
File systems contains lots of files Almost 100K on average
File systems are roughly half full Even as disks grow, file systems remain ˜50% full
Directories are typically small Many have few entries; most have 20 or fewer

Table 40.2: File System Measurement Summary

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

FILE SYSTEM IMPLEMENTATION 469

40.4 Directory Organization

In vsfs (as in many file systems), directories have a simple organiza-
tion; a directory basically just contains a list of (entry name, inode num-
ber) pairs. For each file or directory in a given directory, there is a string
and a number in the data block(s) of the directory. For each string, there
may also be a length (assuming variable-sized names).

For example, assume a directory dir (inode number 5) has three files
in it (foo, bar, and foobar), and their inode numbers are 12, 13, and 24
respectively. The on-disk data for dir might look like this:

inum | reclen | strlen | name

5 4 2 .

2 4 3 ..

12 4 4 foo

13 4 4 bar

24 8 7 foobar

In this example, each entry has an inode number, record length (the
total bytes for the name plus any left over space), string length (the actual
length of the name), and finally the name of the entry. Note that each di-
rectory has two extra entries, . “dot” and .. “dot-dot”; the dot directory
is just the current directory (in this example, dir), whereas dot-dot is the
parent directory (in this case, the root).

Deleting a file (e.g., calling unlink()) can leave an empty space in
the middle of the directory, and hence there should be some way to mark
that as well (e.g., with a reserved inode number such as zero). Such a
delete is one reason the record length is used: a new entry may reuse an
old, bigger entry and thus have extra space within.

You might be wondering where exactly directories are stored. Often,
file systems treat directories as a special type of file. Thus, a directory has
an inode, somewhere in the inode table (with the type field of the inode
marked as “directory” instead of “regular file”). The directory has data
blocks pointed to by the inode (and perhaps, indirect blocks); these data
blocks live in the data block region of our simple file system. Our on-disk
structure thus remains unchanged.

We should also note again that this simple linear list of directory en-
tries is not the only way to store such information. As before, any data
structure is possible. For example, XFS [S+96] stores directories in B-tree
form, making file create operations (which have to ensure that a file name
has not been used before creating it) faster than systems with simple lists
that must be scanned in their entirety.

40.5 Free Space Management

A file system must track which inodes and data blocks are free, and
which are not, so that when a new file or directory is allocated, it can find
space for it. Thus free space management is important for all file systems.
In vsfs, we have two simple bitmaps for this task.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

470 FILE SYSTEM IMPLEMENTATION

ASIDE: FREE SPACE MANAGEMENT

There are many ways to manage free space; bitmaps are just one way.
Some early file systems used free lists, where a single pointer in the super
block was kept to point to the first free block; inside that block the next
free pointer was kept, thus forming a list through the free blocks of the
system. When a block was needed, the head block was used and the list
updated accordingly.

Modern file systems use more sophisticated data structures. For example,
SGI’s XFS [S+96] uses some form of a B-tree to compactly represent which
chunks of the disk are free. As with any data structure, different time-
space trade-offs are possible.

For example, when we create a file, we will have to allocate an inode
for that file. The file system will thus search through the bitmap for an in-
ode that is free, and allocate it to the file; the file system will have to mark
the inode as used (with a 1) and eventually update the on-disk bitmap
with the correct information. A similar set of activities take place when a
data block is allocated.

Some other considerations might also come into play when allocating
data blocks for a new file. For example, some Linux file systems, such
as ext2 and ext3, will look for a sequence of blocks (say 8) that are free
when a new file is created and needs data blocks; by finding such a se-
quence of free blocks, and then allocating them to the newly-created file,
the file system guarantees that a portion of the file will be on the disk and
contiguous, thus improving performance. Such a pre-allocation policy is
thus a commonly-used heuristic when allocating space for data blocks.

40.6 Access Paths: Reading and Writing

Now that we have some idea of how files and directories are stored on
disk, we should be able to follow the flow of operation during the activity
of reading or writing a file. Understanding what happens on this access
path is thus the second key in developing an understanding of how a file
system works; pay attention!

For the following examples, let us assume that the file system has been
mounted and thus that the superblock is already in memory. Everything
else (i.e., inodes, directories) is still on the disk.

Reading A File From Disk

In this simple example, let us first assume that you want to simply open
a file (e.g., /foo/bar, read it, and then close it. For this simple example,
let’s assume the file is just 4KB in size (i.e., 1 block).

When you issue an open("/foo/bar", O RDONLY) call, the file sys-
tem first needs to find the inode for the file bar, to obtain some basic in-
formation about the file (permissions information, file size, etc.). To do so,

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

FILE SYSTEM IMPLEMENTATION 471

data inode root foo bar root foo bar bar bar
bitmap bitmap inode inode inode data data data[0] data[1] data[1]

read
read

open(bar) read
read

read
read

read() read
write
read

read() read
write
read

read() read
write

Table 40.3: File Read Timeline (Time Increasing Downward)

the file system must be able to find the inode, but all it has right now is
the full pathname. The file system must traverse the pathname and thus
locate the desired inode.

All traversals begin at the root of the file system, in the root directory
which is simply called /. Thus, the first thing the FS will read from disk
is the inode of the root directory. But where is this inode? To find an
inode, we must know its i-number. Usually, we find the i-number of a file
or directory in its parent directory; the root has no parent (by definition).
Thus, the root inode number must be “well known”; the FS must know
what it is when the file system is mounted. In most UNIX file systems,
the root inode number is 2. Thus, to begin the process, the FS reads in the
block that contains inode number 2 (the first inode block).

Once the inode is read in, the FS can look inside of it to find pointers to
data blocks, which contain the contents of the root directory. The FS will
thus use these on-disk pointers to read through the directory, in this case
looking for an entry for foo. By reading in one or more directory data
blocks, it will find the entry for foo; once found, the FS will also have
found the inode number of foo (say it is 44) which it will need next.

The next step is to recursively traverse the pathname until the desired
inode is found. In this example, the FS would next read the block contain-
ing the inode of foo and then read in its directory data, finally finding the
inode number of bar. The final step of open(), then, is to read its inode
into memory; the FS can then do a final permissions check, allocate a file
descriptor for this process in the per-process open-file table, and return it
to the user.

Once open, the program can then issue a read() system call to read
from the file. The first read (at offset 0 unless lseek() has been called)
will thus read in the first block of the file, consulting the inode to find
the location of such a block; it may also update the inode with a new last-
accessed time. The read will further update the in-memory open file table
for this file descriptor, updating the file offset such that the next read will
read the second file block, etc.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

472 FILE SYSTEM IMPLEMENTATION

ASIDE: READS DON’T ACCESS ALLOCATION STRUCTURES

We’ve seen many students get confused by allocation structures such
as bitmaps. In particular, many often think that when you are simply
reading a file, and not allocating any new blocks, that the bitmap will still
be consulted. This is not true! Allocation structures, such as bitmaps,
are only accessed when allocation is needed. The inodes, directories, and
indirect blocks have all the information they need to complete a read re-
quest; there is no need to make sure a block is allocated when the inode
already points to it.

At some point, the file will be closed. There is much less work to be
done here; clearly, the file descriptor should be deallocated, but for now,
that is all the FS really needs to do. No disk I/Os take place.

A depiction of this entire process is found in Figure 40.3 (time increases
downward). In the figure, the open causes numerous reads to take place
in order to finally locate the inode of the file. Afterwards, reading each
block requires the file system to first consult the inode, then read the
block, and then update the inode’s last-accessed-time field with a write.
Spend some time and try to understand what is going on.

Also note that the amount of I/O generated by the open is propor-
tional to the length of the pathname. For each additional directory in the
path, we have to read its inode as well as its data. Making this worse
would be the presence of large directories; here, we only have to read one
block to get the contents of a directory, whereas with a large directory, we
might have to read many data blocks to find the desired entry. Yes, life
can get pretty bad when reading a file; as you’re about to find out, writing
out a file (and especially, creating a new one) is even worse.

Writing to Disk

Writing to a file is a similar process. First, the file must be opened (as
above). Then, the application can issue write() calls to update the file
with new contents. Finally, the file is closed.

Unlike reading, writing to the file may also allocate a block (unless
the block is being overwritten, for example). When writing out a new
file, each write not only has to write data to disk but has to first decide
which block to allocate to the file and thus update other structures of the
disk accordingly (e.g., the data bitmap). Thus, each write to a file logically
generates three I/Os: one to read the data bitmap, which is then updated
to mark the newly-allocated block as used, one to write the bitmap (to
reflect its new state to disk), and one to write the actual block itself.

The amount of write traffic is even worse when one considers a sim-
ple and common operation such as file creation. To create a file, the file
system must not only allocate an inode, but also allocate space within
the directory containing the new file. The total amount of I/O traffic to
do so is quite high: one read to the inode bitmap (to find a free inode),

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

FILE SYSTEM IMPLEMENTATION 473

data inode root foo bar root foo bar bar bar
bitmap bitmap inode inode inode data data data[0] data[1] data[1]

read
read

read
read

create read
(/foo/bar) write

write
read
write

write
read

read
write() write

write
write
read

read
write() write

write
write
read

read
write() write

write
write

Table 40.4: File Creation Timeline (Time Increasing Downward)

one write to the inode bitmap (to mark it allocated), one write to the new
inode itself (to initialize it), one to the data of the directory (to link the
high-level name of the file to its inode number), and one read and write
to the directory inode to update it. If the directory needs to grow to ac-
commodate the new entry, additional I/Os (i.e., to the data bitmap, and
the new directory block) will be needed too. All that just to create a file!

Let’s look at a specific example, where the file /foo/bar is created,
and three blocks are written to it. Figure 40.4 shows what happens during
the open() (which creates the file) and during each of three 4KB writes.

In the figure, reads and writes to the disk are grouped under which
system call caused them to occur, and the rough ordering they might take
place in goes from top to bottom of the figure. You can see how much
work it is to create the file: 10 I/Os in this case, to walk the pathname
and then finally create the file. You can also see that each allocating write
costs 5 I/Os: a pair to read and update the inode, another pair to read
and update the data bitmap, and then finally the write of the data itself.
How can a file system accomplish any of this with reasonable efficiency?

THE CRUX: HOW TO REDUCE FILE SYSTEM I/O COSTS

Even the simplest of operations like opening, reading, or writing a file
incurs a huge number of I/O operations, scattered over the disk. What
can a file system do to reduce the high costs of doing so many I/Os?

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

474 FILE SYSTEM IMPLEMENTATION

40.7 Caching and Buffering

As the examples above show, reading and writing files can be expen-
sive, incurring many I/Os to the (slow) disk. To remedy what would
clearly be a huge performance problem, most file systems aggressively
use system memory (DRAM) to cache important blocks.

Imagine the open example above: without caching, every file open
would require at least two reads for every level in the directory hierarchy
(one to read the inode of the directory in question, and at least one to read
its data). With a long pathname (e.g., /1/2/3/ ... /100/file.txt), the file
system would literally perform hundreds of reads just to open the file!

Early file systems thus introduced a fix-sized cache to hold popular
blocks. As in our discussion of virtual memory, strategies such as LRU
and different variants would decide which blocks to keep in cache. This
fix-sized cache would usually be allocated at boot time to be roughly 10%
of total memory. Modern systems integrate virtual memory pages and file
system pages into a unified page cache [S00]. In this way, memory can be
allocated more flexibly across virtual memory and file system, depending
on which needs more memory at a given time.

Now imagine the file open example with caching. The first open may
generate a lot of I/O traffic to read in directory inode and data, but sub-
sequent file opens of that same file (or files in the same directory) will
mostly hit in the cache and thus no I/O is needed.

Let us also consider the effect of caching on writes. Whereas read I/O
can be avoided altogether with a sufficiently large cache, write traffic has
to go to disk in order to become persistent. Thus, a cache does not serve
as the same kind of filter on write traffic that it does for reads. That said,
write buffering (as it is sometimes called) certainly has a number of per-
formance benefits. First, by delaying writes, the file system can batch
some updates into a smaller set of I/Os; for example, if an inode bitmap
is updated when one file is created and then updated moments later as
another file is created, the file system saves an I/O by delaying the write
after the first update. Second, by buffering a number of writes in memory,
the system can then schedule the subsequent I/Os and thus increase per-
formance. Finally, some writes are avoided altogether by delaying them;
for example, if an application creates a file and then deletes it, delaying
the writes to reflect the file creation to disk avoids them entirely. In this
case, laziness (in writing blocks to disk) is a virtue.

For the reasons above, most modern file systems buffer writes in mem-
ory for anywhere between five and thirty seconds, representing yet an-
other trade-off: if the system crashes before the updates have been prop-
agated to disk, the updates are lost; however, by keeping writes in mem-
ory longer, performance can be improved by batching, scheduling, and
even avoiding writes.

Some applications (such as databases) don’t enjoy this trade-off. Thus,
to avoid unexpected data loss due to write buffering, they simply force
writes to disk, by calling fsync(), by using direct I/O interfaces that

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

FILE SYSTEM IMPLEMENTATION 475

work around the cache, or by using the raw disk interface and avoiding

the file system altogether1. While most applications live with the trade-
offs made by the file system, there are enough controls in place to get the
system to do what you want it to, should the default not be satisfying.

40.8 Summary

We have seen the basic machinery required in building a file system.
There needs to be some information about each file (metadata), usually
stored in a structure called an inode. Directories are just a specific type
of file that store name→inode-number mappings. And other structures
are needed too; for example, file systems often use a structure such as a
bitmap to track which inodes or data blocks are free or allocated.

The terrific aspect of file system design is its freedom; the file systems
we explore in the coming chapters each take advantage of this freedom
to optimize some aspect of the file system. There are also clearly many
policy decisions we have left unexplored. For example, when a new file
is created, where should it be placed on disk? This policy and others will
also be the subject of future chapters. Or will they?

1Take a database class to learn more about old-school databases and their former insis-
tence on avoiding the OS and controlling everything themselves. But watch out! Those
database types are always trying to bad mouth the OS. Shame on you, database people. Shame.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

476 FILE SYSTEM IMPLEMENTATION

References

[A+07] Nitin Agrawal, William J. Bolosky, John R. Douceur, Jacob R. Lorch
A Five-Year Study of File-System Metadata
FAST ’07, pages 31–45, February 2007, San Jose, CA
An excellent recent analysis of how file systems are actually used. Use the bibliography within to follow
the trail of file-system analysis papers back to the early 1980s.

[B07] “ZFS: The Last Word in File Systems”
Jeff Bonwick and Bill Moore
Available: http://opensolaris.org/os/community/zfs/docs/zfs last.pdf
One of the most recent important file systems, full of features and awesomeness. We should have a
chapter on it, and perhaps soon will.

[B02] “The FAT File System”
Andries Brouwer
September, 2002
Available: http://www.win.tue.nl/˜aeb/linux/fs/fat/fat.html
A nice clean description of FAT. The file system kind, not the bacon kind. Though you have to admit,
bacon fat probably tastes better.

[C94] “Inside the Windows NT File System”
Helen Custer
Microsoft Press, 1994
A short book about NTFS; there are probably ones with more technical details elsewhere.

[H+88] “Scale and Performance in a Distributed File System”
John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satyanarayanan,
Robert N. Sidebotham, Michael J. West.
ACM Transactions on Computing Systems (ACM TOCS), page 51-81, Volume 6, Number 1,
February 1988
A classic distributed file system; we’ll be learning more about it later, don’t worry.

[P09] “The Second Extended File System: Internal Layout”
Dave Poirier, 2009
Available: http://www.nongnu.org/ext2-doc/ext2.html
Some details on ext2, a very simple Linux file system based on FFS, the Berkeley Fast File System. We’ll
be reading about it in the next chapter.

[RT74] “The UNIX Time-Sharing System”
M. Ritchie and K. Thompson
CACM, Volume 17:7, pages 365-375, 1974
The original paper about UNIX. Read it to see the underpinnings of much of modern operating systems.

[S00] “UBC: An Efficient Unified I/O and Memory Caching Subsystem for NetBSD”
Chuck Silvers
FREENIX, 2000
A nice paper about NetBSD’s integration of file-system buffer caching and the virtual-memory page
cache. Many other systems do the same type of thing.

[S+96] “Scalability in the XFS File System”
Adan Sweeney, Doug Doucette, Wei Hu, Curtis Anderson,
Mike Nishimoto, Geoff Peck
USENIX ’96, January 1996, San Diego, CA
The first attempt to make scalability of operations, including things like having millions of files in a
directory, a central focus. A great example of pushing an idea to the extreme. The key idea behind this
file system: everything is a tree. We should have a chapter on this file system too.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

FILE SYSTEM IMPLEMENTATION 477

Homework

Use this tool, vsfs.py, to study how file system state changes as var-
ious operations take place. The file system begins in an empty state, with
just a root directory. As the simulation takes place, various operations are
performed, thus slowly changing the on-disk state of the file system. See
the README for details.

Questions

1. Run the simulator with some different random seeds (say 17, 18, 19,
20), and see if you can figure out which operations must have taken
place between each state change.

2. Now do the same, using different random seeds (say 21, 22, 23,
24), except run with the -r flag, thus making you guess the state
change while being shown the operation. What can you conclude
about the inode and data-block allocation algorithms, in terms of
which blocks they prefer to allocate?

3. Now reduce the number of data blocks in the file system, to very
low numbers (say two), and run the simulator for a hundred or so
requests. What types of files end up in the file system in this highly-
constrained layout? What types of operations would fail?

4. Now do the same, but with inodes. With very few inodes, what
types of operations can succeed? Which will usually fail? What is
the final state of the file system likely to be?

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

41

Locality and The Fast File System

When the UNIX operating system was first introduced, the UNIX wizard
himself Ken Thompson wrote the first file system. We will call that the
“old UNIX file system”, and it was really simple. Basically, its data struc-
tures looked like this on the disk:

S Inodes Data

The super block (S) contained information about the entire file system:
how big the volume is, how many inodes there are, a pointer to the head
of a free list of blocks, and so forth. The inode region of the disk contained
all the inodes for the file system. Finally, most of the disk was taken up
by data blocks.

The good thing about the old file system was that it was simple, and
supported the basic abstractions the file system was trying to deliver:
files and the directory hierarchy. This easy-to-use system was a real step
forward from the clumsy, record-based storage systems of the past, and
the directory hierarchy a true advance over simpler, one-level hierarchies
provided by earlier systems.

41.1 The Problem: Poor Performance

The problem: performance was terrible. As measured by Kirk McKu-
sick and his colleagues at Berkeley [MJLF84], performance started off bad
and got worse over time, to the point where the file system was delivering
only 2% of overall disk bandwidth!

The main issue was that the old UNIX file system treated the disk like it
was a random-access memory; data was spread all over the place without
regard to the fact that the medium holding the data was a disk, and thus
had real and expensive positioning costs. For example, the data blocks of
a file were often very far away from its inode, thus inducing an expensive
seek whenever one first read the inode and then the data blocks of a file
(a pretty common operation).

479

480 LOCALITY AND THE FAST FILE SYSTEM

Worse, the file system would end up getting quite fragmented, as the
free space was not carefully managed. The free list would end up point-
ing to a bunch of blocks spread across the disk, and as files got allocated,
they would simply take the next free block. The result was that a logi-
cally contiguous file would be accessed by going back and forth across
the disk, thus reducing performance dramatically.

For example, imagine the following data block region, which contains
four files (A, B, C, and D), each of size 2 blocks:

A1 A2 B1 B2 C1 C2 D1 D2

If B and D are deleted, the resulting layout is:

A1 A2 C1 C2

As you can see, the free space is fragmented into two chunks of two
blocks, instead of one nice contiguous chunk of four. Let’s say we now
wish to allocate a file E, of size four blocks:

A1 A2 E1 E2 C1 C2 E3 E4

You can see what happens: E gets spread across the disk, and as a
result, when accessing E, you don’t get peak (sequential) performance
from the disk. Rather, you first read E1 and E2, then seek, then read E3
and E4. This fragmentation problem happened all the time in the old
UNIX file system, and it hurt performance. (A side note: this problem is
exactly what disk defragmentation tools help with; they will reorganize
on-disk data to place files contiguously and make free space one or a few
contiguous regions, moving data around and then rewriting inodes and
such to reflect the changes)

One other problem: the original block size was too small (512 bytes).
Thus, transferring data from the disk was inherently inefficient. Smaller
blocks were good because they minimized internal fragmentation (waste
within the block), but bad for transfer as each block might require a posi-
tioning overhead to reach it. We can summarize the problem as follows:

THE CRUX:
HOW TO ORGANIZE ON-DISK DATA TO IMPROVE PERFORMANCE

How can we organize file system data structures so as to improve per-
formance? What types of allocation policies do we need on top of those
data structures? How do we make the file system “disk aware”?

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LOCALITY AND THE FAST FILE SYSTEM 481

41.2 FFS: Disk Awareness Is The Solution

A group at Berkeley decided to build a better, faster file system, which
they cleverly called the Fast File System (FFS). The idea was to design
the file system structures and allocation policies to be “disk aware” and
thus improve performance, which is exactly what they did. FFS thus ush-
ered in a new era of file system research; by keeping the same interface
to the file system (the same APIs, including open(), read(), write(),
close(), and other file system calls) but changing the internal implemen-
tation, the authors paved the path for new file system construction, work
that continues today. Virtually all modern file systems adhere to the ex-
isting interface (and thus preserve compatibility with applications) while
changing their internals for performance, reliability, or other reasons.

41.3 Organizing Structure: The Cylinder Group

The first step was to change the on-disk structures. FFS divides the
disk into a bunch of groups known as cylinder groups (some modern file
systems like Linux ext2 and ext3 just call them block groups). We can
thus imagine a disk with ten cylinder groups:

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

These groups are the central mechanism that FFS uses to improve per-
formance; by placing two files within the same group, FFS can ensure that
accessing one after the other will not result in long seeks across the disk.

Thus, FFS needs to have the ability to allocate files and directories
within each of these groups. Each group looks like this:

S ib db Inodes Data

We now describe the components of a cylinder group. A copy of the
super block (S) is found in each group for reliability reasons (e.g., if one
gets corrupted or scratched, you can still mount and access the file system
by using one of the others).

The inode bitmap (ib) and data bitmap (db) track whether each inode
or data block is free, respectively. Bitmaps are an excellent way to manage
free space in a file system because it is easy to find a large chunk of free
space and allocate it to a file, perhaps avoiding some of the fragmentation
problems of the free list in the old file system.

Finally, the inode and data block regions are just like in the previous
very simple file system. Most of each cylinder group, as usual, is com-
prised of data blocks.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

482 LOCALITY AND THE FAST FILE SYSTEM

ASIDE: FFS FILE CREATION

As an example, think about what data structures must be updated when
a file is created; assume, for this example, that the user creates a new file
/foo/bar.txt and that the file is one block long (4KB). The file is new,
and thus needs a new inode; thus, both the inode bitmap and the newly-
allocated inode will be written to disk. The file also has data in it and
thus it too must be allocated; the data bitmap and a data block will thus
(eventually) be written to disk. Hence, at least four writes to the current
cylinder group will take place (recall that these writes may be buffered
in memory for a while before the write takes place). But this is not all!
In particular, when creating a new file, we must also place the file in the
file-system hierarchy; thus, the directory must be updated. Specifically,
the parent directory foo must be updated to add the entry for bar.txt;
this update may fit in an existing data block of foo or require a new block
to be allocated (with associated data bitmap). The inode of foo must also
be updated, both to reflect the new length of the directory as well as to
update time fields (such as last-modified-time). Overall, it is a lot of work
just to create a new file! Perhaps next time you do so, you should be more
thankful, or at least surprised that it all works so well.

41.4 Policies: How To Allocate Files and Directories

With this group structure in place, FFS now has to decide how to place
files and directories and associated metadata on disk to improve perfor-
mance. The basic mantra is simple: keep related stuff together (and its corol-
lary, keep unrelated stuff far apart).

Thus, to obey the mantra, FFS has to decide what is “related” and
place it within the same block group; conversely, unrelated items should
be placed into different block groups. To achieve this end, FFS makes use
of a few simple placement heuristics.

The first is the placement of directories. FFS employs a simple ap-
proach: find the cylinder group with a low number of allocated directo-
ries (because we want to balance directories across groups) and a high
number of free inodes (because we want to subsequently be able to allo-
cate a bunch of files), and put the directory data and inode in that group.
Of course, other heuristics could be used here (e.g., taking into account
the number of free data blocks).

For files, FFS does two things. First, it makes sure (in the general case)
to allocate the data blocks of a file in the same group as its inode, thus
preventing long seeks between inode and data (as in the old file sys-
tem). Second, it places all files that are in the same directory in the cylin-
der group of the directory they are in. Thus, if a user creates four files,
/dir1/1.txt,/dir1/2.txt,/dir1/3.txt, and /dir99/4.txt, FFS
would try to place the first three near one another (same group) and the
fourth far away (in some other group).

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LOCALITY AND THE FAST FILE SYSTEM 483

0 2 4 6 8 10
0%

20%

40%

60%

80%

100%
FFS Locality

Path Difference

C
u
m

u
la

ti
v
e
 F

re
q
u
e
n
c
y

Trace
Random

Figure 41.1: FFS Locality For SEER Traces

It should be noted that these heuristics are not based on extensive
studies of file-system traffic or anything particularly nuanced; rather, they
are based on good old-fashioned common sense (isn’t that what CS stands
for after all?). Files in a directory are often accessed together (imagine
compiling a bunch of files and then linking them into a single executable).
Because they are, FFS will often improve performance, making sure that
seeks between related files are short.

41.5 Measuring File Locality

To understand better whether these heuristics make sense, we decided
to analyze some traces of file system access and see if indeed there is
namespace locality; for some reason, there doesn’t seem to be a good
study of this topic in the literature.

Specifically, we took the SEER traces [K94] and analyzed how “far
away” file accesses were from one another in the directory tree. For ex-
ample, if file f is opened, and then re-opened next in the trace (before
any other files are opened), the distance between these two opens in the
directory tree is zero (as they are the same file). If a file f in directory
dir (i.e., dir/f) is opened, and followed by an open of file g in the same
directory (i.e., dir/g), the distance between the two file accesses is one,
as they share the same directory but are not the same file. Our distance
metric, in other words, measures how far up the directory tree you have
to travel to find the common ancestor of two files; the closer they are in the
tree, the lower the metric.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

484 LOCALITY AND THE FAST FILE SYSTEM

Figure 41.1 shows the locality observed in the SEER traces over all
workstations in the SEER cluster over the entirety of all traces. The graph
plots the difference metric along the x-axis, and shows the cumulative
percentage of file opens that were of that difference along the y-axis.
Specifically, for the SEER traces (marked “Trace” in the graph), you can
see that about 7% of file accesses were to the file that was opened previ-
ously, and that nearly 40% of file accesses were to either the same file or
to one in the same directory (i.e., a difference of zero or one). Thus, the
FFS locality assumption seems to make sense (at least for these traces).

Interestingly, another 25% or so of file accesses were to files that had a
distance of two. This type of locality occurs when the user has structured
a set of related directories in a multi-level fashion and consistently jumps
between them. For example, if a user has a src directory and builds
object files (.o files) into a obj directory, and both of these directories
are sub-directories of a main proj directory, a common access pattern
will be proj/src/foo.c followed by proj/obj/foo.o. The distance
between these two accesses is two, as proj is the common ancestor. FFS
does not capture this type of locality in its policies, and thus more seeking
will occur between such accesses.

We also show what locality would be for a “Random” trace for the
sake of comparison. We generated the random trace by selecting files
from within an existing SEER trace in random order, and calculating the
distance metric between these randomly-ordered accesses. As you can
see, there is less namespace locality in the random traces, as expected.
However, because eventually every file shares a common ancestor (e.g.,
the root), there is some locality eventually, and thus random trace is use-
ful as a comparison point.

41.6 The Large-File Exception

In FFS, there is one important exception to the general policy of file
placement, and it arises for large files. Without a different rule, a large
file would entirely fill the block group it is first placed within (and maybe
others). Filling a block group in this manner is undesirable, as it prevents
subsequent “related” files from being placed within this block group, and
thus may hurt file-access locality.

Thus, for large files, FFS does the following. After some number of
blocks are allocated into the first block group (e.g., 12 blocks, or the num-
ber of direct pointers available within an inode), FFS places the next “large”
chunk of the file (e.g., those pointed to by the first indirect block) in an-
other block group (perhaps chosen for its low utilization). Then, the next
chunk of the file is placed in yet another different block group, and so on.

Let’s look at some pictures to understand this policy better. Without
the large-file exception, a single large file would place all of its blocks into
one part of the disk. We use a small example of a file with 10 blocks to
illustrate the behavior visually.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LOCALITY AND THE FAST FILE SYSTEM 485

Here is the depiction of FFS without the large-file exception:
G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

0 1 2 3 4
5 6 7 8 9

With the large-file exception, we might see something more like this, with
the file spread across the disk in chunks:

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

0 1 2 3 4 5 6 78 9

The astute reader will note that spreading blocks of a file across the
disk will hurt performance, particularly in the relatively common case
of sequential file access (e.g., when a user or application reads chunks 0
through 9 in order). And you are right! It will. We can help this a little,
by choosing our chunk size carefully.

Specifically, if the chunk size is large enough, we will still spend most
of our time transferring data from disk and just a relatively little time
seeking between chunks of the block. This process of reducing an over-
head by doing more work per overhead paid is called amortization and
is a common technique in computer systems.

Let’s do an example: assume that the average positioning time (i.e.,
seek and rotation) for a disk is 10 ms. Assume further that the disk trans-
fers data at 40 MB/s. If our goal was to spend half our time seeking be-
tween chunks and half our time transferring data (and thus achieve 50%
of peak disk performance), we would thus need to spend 10 ms transfer-
ring data for every 10 ms positioning. So the question becomes: how big
does a chunk have to be in order to spend 10 ms in transfer? Easy, just
use our old friend, math, in particular the dimensional analysis we spoke
of in the chapter on disks:

40 ��MB

��sec
·
1024 KB

1 ��MB
·

1 ��sec
1000 ��ms

· 10 ��ms = 409.6 KB (41.1)

Basically, what this equation says is this: if you transfer data at 40
MB/s, you need to transfer only 409.6 KB every time you seek in order to
spend half your time seeking and half your time transferring. Similarly,
you can compute the size of the chunk you would need to achieve 90%
of peak bandwidth (turns out it is about 3.69 MB), or even 99% of peak
bandwidth (40.6 MB!). As you can see, the closer you want to get to peak,
the bigger these chunks get (see Figure 41.2 for a plot of these values).

FFS did not use this type of calculation in order to spread large files
across groups, however. Instead, it took a simple approach, based on the
structure of the inode itself. The first twelve direct blocks were placed
in the same group as the inode; each subsequent indirect block, and all
the blocks it pointed to, was placed in a different group. With a block
size of 4-KB, and 32-bit disk addresses, this strategy implies that every
1024 blocks of the file (4 MB) were placed in separate groups, the lone
exception being the first 48-KB of the file as pointed to by direct pointers.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

486 LOCALITY AND THE FAST FILE SYSTEM

0% 25% 50% 75% 100%
1K

32K

1M

10M

The Challenges of Amortization

Percent Bandwidth (Desired)

L
o

g
(C

h
u

n
k
 S

iz
e

 N
e

e
d

e
d

)

50%, 409.6K

90%, 3.69M

Figure 41.2: Amortization: How Big Do Chunks Have To Be?

We should note that the trend in disk drives is that transfer rate im-
proves fairly rapidly, as disk manufacturers are good at cramming more
bits into the same surface, but the mechanical aspects of drives related
to seeks (disk arm speed and the rate of rotation) improve rather slowly
[P98]. The implication is that over time, mechanical costs become rel-
atively more expensive, and thus, to amortize said costs, you have to
transfer more data between seeks.

41.7 A Few Other Things About FFS

FFS introduced a few other innovations too. In particular, the design-
ers were extremely worried about accommodating small files; as it turned
out, many files were 2 KB or so in size back then, and using 4-KB blocks,
while good for transferring data, was not so good for space efficiency.
This internal fragmentation could thus lead to roughly half the disk be-
ing wasted for a typical file system.

The solution the FFS designers hit upon was simple and solved the
problem. They decided to introduce sub-blocks, which were 512-byte lit-
tle blocks that the file system could allocate to files. Thus, if you created a
small file (say 1 KB in size), it would occupy two sub-blocks and thus not
waste an entire 4-KB block. As the file grew, the file system will continue
allocating 512-byte blocks to it until it acquires a full 4-KB of data. At that
point, FFS will find a 4-KB block, copy the sub-blocks into it, and free the
sub-blocks for future use.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LOCALITY AND THE FAST FILE SYSTEM 487

0

11

10
9

8

7

6

5

4
3

2

1

Spindle
0

11

5
10

4

9

3

8

2
7

1

6

Spindle

Figure 41.3: FFS: Standard Versus Parameterized Placement

You might observe that this process is inefficient, requiring a lot of ex-
tra work for the file system (in particular, a lot of extra I/O to perform the
copy). And you’d be right again! Thus, FFS generally avoided this pes-
simal behavior by modifying the libc library; the library would buffer
writes and then issue them in 4-KB chunks to the file system, thus avoid-
ing the sub-block specialization entirely in most cases.

A second neat thing that FFS introduced was a disk layout that was
optimized for performance. In those times (before SCSI and other more
modern device interfaces), disks were much less sophisticated and re-
quired the host CPU to control their operation in a more hands-on way.
A problem arose in FFS when a file was placed on consecutive sectors of
the disk, as on the left in Figure 41.3.

In particular, the problem arose during sequential reads. FFS would
first issue a read to block 0; by the time the read was complete, and FFS
issued a read to block 1, it was too late: block 1 had rotated under the
head and now the read to block 1 would incur a full rotation.

FFS solved this problem with a different layout, as you can see on the
right in Figure 41.3. By skipping over every other block (in the example),
FFS has enough time to request the next block before it went past the
disk head. In fact, FFS was smart enough to figure out for a particular
disk how many blocks it should skip in doing layout in order to avoid the
extra rotations; this technique was called parameterization, as FFS would
figure out the specific performance parameters of the disk and use those
to decide on the exact staggered layout scheme.

You might be thinking: this scheme isn’t so great after all. In fact, you
will only get 50% of peak bandwidth with this type of layout, because
you have to go around each track twice just to read each block once. For-
tunately, modern disks are much smarter: they internally read the entire
track in and buffer it in an internal disk cache (often called a track buffer
for this very reason). Then, on subsequent reads to the track, the disk will
just return the desired data from its cache. File systems thus no longer
have to worry about these incredibly low-level details. Abstraction and
higher-level interfaces can be a good thing, when designed properly.

Some other usability improvements were added as well. FFS was one
of the first file systems to allow for long file names, thus enabling more
expressive names in the file system instead of a the traditional fixed-size
approach (e.g., 8 characters). Further, a new concept was introduced

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

488 LOCALITY AND THE FAST FILE SYSTEM

TIP: MAKE THE SYSTEM USABLE

Probably the most basic lesson from FFS is that not only did it intro-
duce the conceptually good idea of disk-aware layout, but it also added
a number of features that simply made the system more usable. Long file
names, symbolic links, and a rename operation that worked atomically
all improved the utility of a system; while hard to write a research pa-
per about (imagine trying to read a 14-pager about “The Symbolic Link:
Hard Link’s Long Lost Cousin”), such small features made FFS more use-
ful and thus likely increased its chances for adoption. Making a system
usable is often as or more important than its deep technical innovations.

called a symbolic link. As discussed in a previous chapter, hard links are
limited in that they both could not point to directories (for fear of intro-
ducing loops in the file system hierarchy) and that they can only point to
files within the same volume (i.e., the inode number must still be mean-
ingful). Symbolic links allow the user to create an “alias” to any other
file or directory on a system and thus are much more flexible. FFS also
introduced an atomic rename() operation for renaming files. Usabil-
ity improvements, beyond the basic technology, also likely gained FFS a
stronger user base.

41.8 Summary

The introduction of FFS was a watershed moment in file system his-
tory, as it made clear that the problem of file management was one of the
most interesting issues within an operating system, and showed how one
might begin to deal with that most important of devices, the hard disk.
Since that time, hundreds of new file systems have developed, but still
today many file systems take cues from FFS (e.g., Linux ext2 and ext3 are
obvious intellectual descendants). Certainly all modern systems account
for the main lesson of FFS: treat the disk like it’s a disk.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LOCALITY AND THE FAST FILE SYSTEM 489

References

[MJLF84] “A Fast File System for UNIX”
Marshall K. McKusick, William N. Joy, Sam J. Leffler, Robert S. Fabry
ACM Transactions on Computing Systems.
August, 1984. Volume 2, Number 3.
pages 181-197.
McKusick was recently honored with the IEEE Reynold B. Johnson award for his contributions to file
systems, much of which was based on his work building FFS. In his acceptance speech, he discussed the
original FFS software: only 1200 lines of code! Modern versions are a little more complex, e.g., the BSD
FFS descendant now is in the 50-thousand lines-of-code range.

[P98] “Hardware Technology Trends and Database Opportunities”
David A. Patterson
Keynote Lecture at the ACM SIGMOD Conference (SIGMOD ’98)
June, 1998
A great and simple overview of disk technology trends and how they change over time.

[K94] “The Design of the SEER Predictive Caching System”
G. H. Kuenning
MOBICOMM ’94, Santa Cruz, California, December 1994
According to Kuenning, this is the best overview of the SEER project, which led to (among other things)
the collection of these traces.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

42

Crash Consistency: FSCK and Journaling

As we’ve seen thus far, the file system manages a set of data structures to
implement the expected abstractions: files, directories, and all of the other
metadata needed to support the basic abstraction that we expect from a
file system. Unlike most data structures (for example, those found in
memory of a running program), file system data structures must persist,
i.e., they must survive over the long haul, stored on devices that retain
data despite power loss (such as hard disks or flash-based SSDs).

One major challenge faced by a file system is how to update persis-
tent data structures despite the presence of a power loss or system crash.
Specifically, what happens if, right in the middle of updating on-disk
structures, someone trips over the power cord and the machine loses
power? Or the operating system encounters a bug and crashes? Because
of power losses and crashes, updating a persistent data structure can be
quite tricky, and leads to a new and interesting problem in file system
implementation, known as the crash-consistency problem.

This problem is quite simple to understand. Imagine you have to up-
date two on-disk structures, A and B, in order to complete a particular
operation. Because the disk only services a single request at a time, one
of these requests will reach the disk first (either A or B). If the system
crashes or loses power after one write completes, the on-disk structure
will be left in an inconsistent state. And thus, we have a problem that all
file systems need to solve:

THE CRUX: HOW TO UPDATE THE DISK DESPITE CRASHES

The system may crash or lose power between any two writes, and
thus the on-disk state may only partially get updated. After the crash,
the system boots and wishes to mount the file system again (in order to
access files and such). Given that crashes can occur at arbitrary points
in time, how do we ensure the file system keeps the on-disk image in a
reasonable state?

491

492 CRASH CONSISTENCY: FSCK AND JOURNALING

In this chapter, we’ll describe this problem in more detail, and look
at some methods file systems have used to overcome it. We’ll begin by
examining the approach taken by older file systems, known as fsck or the
file system checker. We’ll then turn our attention to another approach,
known as journaling (also known as write-ahead logging), a technique
which adds a little bit of overhead to each write but recovers more quickly
from crashes or power losses. We will discuss the basic machinery of
journaling, including a few different flavors of journaling that Linux ext3
[T98,PAA05] (a relatively modern journaling file system) implements.

42.1 A Detailed Example

To kick off our investigation of journaling, let’s look at an example.
We’ll need to use a workload that updates on-disk structures in some
way. Assume here that the workload is simple: the append of a single
data block to an existing file. The append is accomplished by opening the
file, calling lseek() to move the file offset to the end of the file, and then
issuing a single 4KB write to the file before closing it.

Let’s also assume we are using standard simple file system structures
on the disk, similar to file systems we have seen before. This tiny example
includes an inode bitmap (with just 8 bits, one per inode), a data bitmap
(also 8 bits, one per data block), inodes (8 total, numbered 0 to 7, and
spread across four blocks), and data blocks (8 total, numbered 0 to 7).
Here is a diagram of this file system:

Inode

Bmap

Data

Bmap
Inodes Data Blocks

I[v1]
Da

If you look at the structures in the picture, you can see that a single inode
is allocated (inode number 2), which is marked in the inode bitmap, and a
single allocated data block (data block 4), also marked in the data bitmap.
The inode is denoted I[v1], as it is the first version of this inode; it will
soon be updated (due to the workload described above).

Let’s peek inside this simplified inode too. Inside of I[v1], we see:

owner : remzi

permissions : read-only

size : 1

pointer : 4

pointer : null

pointer : null

pointer : null

In this simplified inode, the size of the file is 1 (it has one block al-
located), the first direct pointer points to block 4 (the first data block of
the file, Da), and all three other direct pointers are set to null (indicating

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

CRASH CONSISTENCY: FSCK AND JOURNALING 493

that they are not used). Of course, real inodes have many more fields; see
previous chapters for more information.

When we append to the file, we are adding a new data block to it, and
thus must update three on-disk structures: the inode (which must point
to the new block as well as have a bigger size due to the append), the
new data block Db, and a new version of the data bitmap (call it B[v2]) to
indicate that the new data block has been allocated.

Thus, in the memory of the system, we have three blocks which we
must write to disk. The updated inode (inode version 2, or I[v2] for short)
now looks like this:

owner : remzi

permissions : read-only

size : 2

pointer : 4

pointer : 5

pointer : null

pointer : null

The updated data bitmap (B[v2]) now looks like this: 00001100. Finally,
there is the data block (Db), which is just filled with whatever it is users
put into files. Stolen music perhaps?

What we would like is for the final on-disk image of the file system to
look like this:

Inode

Bmap

Data

Bmap
Inodes Data Blocks

I[v2]
Da Db

To achieve this transition, the file system must perform three sepa-
rate writes to the disk, one each for the inode (I[v2]), bitmap (B[v2]), and
data block (Db). Note that these writes usually don’t happen immedi-
ately when the user issues a write() system call; rather, the dirty in-
ode, bitmap, and new data will sit in main memory (in the page cache
or buffer cache) for some time first; then, when the file system finally
decides to write them to disk (after say 5 seconds or 30 seconds), the file
system will issue the requisite write requests to the disk. Unfortunately,
a crash may occur and thus interfere with these updates to the disk. In
particular, if a crash happens after one or two of these writes have taken
place, but not all three, the file system could be left in a funny state.

Crash Scenarios

To understand the problem better, let’s look at some example crash sce-
narios. Imagine only a single write succeeds; there are thus three possible
outcomes, which we list here:

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

494 CRASH CONSISTENCY: FSCK AND JOURNALING

• Just the data block (Db) is written to disk. In this case, the data is
on disk, but there is no inode that points to it and no bitmap that
even says the block is allocated. Thus, it is as if the write never
occurred. This case is not a problem at all, from the perspective of

file-system crash consistency1.

• Just the updated inode (I[v2]) is written to disk. In this case, the
inode points to the disk address (5) where Db was about to be writ-
ten, but Db has not yet been written there. Thus, if we trust that
pointer, we will read garbage data from the disk (the old contents
of disk address 5).

Further, we have a new problem, which we call a file-system incon-
sistency. The on-disk bitmap is telling us that data block 5 has not
been allocated, but the inode is saying that it has. This disagree-
ment in the file system data structures is an inconsistency in the
data structures of the file system; to use the file system, we must
somehow resolve this problem (more on that below).

• Just the updated bitmap (B[v2]) is written to disk. In this case, the
bitmap indicates that block 5 is allocated, but there is no inode that
points to it. Thus the file system is inconsistent again; if left unre-
solved, this write would result in a space leak, as block 5 would
never be used by the file system.

There are also three more crash scenarios in this attempt to write three
blocks to disk. In these cases, two writes succeed and the last one fails:

• The inode (I[v2]) and bitmap (B[v2]) are written to disk, but not
data (Db). In this case, the file system metadata is completely con-
sistent: the inode has a pointer to block 5, the bitmap indicates that
5 is in use, and thus everything looks OK from the perspective of
the file system’s metadata. But there is one problem: 5 has garbage
in it again.

• The inode (I[v2]) and the data block (Db) are written, but not the
bitmap (B[v2]). In this case, we have the inode pointing to the cor-
rect data on disk, but again have an inconsistency between the in-
ode and the old version of the bitmap (B1). Thus, we once again
need to resolve the problem before using the file system.

• The bitmap (B[v2]) and data block (Db) are written, but not the
inode (I[v2]). In this case, we again have an inconsistency between
the inode and the data bitmap. However, even though the block
was written and the bitmap indicates its usage, we have no idea
which file it belongs to, as no inode points to the file.

1However, it might be a problem for the user, who just lost some data!

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

CRASH CONSISTENCY: FSCK AND JOURNALING 495

The Crash Consistency Problem

Hopefully, from these crash scenarios, you can see the many problems
that can occur to our on-disk file system image because of crashes: we can
have inconsistency in file system data structures; we can have space leaks;
we can return garbage data to a user; and so forth. What we’d like to do
ideally is move the file system from one consistent state (e.g., before the
file got appended to) to another atomically (e.g., after the inode, bitmap,
and new data block have been written to disk). Unfortunately, we can’t
do this easily because the disk only commits one write at a time, and
crashes or power loss may occur between these updates. We call this
general problem the crash-consistency problem (we could also call it the
consistent-update problem).

42.2 Solution #1: The File System Checker

Early file systems took a simple approach to crash consistency. Basi-
cally, they decided to let inconsistencies happen and then fix them later
(when rebooting). A classic example of this lazy approach is found in a

tool that does this: fsck2. fsck is a UNIX tool for finding such inconsis-
tencies and repairing them [M86]; similar tools to check and repair a disk
partition exist on different systems. Note that such an approach can’t fix
all problems; consider, for example, the case above where the file system
looks consistent but the inode points to garbage data. The only real goal
is to make sure the file system metadata is internally consistent.

The tool fsck operates in a number of phases, as summarized in
McKusick and Kowalski’s paper [MK96]. It is run before the file system
is mounted and made available (fsck assumes that no other file-system
activity is on-going while it runs); once finished, the on-disk file system
should be consistent and thus can be made accessible to users.

Here is a basic summary of what fsck does:

• Superblock: fsck first checks if the superblock looks reasonable,
mostly doing sanity checks such as making sure the file system size
is greater than the number of blocks allocated. Usually the goal of
these sanity checks is to find a suspect (corrupt) superblock; in this
case, the system (or administrator) may decide to use an alternate
copy of the superblock.

• Free blocks: Next, fsck scans the inodes, indirect blocks, double
indirect blocks, etc., to build an understanding of which blocks are
currently allocated within the file system. It uses this knowledge
to produce a correct version of the allocation bitmaps; thus, if there
is any inconsistency between bitmaps and inodes, it is resolved by
trusting the information within the inodes. The same type of check
is performed for all the inodes, making sure that all inodes that look
like they are in use are marked as such in the inode bitmaps.

2Pronounced either “eff-ess-see-kay”, “eff-ess-check”, or, if you don’t like the tool, “eff-
suck”. Yes, serious professional people use this term.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

496 CRASH CONSISTENCY: FSCK AND JOURNALING

• Inode state: Each inode is checked for corruption or other prob-
lems. For example, fsck makes sure that each allocated inode has
a valid type field (e.g., regular file, directory, symbolic link, etc.). If
there are problems with the inode fields that are not easily fixed, the
inode is considered suspect and cleared by fsck; the inode bitmap
is correspondingly updated.

• Inode links: fsck also verifies the link count of each allocated in-
ode. As you may recall, the link count indicates the number of dif-
ferent directories that contain a reference (i.e., a link) to this par-
ticular file. To verify the link count, fsck scans through the en-
tire directory tree, starting at the root directory, and builds its own
link counts for every file and directory in the file system. If there
is a mismatch between the newly-calculated count and that found
within an inode, corrective action must be taken, usually by fixing
the count within the inode. If an allocated inode is discovered but
no directory refers to it, it is moved to the lost+found directory.

• Duplicates: fsck also checks for duplicate pointers, i.e., cases where
two different inodes refer to the same block. If one inode is obvi-
ously bad, it may be cleared. Alternately, the pointed-to block could
be copied, thus giving each inode its own copy as desired.

• Bad blocks: A check for bad block pointers is also performed while
scanning through the list of all pointers. A pointer is considered
“bad” if it obviously points to something outside its valid range,
e.g., it has an address that refers to a block greater than the parti-
tion size. In this case, fsck can’t do anything too intelligent; it just
removes (clears) the pointer from the inode or indirect block.

• Directory checks: fsck does not understand the contents of user
files; however, directories hold specifically formatted information
created by the file system itself. Thus, fsck performs additional
integrity checks on the contents of each directory, making sure that
“.” and “..” are the first entries, that each inode referred to in a
directory entry is allocated, and ensuring that no directory is linked
to more than once in the entire hierarchy.

As you can see, building a working fsck requires intricate knowledge
of the file system; making sure such a piece of code works correctly in all
cases can be challenging [G+08]. However, fsck (and similar approaches)
have a bigger and perhaps more fundamental problem: they are too slow.
With a very large disk volume, scanning the entire disk to find all the
allocated blocks and read the entire directory tree may take many minutes
or hours. Performance of fsck, as disks grew in capacity and RAIDs
grew in popularity, became prohibitive (despite recent advances [M+13]).

At a higher level, the basic premise of fsck seems just a tad irra-
tional. Consider our example above, where just three blocks are written
to the disk; it is incredibly expensive to scan the entire disk to fix prob-
lems that occurred during an update of just three blocks. This situation is
akin to dropping your keys on the floor in your bedroom, and then com-

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

CRASH CONSISTENCY: FSCK AND JOURNALING 497

mencing a search-the-entire-house-for-keys recovery algorithm, starting in
the basement and working your way through every room. It works but is
wasteful. Thus, as disks (and RAIDs) grew, researchers and practitioners
started to look for other solutions.

42.3 Solution #2: Journaling (or Write-Ahead Logging)

Probably the most popular solution to the consistent update problem
is to steal an idea from the world of database management systems. That
idea, known as write-ahead logging, was invented to address exactly this
type of problem. In file systems, we usually call write-ahead logging jour-
naling for historical reasons. The first file system to do this was Cedar
[H87], though many modern file systems use the idea, including Linux
ext3 and ext4, reiserfs, IBM’s JFS, SGI’s XFS, and Windows NTFS.

The basic idea is as follows. When updating the disk, before over-
writing the structures in place, first write down a little note (somewhere
else on the disk, in a well-known location) describing what you are about
to do. Writing this note is the “write ahead” part, and we write it to a
structure that we organize as a “log”; hence, write-ahead logging.

By writing the note to disk, you are guaranteeing that if a crash takes
places during the update (overwrite) of the structures you are updating,
you can go back and look at the note you made and try again; thus, you
will know exactly what to fix (and how to fix it) after a crash, instead
of having to scan the entire disk. By design, journaling thus adds a bit
of work during updates to greatly reduce the amount of work required
during recovery.

We’ll now describe how Linux ext3, a popular journaling file system,
incorporates journaling into the file system. Most of the on-disk struc-
tures are identical to Linux ext2, e.g., the disk is divided into block groups,
and each block group has an inode and data bitmap as well as inodes and
data blocks. The new key structure is the journal itself, which occupies
some small amount of space within the partition or on another device.
Thus, an ext2 file system (without journaling) looks like this:

Super Group 0 Group 1 . . . Group N

Assuming the journal is placed within the same file system image
(though sometimes it is placed on a separate device, or as a file within
the file system), an ext3 file system with a journal looks like this:

Super Journal Group 0 Group 1 . . . Group N

The real difference is just the presence of the journal, and of course,
how it is used.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

498 CRASH CONSISTENCY: FSCK AND JOURNALING

Data Journaling

Let’s look at a simple example to understand how data journaling works.
Data journaling is available as a mode with the Linux ext3 file system,
from which much of this discussion is based.

Say we have our canonical update again, where we wish to write the
‘inode (I[v2]), bitmap (B[v2]), and data block (Db) to disk again. Before
writing them to their final disk locations, we are now first going to write
them to the log (a.k.a. journal). This is what this will look like in the log:

J
o

u
rn

a
l

TxB I[v2] B[v2] Db TxE

You can see we have written five blocks here. The transaction begin
(TxB) tells us about this update, including information about the pend-
ing update to the file system (e.g., the final addresses of the blocks I[v2],
B[v2], and Db), as well as some kind of transaction identifier (TID). The
middle three blocks just contain the exact contents of the blocks them-
selves; this is known as physical logging as we are putting the exact
physical contents of the update in the journal (an alternate idea, logi-
cal logging, puts a more compact logical representation of the update in
the journal, e.g., “this update wishes to append data block Db to file X”,
which is a little more complex but can save space in the log and perhaps
improve performance). The final block (TxE) is a marker of the end of this
transaction, and will also contain the TID.

Once this transaction is safely on disk, we are ready to overwrite the
old structures in the file system; this process is called checkpointing.
Thus, to checkpoint the file system (i.e., bring it up to date with the pend-
ing update in the journal), we issue the writes I[v2], B[v2], and Db to
their disk locations as seen above; if these writes complete successfully,
we have successfully checkpointed the the file system and are basically
done. Thus, our initial sequence of operations:

1. Journal write: Write the transaction, including a transaction-begin
block, all pending data and metadata updates, and a transaction-
end block, to the log; wait for these writes to complete.

2. Checkpoint: Write the pending metadata and data updates to their
final locations in the file system.

In our example, we would write TxB, I[v2], B[v2], Db, and TxE to the
journal first. When these writes complete, we would complete the update
by checkpointing I[v2], B[v2], and Db, to their final locations on disk.

Things get a little trickier when a crash occurs during the writes to
the journal. Here, we are trying to write the set of blocks in the transac-
tion (e.g., TxB, I[v2], B[v2], Db, TxE) to disk. One simple way to do this
would be to issue each one at a time, waiting for each to complete, and
then issuing the next. However, this is slow. Ideally, we’d like to issue

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

CRASH CONSISTENCY: FSCK AND JOURNALING 499

ASIDE: FORCING WRITES TO DISK

To enforce ordering between two disk writes, modern file systems have
to take a few extra precautions. In olden times, forcing ordering between
two writes, A and B, was easy: just issue the write of A to the disk, wait
for the disk to interrupt the OS when the write is complete, and then issue
the write of B.

Things got slightly more complex due to the increased use of write caches
within disks. With write buffering enabled (sometimes called immediate
reporting), a disk will inform the OS the write is complete when it simply
has been placed in the disk’s memory cache, and has not yet reached
disk. If the OS then issues a subsequent write, it is not guaranteed to
reach the disk after previous writes; thus ordering between writes is not
preserved. One solution is to disable write buffering. However, more
modern systems take extra precautions and issue explicit write barriers;
such a barrier, when it completes, guarantees that all writes issued before
the barrier will reach disk before any writes issued after the barrier.

All of this machinery requires a great deal of trust in the correct oper-
ation of the disk. Unfortunately, recent research shows that some disk
manufacturers, in an effort to deliver “higher performing” disks, explic-
itly ignore write-barrier requests, thus making the disks seemingly run
faster but at the risk of incorrect operation [C+13, R+11]. As Kahan said,
the fast almost always beats out the slow, even if the fast is wrong.

all five block writes at once, as this would turn five writes into a single
sequential write and thus be faster. However, this is unsafe, for the fol-
lowing reason: given such a big write, the disk internally may perform
scheduling and complete small pieces of the big write in any order. Thus,
the disk internally may (1) write TxB, I[v2], B[v2], and TxE and only later
(2) write Db. Unfortunately, if the disk loses power between (1) and (2),
this is what ends up on disk:

J
o

u
rn

a
l

TxB
id=1

I[v2] B[v2] ?? TxE
id=1

Why is this a problem? Well, the transaction looks like a valid trans-
action (it has a begin and an end with matching sequence numbers). Fur-
ther, the file system can’t look at that fourth block and know it is wrong;
after all, it is arbitrary user data. Thus, if the system now reboots and
runs recovery, it will replay this transaction, and ignorantly copy the con-
tents of the garbage block ’??’ to the location where Db is supposed to
live. This is bad for arbitrary user data in a file; it is much worse if it hap-
pens to a critical piece of file system, such as the superblock, which could
render the file system unmountable.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

500 CRASH CONSISTENCY: FSCK AND JOURNALING

ASIDE: OPTIMIZING LOG WRITES

You may have noticed a particular inefficiency of writing to the log.
Namely, the file system first has to write out the transaction-begin block
and contents of the transaction; only after these writes complete can the
file system send the transaction-end block to disk. The performance im-
pact is clear, if you think about how a disk works: usually an extra rota-
tion is incurred (think about why).

One of our former graduate students, Vijayan Prabhakaran, had a simple
idea to fix this problem [P+05]. When writing a transaction to the journal,
include a checksum of the contents of the journal in the begin and end
blocks. Doing so enables the file system to write the entire transaction at
once, without incurring a wait; if, during recovery, the file system sees
a mismatch in the computed checksum versus the stored checksum in
the transaction, it can conclude that a crash occurred during the write
of the transaction and thus discard the file-system update. Thus, with a
small tweak in the write protocol and recovery system, a file system can
achieve faster common-case performance; on top of that, the system is
slightly more reliable, as any reads from the journal are now protected by
a checksum.

This simple fix was attractive enough to gain the notice of Linux file sys-
tem developers, who then incorporated it into the next generation Linux
file system, called (you guessed it!) Linux ext4. It now ships on mil-
lions of machines worldwide, including the Android handheld platform.
Thus, every time you write to disk on many Linux-based systems, a little
code developed at Wisconsin makes your system a little faster and more
reliable.

To avoid this problem, the file system issues the transactional write in
two steps. First, it writes all blocks except the TxE block to the journal,
issuing these writes all at once. When these writes complete, the journal
will look something like this (assuming our append workload again):

J
o

u
rn

a
l

TxB
id=1

I[v2] B[v2] Db

When those writes complete, the file system issues the write of the TxE
block, thus leaving the journal in this final, safe state:

J
o

u
rn

a
l

TxB
id=1

I[v2] B[v2] Db TxE
id=1

An important aspect of this process is the atomicity guarantee pro-
vided by the disk. It turns out that the disk guarantees that any 512-byte

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

CRASH CONSISTENCY: FSCK AND JOURNALING 501

write will either happen or not (and never be half-written); thus, to make
sure the write of TxE is atomic, one should make it a single 512-byte block.
Thus, our current protocol to update the file system, with each of its three
phases labeled:

1. Journal write: Write the contents of the transaction (including TxB,
metadata, and data) to the log; wait for these writes to complete.

2. Journal commit: Write the transaction commit block (containing
TxE) to the log; wait for write to complete; transaction is said to be
committed.

3. Checkpoint: Write the contents of the update (metadata and data)
to their final on-disk locations.

Recovery

Let’s now understand how a file system can use the contents of the jour-
nal to recover from a crash. A crash may happen at any time during this
sequence of updates. If the crash happens before the transaction is writ-
ten safely to the log (i.e., before Step 2 above completes), then our job
is easy: the pending update is simply skipped. If the crash happens af-
ter the transaction has committed to the log, but before the checkpoint is
complete, the file system can recover the update as follows. When the
system boots, the file system recovery process will scan the log and look
for transactions that have committed to the disk; these transactions are
thus replayed (in order), with the file system again attempting to write
out the blocks in the transaction to their final on-disk locations. This form
of logging is one of the simplest forms there is, and is called redo logging.
By recovering the committed transactions in the journal, the file system
ensures that the on-disk structures are consistent, and thus can proceed
by mounting the file system and readying itself for new requests.

Note that it is fine for a crash to happen at any point during check-
pointing, even after some of the updates to the final locations of the blocks
have completed. In the worst case, some of these updates are simply per-
formed again during recovery. Because recovery is a rare operation (only
taking place after an unexpected system crash), a few redundant writes

are nothing to worry about3.

Batching Log Updates

You might have noticed that the basic protocol could add a lot of extra
disk traffic. For example, imagine we create two files in a row, called
file1 and file2, in the same directory. To create one file, one has to
update a number of on-disk structures, minimally including: the inode
bitmap (to allocated a new inode), the newly-created inode of the file, the

3Unless you worry about everything, in which case we can’t help you. Stop worrying so
much, it is unhealthy! But now you’re probably worried about over-worrying.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

502 CRASH CONSISTENCY: FSCK AND JOURNALING

data block of the parent directory containing the new directory entry, as
well as the parent directory inode (which now has a new modification
time). With journaling, we logically commit all of this information to
the journal for each of our two file creations; because the files are in the
same directory, and let’s assume even have inodes within the same inode
block, this means that if we’re not careful, we’ll end up writing these same
blocks over and over.

To remedy this problem, some file systems do not commit each update
to disk one at a time (e.g., Linux ext3); rather, one can buffer all updates
into a global transaction. In our example above, when the two files are
created, the file system just marks the in-memory inode bitmap, inodes
of the files, directory data, and directory inode as dirty, and adds them to
the list of blocks that form the current transaction. When it is finally time
to write these blocks to disk (say, after a timeout of 5 seconds), this single
global transaction is committed containing all of the updates described
above. Thus, by buffering updates, a file system can avoid excessive write
traffic to disk in many cases.

Making The Log Finite

We thus have arrived at a basic protocol for updating file-system on-disk
structures. The file system buffers updates in memory for some time;
when it is finally time to write to disk, the file system first carefully writes
out the details of the transaction to the journal (a.k.a. write-ahead log);
after the transaction is complete, the file system checkpoints those blocks
to their final locations on disk.

However, the log is of a finite size. If we keep adding transactions to
it (as in this figure), it will soon fill. What do you think happens then?

J
o

u
rn

a
l

Tx1 Tx2 Tx3 Tx4 Tx5 ...

Two problems arise when the log becomes full. The first is simpler,
but less critical: the larger the log, the longer recovery will take, as the
recovery process must replay all the transactions within the log (in order)
to recover. The second is more of an issue: when the log is full (or nearly
full), no further transactions can be committed to the disk, thus making
the file system “less than useful” (i.e., useless).

To address these problems, journaling file systems treat the log as a
circular data structure, re-using it over and over; this is why the journal is
sometimes referred to as a circular log. To do so, the file system must take
action some time after a checkpoint. Specifically, once a transaction has
been checkpointed, the file system should free the space it was occupying
within the journal, allowing the log space to be reused. There are many
ways to achieve this end; for example, you could simply mark the oldest

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

CRASH CONSISTENCY: FSCK AND JOURNALING 503

and newest transactions in the log in a journal superblock; all other space
is free. Here is a graphical depiction of such a mechanism:

J
o

u
rn

a
l

Journal

Super
Tx1 Tx2 Tx3 Tx4 Tx5 ...

In the journal superblock (not to be confused with the main file system
superblock), the journaling system records enough information to know
which transactions have not yet been checkpointed, and thus reduces re-
covery time as well as enables re-use of the log in a circular fashion. And
thus we add another step to our basic protocol:

1. Journal write: Write the contents of the transaction (containing TxB
and the contents of the update) to the log; wait for these writes to
complete.

2. Journal commit: Write the transaction commit block (containing
TxE) to the log; wait for the write to complete; the transaction is
now committed.

3. Checkpoint: Write the contents of the update to their final locations
within the file system.

4. Free: Some time later, mark the transaction free in the journal by
updating the journal superblock.

Thus we have our final data journaling protocol. But there is still a
problem: we are writing each data block to the disk twice, which is a
heavy cost to pay, especially for something as rare as a system crash. Can
you figure out a way to retain consistency without writing data twice?

Metadata Journaling

Although recovery is now fast (scanning the journal and replaying a few
transactions as opposed to scanning the entire disk), normal operation
of the file system is slower than we might desire. In particular, for each
write to disk, we are now also writing to the journal first, thus doubling
write traffic; this doubling is especially painful during sequential write
workloads, which now will proceed at half the peak write bandwidth of
the drive. Further, between writes to the journal and writes to the main
file system, there is a costly seek, which adds noticeable overhead for
some workloads.

Because of the high cost of writing every data block to disk twice, peo-
ple have tried a few different things in order to speed up performance.
For example, the mode of journaling we described above is often called
data journaling (as in Linux ext3), as it journals all user data (in addition
to the metadata of the file system). A simpler (and more common) form
of journaling is sometimes called ordered journaling (or just metadata

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

504 CRASH CONSISTENCY: FSCK AND JOURNALING

journaling), and it is nearly the same, except that user data is not writ-
ten to the journal. Thus, when performing the same update as above, the
following information would be written to the journal:

J
o

u
rn

a
l

TxB I[v2] B[v2] TxE

The data block Db, previously written to the log, would instead be
written to the file system proper, avoiding the extra write; given that most
I/O traffic to the disk is data, not writing data twice substantially reduces
the I/O load of journaling. The modification does raise an interesting
question, though: when should we write data blocks to disk?

Let’s again consider our example append of a file to understand the
problem better. The update consists of three blocks: I[v2], B[v2], and
Db. The first two are both metadata and will be logged and then check-
pointed; the latter will only be written once to the file system. When
should we write Db to disk? Does it matter?

As it turns out, the ordering of the data write does matter for metadata-
only journaling. For example, what if we write Db to disk after the trans-
action (containing I[v2] and B[v2]) completes? Unfortunately, this ap-
proach has a problem: the file system is consistent but I[v2] may end up
pointing to garbage data. Specifically, consider the case where I[v2] and
B[v2] are written but Db did not make it to disk. The file system will then
try to recover. Because Db is not in the log, the file system will replay
writes to I[v2] and B[v2], and produce a consistent file system (from the
perspective of file-system metadata). However, I[v2] will be pointing to
garbage data, i.e., at whatever was in the the slot where Db was headed.

To ensure this situation does not arise, some file systems (e.g., Linux
ext3) write data blocks (of regular files) to the disk first, before related
metadata is written to disk. Specifically, the protocol is as follows:

1. Data write: Write data to final location; wait for completion
(the wait is optional; see below for details).

2. Journal metadata write: Write the begin block and metadata to the
log; wait for writes to complete.

3. Journal commit: Write the transaction commit block (containing
TxE) to the log; wait for the write to complete; the transaction (in-
cluding data) is now committed.

4. Checkpoint metadata: Write the contents of the metadata update
to their final locations within the file system.

5. Free: Later, mark the transaction free in journal superblock.

By forcing the data write first, a file system can guarantee that a pointer
will never point to garbage. Indeed, this rule of “write the pointed to ob-
ject before the object with the pointer to it” is at the core of crash consis-
tency, and is exploited even further by other crash consistency schemes
[GP94] (see below for details).

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

CRASH CONSISTENCY: FSCK AND JOURNALING 505

In most systems, metadata journaling (akin to ordered journaling of
ext3) is more popular than full data journaling. For example, Windows
NTFS and SGI’s XFS both use non-ordered metadata journaling. Linux
ext3 gives you the option of choosing either data, ordered, or unordered
modes (in unordered mode, data can be written at any time). All of these
modes keep metadata consistent; they vary in their semantics for data.

Finally, note that forcing the data write to complete (Step 1) before
issuing writes to the journal (Step 2) is not required for correctness, as
indicated in the protocol above. Specifically, it would be fine to issue data
writes as well as the transaction-begin block and metadata to the journal;
the only real requirement is that Steps 1 and 2 complete before the issuing
of the journal commit block (Step 3).

Tricky Case: Block Reuse

There are some interesting corner cases that make journaling more tricky,
and thus are worth discussing. A number of them revolve around block
reuse; as Stephen Tweedie (one of the main forces behind ext3) said:

“What’s the hideous part of the entire system? ... It’s deleting files.
Everything to do with delete is hairy. Everything to do with delete...
you have nightmares around what happens if blocks get deleted and
then reallocated.” [T00]

The particular example Tweedie gives is as follows. Suppose you are
using some form of metadata journaling (and thus data blocks for files
are not journaled). Let’s say you have a directory called foo. The user
adds an entry to foo (say by creating a file), and thus the contents of
foo (because directories are considered metadata) are written to the log;
assume the location of the foo directory data is block 1000. The log thus
contains something like this:

J
o

u
rn

a
l

TxB
id=1

I[foo]
ptr:1000

D[foo]
[final addr:1000]

TxE
id=1

At this point, the user deletes everything in the directory as well as the
directory itself, freeing up block 1000 for reuse. Finally, the user creates a
new file (say foobar), which ends up reusing the same block (1000) that
used to belong to foo. The inode of foobar is committed to disk, as is
its data; note, however, because metadata journaling is in use, only the
inode of foobar is committed to the journal; the newly-written data in
block 1000 in the file foobar is not journaled.

J
o

u
rn

a
l

TxB
id=1

I[foo]
ptr:1000

D[foo]
[final addr:1000]

TxE
id=1

TxB
id=2

I[foobar]
ptr:1000

TxE
id=2

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

506 CRASH CONSISTENCY: FSCK AND JOURNALING

Journal File System
TxB Contents TxE Metadata Data

(metadata) (data)

issue issue issue
complete

complete
complete

issue
complete

issue issue
complete

complete

Table 42.1: Data Journaling Timeline

Now assume a crash occurs and all of this information is still in the
log. During replay, the recovery process simply replays everything in
the log, including the write of directory data in block 1000; the replay
thus overwrites the user data of current file foobar with old directory
contents! Clearly this is not a correct recovery action, and certainly it will
be a surprise to the user when reading the file foobar.

There are a number of solutions to this problem. One could, for ex-
ample, never reuse blocks until the delete of said blocks is checkpointed
out of the journal. What Linux ext3 does instead is to add a new type
of record to the journal, known as a revoke record. In the case above,
deleting the directory would cause a revoke record to be written to the
journal. When replaying the journal, the system first scans for such re-
voke records; any such revoked data is never replayed, thus avoiding the
problem mentioned above.

Wrapping Up Journaling: A Timeline

Before ending our discussion of journaling, we summarize the protocols
we have discussed with timelines depicting each of them. Table 42.1
shows the protocol when journaling data as well as metadata, whereas
Table 42.2 shows the protocol when journaling only metadata.

In each table, time increases in the downward direction, and each row
in the table shows the logical time that a write can be issued or might
complete. For example, in the data journaling protocol (42.1), the writes
of the transaction begin block (TxB) and the contents of the transaction
can logically be issued at the same time, and thus can be completed in
any order; however, the write to the transaction end block (TxE) must not
be issued until said previous writes complete. Similarly, the checkpoint-
ing writes to data and metadata blocks cannot begin until the transaction
end block has committed. Horizontal dashed lines show where write-
ordering requirements must be obeyed.

A similar timeline is shown for the metadata journaling protocol. Note
that the data write can logically be issued at the same time as the writes

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

CRASH CONSISTENCY: FSCK AND JOURNALING 507

Journal File System
TxB Contents TxE Metadata Data

(metadata)

issue issue issue
complete

complete
complete

issue
complete

issue
complete

Table 42.2: Metadata Journaling Timeline

to the transaction begin and the contents of the journal; however, it must
be issued and complete before the transaction end has been issued.

Finally, note that the time of completion marked for each write in the
timelines is arbitrary. In a real system, completion time is determined by
the I/O subsystem, which may reorder writes to improve performance.
The only guarantees about ordering that we have are those that must
be enforced for protocol correctness (and are shown via the horizontal
dashed lines in the tables).

42.4 Solution #3: Other Approaches

We’ve thus far described two options in keeping file system metadata
consistent: a lazy approach based on fsck, and a more active approach
known as journaling. However, these are not the only two approaches.
One such approach, known as Soft Updates [GP94], was introduced by
Ganger and Patt. This approach carefully orders all writes to the file sys-
tem to ensure that the on-disk structures are never left in an inconsis-
tent state. For example, by writing a pointed-to data block to disk before
the inode that points to it, we can ensure that the inode never points to
garbage; similar rules can be derived for all the structures of the file sys-
tem. Implementing Soft Updates can be a challenge, however; whereas
the journaling layer described above can be implemented with relatively
little knowledge of the exact file system structures, Soft Updates requires
intricate knowledge of each file system data structure and thus adds a fair
amount of complexity to the system.

Another approach is known as copy-on-write (yes, COW), and is used
in a number of popular file systems, including Sun’s ZFS [B07]. This tech-
nique never overwrites files or directories in place; rather, it places new
updates to previously unused locations on disk. After a number of up-
dates are completed, COW file systems flip the root structure of the file
system to include pointers to the newly updated structures. Doing so
makes keeping the file system consistent straightforward. We’ll be learn-
ing more about this technique when we discuss the log-structured file
system (LFS) in a future chapter; LFS is an early example of a COW.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

508 CRASH CONSISTENCY: FSCK AND JOURNALING

Another approach is one we just developed here at Wisconsin. In this
technique, entitled backpointer-based consistency (or BBC), no ordering
is enforced between writes. To achieve consistency, an additional back
pointer is added to every block in the system; for example, each data
block has a reference to the inode to which it belongs. When accessing
a file, the file system can determine if the file is consistent by checking if
the forward pointer (e.g., the address in the inode or direct block) points
to a block that refers back to it. If so, everything must have safely reached
disk and thus the file is consistent; if not, the file is inconsistent, and an
error is returned. By adding back pointers to the file system, a new form
of lazy crash consistency can be attained [C+12].

Finally, we also have explored techniques to reduce the number of
times a journal protocol has to wait for disk writes to complete. Entitled
optimistic crash consistency [C+13], this new approach issues as many
writes to disk as possible and uses a generalized form of the transaction
checksum [P+05], as well as a few other techniques, to detect inconsisten-
cies should they arise. For some workloads, these optimistic techniques
can improve performance by an order of magnitude. However, to truly
function well, a slightly different disk interface is required [C+13].

42.5 Summary

We have introduced the problem of crash consistency, and discussed
various approaches to attacking this problem. The older approach of
building a file system checker works but is likely too slow to recover on
modern systems. Thus, many file systems now use journaling. Journaling
reduces recovery time from O(size-of-the-disk-volume) to O(size-of-the-
log), thus speeding recovery substantially after a crash and restart. For
this reason, many modern file systems use journaling. We have also seen
that journaling can come in many different forms; the most commonly
used is ordered metadata journaling, which reduces the amount of traffic
to the journal while still preserving reasonable consistency guarantees for
both file system metadata as well as user data.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

CRASH CONSISTENCY: FSCK AND JOURNALING 509

References

[B07] “ZFS: The Last Word in File Systems”
Jeff Bonwick and Bill Moore
Available: http://opensolaris.org/os/community/zfs/docs/zfs last.pdf
ZFS uses copy-on-write and journaling, actually, as in some cases, logging writes to disk will perform
better.

[C+12] “Consistency Without Ordering”
Vijay Chidambaram, Tushar Sharma, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
FAST ’12, San Jose, California
A recent paper of ours about a new form of crash consistency based on back pointers. Read it for the
exciting details!

[C+13] “Optimistic Crash Consistency”
Vijay Chidambaram, Thanu S. Pillai, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
SOSP ’13, Nemacolin Woodlands Resort, PA, November 2013
Our work on a more optimistic and higher performance journaling protocol. For workloads that call
fsync() a lot, performance can be greatly improved.

[GP94] “Metadata Update Performance in File Systems”
Gregory R. Ganger and Yale N. Patt
OSDI ’94
A clever paper about using careful ordering of writes as the main way to achieve consistency. Imple-
mented later in BSD-based systems.

[G+08] “SQCK: A Declarative File System Checker”
Haryadi S. Gunawi, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
OSDI ’08, San Diego, California
Our own paper on a new and better way to build a file system checker using SQL queries. We also show
some problems with the existing checker, finding numerous bugs and odd behaviors, a direct result of
the complexity of fsck.

[H87] “Reimplementing the Cedar File System Using Logging and Group Commit”
Robert Hagmann
SOSP ’87, Austin, Texas, November 1987
The first work (that we know of) that applied write-ahead logging (a.k.a. journaling) to a file system.

[M+13] “ffsck: The Fast File System Checker”
Ao Ma, Chris Dragga, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
FAST ’13, San Jose, California, February 2013
A recent paper of ours detailing how to make fsck an order of magnitude faster. Some of the ideas have
already been incorporated into the BSD file system checker [MK96] and are deployed today.

[MK96] “Fsck - The UNIX File System Check Program”
Marshall Kirk McKusick and T. J. Kowalski
Revised in 1996
Describes the first comprehensive file-system checking tool, the eponymous fsck. Written by some of
the same people who brought you FFS.

[MJLF84] “A Fast File System for UNIX”
Marshall K. McKusick, William N. Joy, Sam J. Leffler, Robert S. Fabry
ACM Transactions on Computing Systems.
August 1984, Volume 2:3
You already know enough about FFS, right? But yeah, it is OK to reference papers like this more than
once in a book.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

510 CRASH CONSISTENCY: FSCK AND JOURNALING

[P+05] “IRON File Systems”
Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S. Gunawi, An-
drea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
SOSP ’05, Brighton, England, October 2005
A paper mostly focused on studying how file systems react to disk failures. Towards the end, we intro-
duce a transaction checksum to speed up logging, which was eventually adopted into Linux ext4.

[PAA05] “Analysis and Evolution of Journaling File Systems”
Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
USENIX ’05, Anaheim, California, April 2005
An early paper we wrote analyzing how journaling file systems work.

[R+11] “Coerced Cache Eviction and Discreet-Mode Journaling”
Abhishek Rajimwale, Vijay Chidambaram, Deepak Ramamurthi,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
DSN ’11, Hong Kong, China, June 2011
Our own paper on the problem of disks that buffer writes in a memory cache instead of forcing them to
disk, even when explicitly told not to do that! Our solution to overcome this problem: if you want A to
be written to disk before B, first write A, then send a lot of “dummy” writes to disk, hopefully causing
A to be forced to disk to make room for them in the cache. A neat if impractical solution.

[T98] “Journaling the Linux ext2fs File System”
Stephen C. Tweedie
The Fourth Annual Linux Expo, May 1998
Tweedie did much of the heavy lifting in adding journaling to the Linux ext2 file system; the result,
not surprisingly, is called ext3. Some nice design decisions include the strong focus on backwards
compatibility, e.g., you can just add a journaling file to an existing ext2 file system and then mount it
as an ext3 file system.

[T00] “EXT3, Journaling Filesystem”
Stephen Tweedie
Talk at the Ottawa Linux Symposium, July 2000
olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html
A transcript of a talk given by Tweedie on ext3.

[T01] “The Linux ext2 File System”
Theodore Ts’o, June, 2001.
Available: http://e2fsprogs.sourceforge.net/ext2.html
A simple Linux file system based on the ideas found in FFS. For a while it was quite heavily used; now
it is really just in the kernel as an example of a simple file system.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

43

Log-structured File Systems

In the early 90’s, a group at Berkeley led by Professor John Ousterhout
and graduate student Mendel Rosenblum developed a new file system
known as the log-structured file system [RO91]. Their motivation to do
so was based on the following observations:

• Memory sizes were growing: As memory got bigger, more data
could be cached in memory. As more data is cached, disk traffic
would increasingly consist of writes, as reads would be serviced in
the cache. Thus, file system performance would largely be deter-
mined by its performance for writes.

• There was a large and growing gap between random I/O perfor-
mance and sequential I/O performance: Transfer bandwidth in-
creases roughly 50%-100% every year; seek and rotational delay
costs decrease much more slowly, maybe at 5%-10% per year [P98].
Thus, if one is able to use disks in a sequential manner, one gets a
huge performance advantage, which grows over time.

• Existing file systems perform poorly on many common workloads:
For example, FFS [MJLF84] would perform a large number of writes
to create a new file of size one block: one for a new inode, one to
update the inode bitmap, one to the directory data block that the
file is in, one to the directory inode to update it, one to the new data
block that is apart of the new file, and one to the data bitmap to
mark the data block as allocated. Thus, although FFS would place
all of these blocks within the same block group, FFS would incur
many short seeks and subsequent rotational delays and thus per-
formance would fall far short of peak sequential bandwidth.

• File systems were not RAID-aware: For example, RAID-4 and RAID-
5 have the small-write problem where a logical write to a single
block causes 4 physical I/Os to take place. Existing file systems do
not try to avoid this worst-case RAID writing behavior.

An ideal file system would thus focus on write performance, and try
to make use of the sequential bandwidth of the disk. Further, it would
perform well on common workloads that not only write out data but also

511

512 LOG-STRUCTURED FILE SYSTEMS

update on-disk metadata structures frequently. Finally, it would work
well on RAIDs as well as single disks.

The new type of file system Rosenblum and Ousterhout introduced
was called LFS, short for the Log-structured File System. When writ-
ing to disk, LFS first buffers all updates (including metadata!) in an in-
memory segment; when the segment is full, it is written to disk in one
long, sequential transfer to an unused part of the disk, i.e., LFS never
overwrites existing data, but rather always writes segments to free loca-
tions. Because segments are large, the disk is used efficiently, and perfor-
mance of the file system approaches its zenith.

THE CRUX:
HOW TO MAKE ALL WRITES SEQUENTIAL WRITES?

How can a file system turns all writes into sequential writes? For
reads, this task is impossible, as the desired block to be read may be any-
where on disk. For writes, however, the file system always has a choice,
and it is exactly this choice we hope to exploit.

43.1 Writing To Disk Sequentially

We thus have our first challenge: how do we transform all updates to
file-system state into a series of sequential writes to disk? To understand
this better, let’s use a simple example. Imagine we are writing a data block
D to a file. Writing the data block to disk might result in the following
on-disk layout, with D written at disk address A0:

D

A0

However, when a user writes a data block, it is not only data that gets
written to disk; there is also other metadata that needs to be updated.
In this case, let’s also write the inode (I) of the file to disk, and have it
point to the data block D. When written to disk, the data block and inode
would look something like this (note that the inode looks as big as the
data block, which generally isn’t the case; in most systems, data blocks
are 4 KB in size, whereas an inode is much smaller, around 128 bytes):

D

A0

I

blk[0]:A0

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LOG-STRUCTURED FILE SYSTEMS 513

TIP: DETAILS MATTER

All interesting systems are comprised of a few general ideas and a
number of details. Sometimes, when you are learning about these sys-
tems, you think to yourself “Oh, I get the general idea; the rest is just de-
tails,” and you use this to only half-learn how things really work. Don’t
do this! Many times, the details are critical. As we’ll see with LFS, the
general idea is easy to understand, but to really build a working system,
you have to think through all of the tricky cases.

This basic idea, of simply writing all updates (such as data blocks,
inodes, etc.) to the disk sequentially, sits at the heart of LFS. If you un-
derstand this, you get the basic idea. But as with all complicated systems,
the devil is in the details.

43.2 Writing Sequentially And Effectively

Unfortunately, writing to disk sequentially is not (alone) enough to
guarantee efficient writes. For example, imagine if we wrote a single
block to address A, at time T . We then wait a little while, and write to
the disk at address A + 1 (the next block address in sequential order),
but at time T + δ. In-between the first and second writes, unfortunately,
the disk has rotated; when you issue the second write, it will thus wait
for most of a rotation before being committed (specifically, if the rotation
takes time Trotation, the disk will wait Trotation − δ before it can commit
the second write to the disk surface). And thus you can hopefully see
that simply writing to disk in sequential order is not enough to achieve
peak performance; rather, you must issue a large number of contiguous
writes (or one large write) to the drive in order to achieve good write
performance.

To achieve this end, LFS uses an ancient technique known as write

buffering1. Before writing to the disk, LFS keeps track of updates in
memory; when it has received a sufficient number of updates, it writes
them to disk all at once, thus ensuring efficient use of the disk.

The large chunk of updates LFS writes at one time is referred to by
the name of a segment. Although this term is over-used in computer
systems, here it just means a large-ish chunk which LFS uses to group
writes. Thus, when writing to disk, LFS buffers updates in an in-memory
segment, and then writes the segment all at once to the disk. As long as
the segment is large enough, these writes will be efficient.

Here is an example, in which LFS buffers two sets updates into a small
segment; actual segments are larger (a few MB). The first update is of

1Indeed, it is hard to find a good citation for this idea, since it was likely invented by many
and very early on in the history of computing. For a study of the benefits of write buffering,
see Solworth and Orji [SO90]; to learn about its potential harms, see Mogul [M94].

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

514 LOG-STRUCTURED FILE SYSTEMS

four block writes to file j; the second is one block being added to file k.
LFS then commits the entire segment of seven blocks to disk at once. The
resulting on-disk layout of these blocks is as follows:

D[j,0]

A0

D[j,1]

A1

D[j,2]

A2

D[j,3]

A3

blk[0]:A0
blk[1]:A1
blk[2]:A2
blk[3]:A3

Inode[j]

D[k,0]

A5

blk[0]:A5

Inode[k]

43.3 How Much To Buffer?

This raises the following question: how many updates LFS should
buffer before writing to disk? The answer, of course, depends on the disk
itself, specifically how high the positioning overhead is in comparison to
the transfer rate; see the FFS chapter for a similar analysis.

For example, assume that positioning (i.e., rotation and seek over-
heads) before each write takes roughly Tposition seconds. Assume further
that the disk transfer rate is Rpeak MB/s. How much should LFS buffer
before writing when running on such a disk?

The way to think about this is that every time you write, you pay a
fixed overhead of the positioning cost. Thus, how much do you have
to write in order to amortize that cost? The more you write, the better
(obviously), and the closer you get to achieving peak bandwidth.

To obtain a concrete answer, let’s assume we are writing out D MB.
The time to write out this chunk of data (Twrite) is the positioning time
Tposition plus the time to transfer D (D

Rpeak
), or:

Twrite = Tposition +
D

Rpeak
(43.1)

And thus the effective rate of writing (Reffective), which is just the
amount of data written divided by the total time to write it, is:

Reffective =
D

Twrite
=

D

Tposition + D
Rpeak

. (43.2)

What we’re interested in is getting the effective rate (Reffective) close
to the peak rate. Specifically, we want the effective rate to be some fraction
F of the peak rate, where 0 < F < 1 (a typical F might be 0.9, or 90% of
the peak rate). In mathematical form, this means we want Reffective =
F × Rpeak.

At this point, we can solve for D:

Reffective =
D

Tposition + D
Rpeak

= F × Rpeak (43.3)

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LOG-STRUCTURED FILE SYSTEMS 515

D = F × Rpeak × (Tposition +
D

Rpeak
) (43.4)

D = (F × Rpeak × Tposition) + (F × Rpeak ×
D

Rpeak
) (43.5)

D =
F

1 − F
× Rpeak × Tposition (43.6)

Let’s do an example, with a disk with a positioning time of 10 mil-
liseconds and peak transfer rate of 100 MB/s; assume we want an ef-
fective bandwidth of 90% of peak (F = 0.9). In this case, D = 0.9

0.1
×

100 MB/s × 0.01 seconds = 9 MB. Try some different values to see
how much we need to buffer in order to approach peak bandwidth. How
much is needed to reach 95% of peak? 99%?

43.4 Problem: Finding Inodes

To understand how we find an inode in LFS, let us briefly review how
to find an inode in a typical UNIX file system. In a typical file system such
as FFS, or even the old UNIX file system, finding inodes is easy, because
they are organized in an array and placed on disk at fixed locations.

For example, the old UNIX file system keeps all inodes at a fixed por-
tion of the disk. Thus, given an inode number and the start address, to
find a particular inode, you can calculate its exact disk address simply by
multiplying the inode number by the size of an inode, and adding that
to the start address of the on-disk array; array-based indexing, given an
inode number, is fast and straightforward.

Finding an inode given an inode number in FFS is only slightly more
complicated, because FFS splits up the inode table into chunks and places
a group of inodes within each cylinder group. Thus, one must know how
big each chunk of inodes is and the start addresses of each. After that, the
calculations are similar and also easy.

In LFS, life is more difficult. Why? Well, we’ve managed to scatter the
inodes all throughout the disk! Worse, we never overwrite in place, and
thus the latest version of an inode (i.e., the one we want) keeps moving.

43.5 Solution Through Indirection: The Inode Map

To remedy this, the designers of LFS introduced a level of indirection
between inode numbers and the inodes through a data structure called
the inode map (imap). The imap is a structure that takes an inode number
as input and produces the disk address of the most recent version of the
inode. Thus, you can imagine it would often be implemented as a simple
array, with 4 bytes (a disk pointer) per entry. Any time an inode is written
to disk, the imap is updated with its new location.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

516 LOG-STRUCTURED FILE SYSTEMS

TIP: USE A LEVEL OF INDIRECTION

People often say that the solution to all problems in Computer Science
is simply a level of indirection. This is clearly not true; it is just the
solution to most problems. You certainly can think of every virtualization
we have studied, e.g., virtual memory, as simply a level of indirection.
And certainly the inode map in LFS is a virtualization of inode numbers.
Hopefully you can see the great power of indirection in these examples,
allowing us to freely move structures around (such as pages in the VM
example, or inodes in LFS) without having to change every reference to
them. Of course, indirection can have a downside too: extra overhead. So
next time you have a problem, try solving it with indirection. But make
sure to think about the overheads of doing so first.

The imap, unfortunately, needs to be kept persistent (i.e., written to
disk); doing so allows LFS to keep track of the locations of inodes across
crashes, and thus operate as desired. Thus, a question: where should the
imap reside on disk?

It could live on a fixed part of the disk, of course. Unfortunately, as it
gets updated frequently, this would then require updates to file structures
to be followed by writes to the imap, and hence performance would suffer
(i.e., there would be more disk seeks, between each update and the fixed
location of the imap).

Instead, LFS places chunks of the inode map right next to where it is
writing all of the other new information. Thus, when appending a data
block to a file k, LFS actually writes the new data block, its inode, and a
piece of the inode map all together onto the disk, as follows:

D

A0

I[k]

blk[0]:A0

A1

imap

map[k]:A1

In this picture, the piece of the imap array stored in the block marked
imap tells LFS that the inode k is at disk address A1; this inode, in turn,
tells LFS that its data block D is at address A0.

43.6 The Checkpoint Region

The clever reader (that’s you, right?) might have noticed a problem
here. How do we find the inode map, now that pieces of it are also now
spread across the disk? In the end, there is no magic: the file system must
have some fixed and known location on disk to begin a file lookup.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LOG-STRUCTURED FILE SYSTEMS 517

LFS has just such a fixed place on disk for this, known as the check-
point region (CR). The checkpoint region contains pointers to (i.e., ad-
dresses of) the latest pieces of the inode map, and thus the inode map
pieces can be found by reading the CR first. Note the checkpoint region
is only updated periodically (say every 30 seconds or so), and thus perfor-
mance is not ill-affected. Thus, the overall structure of the on-disk layout
contains a checkpoint region (which points to the latest pieces of the in-
ode map); the inode map pieces each contain addresses of the inodes; the
inodes point to files (and directories) just like typical UNIX file systems.

Here is an example of the checkpoint region (note it is all the way at
the beginning of the disk, at address 0), and a single imap chunk, inode,
and data block. A real file system would of course have a much bigger
CR (indeed, it would have two, as we’ll come to understand later), many
imap chunks, and of course many more inodes, data blocks, etc.

imap
[k...k+N]:

A2

CR
0

D

A0

I[k]

blk[0]:A0

A1

imap

map[k]:A1

A2

43.7 Reading A File From Disk: A Recap

To make sure you understand how LFS works, let us now walk through
what must happen to read a file from disk. Assume we have nothing in
memory to begin. The first on-disk data structure we must read is the
checkpoint region. The checkpoint region contains pointers (i.e., disk ad-
dresses) to the entire inode map, and thus LFS then reads in the entire in-
ode map and caches it in memory. After this point, when given an inode
number of a file, LFS simply looks up the inode-number to inode-disk-
address mapping in the imap, and reads in the most recent version of the
inode. To read a block from the file, at this point, LFS proceeds exactly
as a typical UNIX file system, by using direct pointers or indirect pointers
or doubly-indirect pointers as need be. In the common case, LFS should
perform the same number of I/Os as a typical file system when reading a
file from disk; the entire imap is cached and thus the extra work LFS does
during a read is to look up the inode’s address in the imap.

43.8 What About Directories?

Thus far, we’ve simplified our discussion a bit by only considering in-
odes and data blocks. However, to access a file in a file system (such as
/home/remzi/foo, one of our favorite fake file names), some directo-
ries must be accessed too. So how does LFS store directory data?

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

518 LOG-STRUCTURED FILE SYSTEMS

Fortunately, directory structure is basically identical to classic UNIX

file systems, in that a directory is just a collection of (name, inode number)
mappings. For example, when creating a file on disk, LFS must both write
a new inode, some data, as well as the directory data and its inode that
refer to this file. Remember that LFS will do so sequentially on the disk
(after buffering the updates for some time). Thus, creating a file foo in a
directory would lead to the following new structures on disk:

D[k]

A0

I[k]
blk[0]:A0

A1

(foo, k)

D[dir]

A2

I[dir]
blk[0]:A2

A3

map[k]:A1

map[dir]:A3

imap

The piece of the inode map contains the information for the location of
both the directory file dir as well as the newly-created file f . Thus, when
accessing file foo (with inode number f), you would first look in the
inode map (usually cached in memory) to find the location of the inode
of directory dir (A3); you then read the directory inode, which gives you
the location of the directory data (A2); reading this data block gives you
the name-to-inode-number mapping of (foo, k). You then consult the
inode map again to find the location of inode number k (A1), and finally
read the desired data block at address A0.

There is one other serious problem in LFS that the inode map solves,
known as the recursive update problem [Z+12]. The problem arises
in any file system that never updates in place (such as LFS), but rather
moves updates to new locations on the disk.

Specifically, whenever an inode is updated, its location on disk changes.
If we hadn’t been careful, this would have also entailed an update to
the directory that points to this file, which then would have mandated
a change to the parent of that directory, and so on, all the way up the file
system tree.

LFS cleverly avoids this problem with the inode map. Even though
the location of an inode may change, the change is never reflected in the
directory itself; rather, the imap structure is updated while the directory
holds the same name-to-inumber mapping. Thus, through indirection,
LFS avoids the recursive update problem.

43.9 A New Problem: Garbage Collection

You may have noticed another problem with LFS; it keeps writing
newer version of a file, its inode, and in fact all data to new parts of the
disk. This process, while keeping writes efficient, implies that LFS leaves
older versions of file structures all over the disk, scattered throughout the
disk. We call such old stuff garbage.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LOG-STRUCTURED FILE SYSTEMS 519

For example, let’s imagine the case where we have an existing file re-
ferred to by inode number k, which points to a single data block D0. We
now overwrite that block, generating both a new inode and a new data
block. The resulting on-disk layout of LFS would look something like this
(note we omit the imap and other structures for simplicity; a new chunk
of imap would also have to be written to disk to point to the new inode):

D0

A0

I[k]

blk[0]:A0

(both garbage)

D0

A4

I[k]

blk[0]:A4

In the diagram, you can see that both the inode and data block have
two versions on disk, one old (the one on the left) and one current and
thus live (the one on the right). By the simple act of overwriting a data
block, a number of new structures must be persisted by LFS, thus leaving
old versions of said blocks on the disk.

As another example, imagine we instead append a block to that orig-
inal file k. In this case, a new version of the inode is generated, but the
old data block is still pointed to by the inode. Thus, it is still live and very
much apart of the current file system:

D0

A0

I[k]

blk[0]:A0

(garbage)

D1

A4

I[k]

blk[0]:A0
blk[1]:A4

So what should we do with these older versions of inodes, data blocks,
and so forth? One could keep those older versions around and allow
users to restore old file versions (for example, when they accidentally
overwrite or delete a file, it could be quite handy to do so); such a file
system is known as a versioning file system because it keeps track of the
different versions of a file.

However, LFS instead keeps only the latest live version of a file; thus
(in the background), LFS must periodically find these old dead versions
of file data, inodes, and other structures, and clean them; cleaning should
thus make blocks on disk free again for use in a subsequent writes. Note
that the process of cleaning is a form of garbage collection, a technique
that arises in programming languages that automatically free unused mem-
ory for programs.

Earlier we discussed segments as important as they are the mechanism
that enables large writes to disk in LFS. As it turns out, they are also quite
integral to effective cleaning. Imagine what would happen if the LFS

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

520 LOG-STRUCTURED FILE SYSTEMS

cleaner simply went through and freed single data blocks, inodes, etc.,
during cleaning. The result: a file system with some number of free holes
mixed between allocated space on disk. Write performance would drop
considerably, as LFS would not be able to find a large contiguous region
to write to disk sequentially and with high performance.

Instead, the LFS cleaner works on a segment-by-segment basis, thus
clearing up large chunks of space for subsequent writing. The basic clean-
ing process works as follows. Periodically, the LFS cleaner reads in a
number of old (partially-used) segments, determines which blocks are
live within these segments, and then write out a new set of segments
with just the live blocks within them, freeing up the old ones for writing.
Specifically, we expect the cleaner to read in M existing segments, com-
pact their contents into N new segments (where N < M), and then write
the N segments to disk in new locations. The old M segments are then
freed and can be used by the file system for subsequent writes.

We are now left with two problems, however. The first is mechanism:
how can LFS tell which blocks within a segment are live, and which are
dead? The second is policy: how often should the cleaner run, and which
segments should it pick to clean?

43.10 Determining Block Liveness

We address the mechanism first. Given a data block D within an on-
disk segment S, LFS must be able to determine whether D is live. To do
so, LFS adds a little extra information to each segment that describes each
block. Specifically, LFS includes, for each data block D, its inode number
(which file it belongs to) and its offset (which block of the file this is). This
information is recorded in a structure at the head of the segment known
as the segment summary block.

Given this information, it is straightforward to determine whether a
block is live or dead. For a block D located on disk at address A, look
in the segment summary block and find its inode number N and offset
T. Next, look in the imap to find where N lives and read N from disk
(perhaps it is already in memory, which is even better). Finally, using
the offset T, look in the inode (or some indirect block) to see where the
inode thinks the Tth block of this file is on disk. If it points exactly to disk
address A, LFS can conclude that the block D is live. If it points anywhere
else, LFS can conclude that D is not in use (i.e., it is dead) and thus know
that this version is no longer needed. A pseudocode summary of this
process is shown here:
(N, T) = SegmentSummary[A];

inode = Read(imap[N]);

if (inode[T] == A)

// block D is alive

else

// block D is garbage

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LOG-STRUCTURED FILE SYSTEMS 521

Here is a diagram depicting the mechanism, in which the segment
summary block (marked SS) records that the data block at address A0
is actually a part of file k at offset 0. By checking the imap for k, you can
find the inode, and see that it does indeed point to that location.

D

A0

I[k]

blk[0]:A0

A1

imap

map[k]:A1

ss

A0:
(k,0)

There are some shortcuts LFS takes to make the process of determining
liveness more efficient. For example, when a file is truncated or deleted,
LFS increases its version number and records the new version number in
the imap. By also recording the version number in the on-disk segment,
LFS can short circuit the longer check described above simply by compar-
ing the on-disk version number with a version number in the imap, thus
avoiding extra reads.

43.11 A Policy Question: Which Blocks To Clean, And When?

On top of the mechanism described above, LFS must include a set of
policies to determine both when to clean and which blocks are worth
cleaning. Determining when to clean is easier; either periodically, dur-
ing idle time, or when you have to because the disk is full.

Determining which blocks to clean is more challenging, and has been
the subject of many research papers. In the original LFS paper [RO91],
the authors describe an approach which tries to segregate hot and cold
segment. A hot segment is one in which the contents are being frequently
over-written; thus, for such a segment, the best policy is to wait a long
time before cleaning it, as more and more blocks are getting over-written
(in new segments) and thus being freed for use. A cold segment, in con-
trast, may have a few dead blocks but the rest of its contents are relatively
stable. Thus, the authors conclude that one should clean cold segments
sooner and hot segments later, and develop a heuristic that does exactly
that. However, as with most policies, this is just one approach, and by
definition is not “the best” approach; later approaches show how to do
better [MR+97].

43.12 Crash Recovery And The Log

One final problem: what happens if the system crashes while LFS is
writing to disk? As you may recall in the previous chapter about jour-
naling, crashes during updates are tricky for file systems, and thus some-

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

522 LOG-STRUCTURED FILE SYSTEMS

thing LFS must consider as well.
During normal operation, LFS buffers writes in a segment, and then

(when the segment is full, or when some amount of time has elapsed),
writes the segment to disk. LFS organizes these writes in a log, i.e., the
checkpoint region points to a head and tail segment, and each segment
points to the next segment to be written. LFS also periodically updates the
checkpoint region. Crashes could clearly happen during either of these
operations (write to a segment, write to the CR). So how does LFS handle
crashes during writes to these structures?

Let’s cover the second case first. To ensure that the CR update happens
atomically, LFS actually keeps two CRs, one at either end of the disk, and
writes to them alternately. LFS also implements a careful protocol when
updating the CR with the latest pointers to the inode map and other infor-
mation; specifically, it first writes out a header (with timestamp), then the
body of the CR, and then finally one last block (also with a timestamp). If
the system crashes during a CR update, LFS can detect this by seeing an
inconsistent pair of timestamps. LFS will always choose to use the most
recent CR that has consistent timestamps, and thus consistent update of
the CR is achieved.

Let’s now address the first case. Because LFS writes the CR every 30
seconds or so, the last consistent snapshot of the file system may be quite
old. Thus, upon reboot, LFS can easily recover by simply reading in the
checkpoint region, the imap pieces it points to, and subsequent files and
directories; however, the last many seconds of updates would be lost.

To improve upon this, LFS tries to rebuild many of those segments
through a technique known as roll forward in the database community.
The basic idea is to start with the last checkpoint region, find the end of
the log (which is included in the CR), and then use that to read through
the next segments and see if there are any valid updates within it. If there
are, LFS updates the file system accordingly and thus recovers much of
the data and metadata written since the last checkpoint. See Rosenblum’s
award-winning dissertation for details [R92].

43.13 Summary

LFS introduces a new approach to updating the disk. Instead of over-
writing files in places, LFS always writes to an unused portion of the
disk, and then later reclaims that old space through cleaning. This ap-
proach, which in database systems is called shadow paging [L77] and in
file-system-speak is sometimes called copy-on-write, enables highly effi-
cient writing, as LFS can gather all updates into an in-memory segment
and then write them out together sequentially.

The downside to this approach is that it generates garbage; old copies
of the data are scattered throughout the disk, and if one wants to reclaim
such space for subsequent usage, one must clean old segments periodi-
cally. Cleaning became the focus of much controversy in LFS, and con-

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LOG-STRUCTURED FILE SYSTEMS 523

TIP: TURN FLAWS INTO VIRTUES

Whenever your system has a fundamental flaw, see if you can turn it
around into a feature or something useful. NetApp’s WAFL does this
with old file contents; by making old versions available, WAFL no longer
has to worry about cleaning, and thus provides a cool feature and re-
moves the LFS cleaning problem all in one wonderful twist. Are there
other examples of this in systems? Undoubtedly, but you’ll have to think
of them yourself, because this chapter is over with a capital “O”. Over.
Done. Kaput. We’re out. Peace!

cerns over cleaning costs [SS+95] perhaps limited LFS’s initial impact on
the field. However, some modern commercial file systems, including Ne-
tApp’s WAFL [HLM94], Sun’s ZFS [B07], and Linux btrfs [M07] adopt
a similar copy-on-write approach to writing to disk, and thus the intel-
lectual legacy of LFS lives on in these modern file systems. In particular,
WAFL got around cleaning problems by turning them into a feature; by
providing old versions of the file system via snapshots, users could ac-
cess old files whenever they deleted current ones accidentally.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

524 LOG-STRUCTURED FILE SYSTEMS

References

[B07] “ZFS: The Last Word in File Systems”
Jeff Bonwick and Bill Moore
Available: http://opensolaris.org/os/community/zfs/docs/zfs last.pdf
Slides on ZFS; unfortunately, there is no great ZFS paper.

[HLM94] “File System Design for an NFS File Server Appliance”
Dave Hitz, James Lau, Michael Malcolm
USENIX Spring ’94
WAFL takes many ideas from LFS and RAID and puts it into a high-speed NFS appliance for the
multi-billion dollar storage company NetApp.

[L77] “Physical Integrity in a Large Segmented Database”
R. Lorie
ACM Transactions on Databases, 1977, Volume 2:1, pages 91-104
The original idea of shadow paging is presented here.

[M07] “The Btrfs Filesystem”
Chris Mason
September 2007
Available: oss.oracle.com/projects/btrfs/dist/documentation/btrfs-ukuug.pdf
A recent copy-on-write Linux file system, slowly gaining in importance and usage.

[MJLF84] “A Fast File System for UNIX”
Marshall K. McKusick, William N. Joy, Sam J. Leffler, Robert S. Fabry
ACM TOCS, August, 1984, Volume 2, Number 3
The original FFS paper; see the chapter on FFS for more details.

[MR+97] “Improving the Performance of Log-structured File Systems with Adaptive Meth-
ods” Jeanna Neefe Matthews, Drew Roselli, Adam M. Costello, Randolph Y. Wang, Thomas E.
Anderson
SOSP 1997, pages 238-251, October, Saint Malo, France
A more recent paper detailing better policies for cleaning in LFS.

[M94] “A Better Update Policy”
Jeffrey C. Mogul
USENIX ATC ’94, June 1994
In this paper, Mogul finds that read workloads can be harmed by buffering writes for too long and then
sending them to the disk in a big burst. Thus, he recommends sending writes more frequently and in
smaller batches.

[P98] “Hardware Technology Trends and Database Opportunities”
David A. Patterson
ACM SIGMOD ’98 Keynote Address, Presented June 3, 1998, Seattle, Washington
Available: http://www.cs.berkeley.edu/˜pattrsn/talks/keynote.html
A great set of slides on technology trends in computer systems. Hopefully, Patterson will create another
of these sometime soon.

[RO91] “Design and Implementation of the Log-structured File System”
Mendel Rosenblum and John Ousterhout
SOSP ’91, Pacific Grove, CA, October 1991
The original SOSP paper about LFS, which has been cited by hundreds of other papers and inspired
many real systems.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

LOG-STRUCTURED FILE SYSTEMS 525

[R92] “Design and Implementation of the Log-structured File System”
Mendel Rosenblum
http://www.eecs.berkeley.edu/Pubs/TechRpts/1992/CSD-92-696.pdf
The award-winning dissertation about LFS, with many of the details missing from the paper.

[SS+95] “File system logging versus clustering: a performance comparison”
Margo Seltzer, Keith A. Smith, Hari Balakrishnan, Jacqueline Chang, Sara McMains, Venkata
Padmanabhan
USENIX 1995 Technical Conference, New Orleans, Louisiana, 1995
A paper that showed the LFS performance sometimes has problems, particularly for workloads with
many calls to fsync() (such as database workloads). The paper was controversial at the time.

[SO90] “Write-Only Disk Caches”
Jon A. Solworth, Cyril U. Orji
SIGMOD ’90, Atlantic City, New Jersey, May 1990
An early study of write buffering and its benefits. However, buffering for too long can be harmful: see
Mogul [M94] for details.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

44

Data Integrity and Protection

Beyond the basic advances found in the file systems we have studied thus
far, a number of features are worth studying. In this chapter, we focus on
reliability once again (having previously studied storage system reliabil-
ity in the RAID chapter). Specifically, how should a file system or storage
system ensure that data is safe, given the unreliable nature of modern
storage devices?

This general area is referred to as data integrity or data protection.
Thus, we will now investigate techniques used to ensure that the data
you put into your storage system is the same when the storage system
returns it to you.

CRUX: HOW TO ENSURE DATA INTEGRITY

How should systems ensure that the data written to storage is pro-
tected? What techniques are required? How can such techniques be made
efficient, with both low space and time overheads?

44.1 Disk Failure Modes

As you learned in the chapter about RAID, disks are not perfect, and
can fail (on occasion). In early RAID systems, the model of failure was
quite simple: either the entire disk is working, or it fails completely, and
the detection of such a failure is straightforward. This fail-stop model of
disk failure makes building RAID relatively simple [S90].

What you didn’t learn is about all of the other types of failure modes
modern disks exhibit. Specifically, as Bairavasundaram et al. studied
in great detail [B+07, B+08], modern disks will occasionally seem to be
mostly working but have trouble successfully accessing one or more blocks.
Specifically, two types of single-block failures are common and worthy of
consideration: latent-sector errors (LSEs) and block corruption. We’ll
now discuss each in more detail.

527

528 DATA INTEGRITY AND PROTECTION

Cheap Costly
LSEs 9.40% 1.40%
Corruption 0.50% 0.05%

Table 44.1: Frequency of LSEs and Block Corruption

LSEs arise when a disk sector (or group of sectors) has been damaged
in some way. For example, if the disk head touches the surface for some
reason (a head crash, something which shouldn’t happen during nor-
mal operation), it may damage the surface, making the bits unreadable.
Cosmic rays can also flip bits, leading to incorrect contents. Fortunately,
in-disk error correcting codes (ECC) are used by the drive to determine
whether the on-disk bits in a block are good, and in some cases, to fix
them; if they are not good, and the drive does not have enough informa-
tion to fix the error, the disk will return an error when a request is issued
to read them.

There are also cases where a disk block becomes corrupt in a way not
detectable by the disk itself. For example, buggy disk firmware may write
a block to the wrong location; in such a case, the disk ECC indicates the
block contents are fine, but from the client’s perspective the wrong block
is returned when subsequently accessed. Similarly, a block may get cor-
rupted when it is transferred from the host to the disk across a faulty
bus; the resulting corrupt data is stored by the disk, but it is not what
the client desires. These types of faults are particularly insidious because
the are silent faults; the disk gives no indication of the problem when
returning the faulty data.

Prabhakaran et al. describes this more modern view of disk failure as
the fail-partial disk failure model [P+05]. In this view, disks can still fail
in their entirety (as was the case in the traditional fail-stop model); how-
ever, disks can also seemingly be working and have one or more blocks
become inaccessible (i.e., LSEs) or hold the wrong contents (i.e., corrup-
tion). Thus, when accessing a seemingly-working disk, once in a while
it may either return an error when trying to read or write a given block
(a non-silent partial fault), and once in a while it may simply return the
wrong data (a silent partial fault).

Both of these types of faults are somewhat rare, but just how rare? Ta-
ble 44.1 summarizes some of the findings from the two Bairavasundaram
studies [B+07,B+08].

The table shows the percent of drives that exhibited at least one LSE
or block corruption over the course of the study (about 3 years, over
1.5 million disk drives). The table further sub-divides the results into
“cheap” drives (usually SATA drives) and “costly” drives (usually SCSI
or FibreChannel). As you can see from the table, while buying better
drives reduces the frequency of both types of problem (by about an or-
der of magnitude), they still happen often enough that you need to think
carefully about them.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

DATA INTEGRITY AND PROTECTION 529

Some additional findings about LSEs are:

• Costly drives with more than one LSE are as likely to develop ad-
ditional errors as cheaper drives

• For most drives, annual error rate increases in year two
• LSEs increase with disk size
• Most disks with LSEs have less than 50
• Disks with LSEs are more likely to develop additional LSEs
• There exists a significant amount of spatial and temporal locality
• Disk scrubbing is useful (most LSEs were found this way)

Some findings about corruption:

• Chance of corruption varies greatly across different drive models
within the same drive class

• Age affects are different across models
• Workload and disk size have little impact on corruption
• Most disks with corruption only have a few corruptions
• Corruption is not independent with a disk or across disks in RAID
• There exists spatial locality, and some temporal locality
• There is a weak correlation with LSEs

To learn more about these failures, you should likely read the original
papers [B+07,B+08]. But hopefully the main point should be clear: if you
really wish to build a reliable storage system, you must include machin-
ery to detect and recovery from both LSEs and block corruption.

44.2 Handling Latent Sector Errors

Given these two new modes of partial disk failure, we should now try
to see what we can do about them. Let’s first tackle the easier of the two,
namely latent sector errors.

CRUX: HOW TO HANDLE LATENT SECTOR ERRORS

How should a storage system handle latent sector errors? How much
extra machinery is needed to handle this form of partial failure?

As it turns out, latent sector errors are rather straightforward to han-
dle, as they are (by definition) easily detected. When a storage system
tries to access a block, and the disk returns an error, the storage system
should simply use whatever redundancy mechanism it has to return the
correct data. In a mirrored RAID, for example, the system should access
the alternate copy; in a RAID-4 or RAID-5 system based on parity, the
system should reconstruct the block from the other blocks in the parity
group. Thus, easily detected problems such as LSEs are readily recovered
through standard redundancy mechanisms.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

530 DATA INTEGRITY AND PROTECTION

The growing prevalence of LSEs has influenced RAID designs over the
years. One particularly interesting problem arises in RAID-4/5 systems
when both full-disk faults and LSEs occur in tandem. Specifically, when
an entire disk fails, the RAID tries to reconstruct the disk (say, onto a
hot spare) by reading through all of the other disks in the parity group
and recomputing the missing values. If, during reconstruction, an LSE
is encountered on any one of the other disks, we have a problem: the
reconstruction cannot successfully complete.

To combat this issue, some systems add an extra degree of redundancy.
For example, NetApp’s RAID-DP has the equivalent of two parity disks
instead of one [C+04]. When an LSE is discovered during reconstruction,
the extra parity helps to reconstruct the missing block. As always, there is
a cost, in that maintaining two parity blocks for each stripe is more costly;
however, the log-structured nature of the NetApp WAFL file system mit-
igates that cost in many cases [HLM94]. The remaining cost is space, in
the form of an extra disk for the second parity block.

44.3 Detecting Corruption: The Checksum

Let’s now tackle the more challenging problem, that of silent failures
via data corruption. How can we prevent users from getting bad data
when corruption arises, and thus leads to disks returning bad data?

CRUX: HOW TO PRESERVE DATA INTEGRITY DESPITE CORRUPTION

Given the silent nature of such failures, what can a storage system do
to detect when corruption arises? What techniques are needed? How can
one implement them efficiently?

Unlike latent sector errors, detection of corruption is a key problem.
How can a client tell that a block has gone bad? Once it is known that a
particular block is bad, recovery is the same as before: you need to have
some other copy of the block around (and hopefully, one that is not cor-
rupt!). Thus, we focus here on detection techniques.

The primary mechanism used by modern storage systems to preserve
data integrity is called the checksum. A checksum is simply the result
of a function that takes a chunk of data (say a 4KB block) as input and
computes a function over said data, producing a small summary of the
contents of the data (say 4 or 8 bytes). This summary is referred to as the
checksum. The goal of such a computation is to enable a system to detect
if data has somehow been corrupted or altered by storing the checksum
with the data and then confirming upon later access that the data’s cur-
rent checksum matches the original storage value.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

DATA INTEGRITY AND PROTECTION 531

TIP: THERE’S NO FREE LUNCH

There’s No Such Thing As A Free Lunch, or TNSTAAFL for short, is
an old American idiom that implies that when you are seemingly get-
ting something for free, in actuality you are likely paying some cost for
it. It comes from the old days when diners would advertise a free lunch
for customers, hoping to draw them in; only when you went in, did you
realize that to acquire the “free” lunch, you had to purchase one or more
alcoholic beverages. Of course, this may not actually be a problem, partic-
ularly if you are an aspiring alcoholic (or typical undergraduate student).

Common Checksum Functions

A number of different functions are used to compute checksums, and
vary in strength (i.e., how good they are at protecting data integrity) and
speed (i.e., how quickly can they be computed). A trade-off that is com-
mon in systems arises here: usually, the more protection you get, the
costlier it is. There is no such thing as a free lunch.

One simple checksum function that some use is based on exclusive
or (XOR). With XOR-based checksums, the checksum is computed sim-
ply by XOR’ing each chunk of the data block being checksummed, thus
producing a single value that represents the XOR of the entire block.

To make this more concrete, imagine we are computing a 4-byte check-
sum over a block of 16 bytes (this block is of course too small to really be a
disk sector or block, but it will serve for the example). The 16 data bytes,
in hex, look like this:

365e c4cd ba14 8a92 ecef 2c3a 40be f666

If we view them in binary, we get the following:

0011 0110 0101 1110 1100 0100 1100 1101

1011 1010 0001 0100 1000 1010 1001 0010

1110 1100 1110 1111 0010 1100 0011 1010

0100 0000 1011 1110 1111 0110 0110 0110

Because we’ve lined up the data in groups of 4 bytes per row, it is easy
to see what the resulting checksum will be: simply perform an XOR over
each column to get the final checksum value:

0010 0000 0001 1011 1001 0100 0000 0011

The result, in hex, is 0x201b9403.
XOR is a reasonable checksum but has its limitations. If, for example,

two bits in the same position within each checksummed unit change, the
checksum will not detect the corruption. For this reason, people have
investigated other checksum functions.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

532 DATA INTEGRITY AND PROTECTION

Another simple checksum function is addition. This approach has
the advantage of being fast; computing it just requires performing 2’s-
complement addition over each chunk of the data, ignoring overflow. It
can detect many changes in data, but is not good if the data, for example,
is shifted.

A slightly more complex algorithm is known as the Fletcher check-
sum, named (as you might guess) for the inventor, John G. Fletcher [F82].
It is quite simple and involves the computation of two check bytes, s1
and s2. Specifically, assume a block D consists of bytes d1 ... dn; s1 is
simply defined as follows: s1 = s1 + di mod 255 (computed over all di);
s2 in turn is: s2 = s2 + s1 mod 255 (again over all di) [F04]. The fletcher
checksum is known to be almost as strong as the CRC (described next),
detecting all single-bit errors, all double-bit errors, and a large percentage
of burst errors [F04].

One final commonly-used checksum is known as a cyclic redundancy
check (CRC). While this sounds fancy, the basic idea is quite simple. As-
sume you wish to compute the checksum over a data block D. All you do
is treat D as if it is a large binary number (it is just a string of bits after all)
and divide it by an agreed upon value (k). The remainder of this division
is the value of the CRC. As it turns out, one can implement this binary
modulo operation rather efficiently, and hence the popularity of the CRC
in networking as well. See elsewhere for more details [M13].

Whatever the method used, it should be obvious that there is no per-
fect checksum: it is possible two data blocks with non-identical contents
will have identical checksums, something referred to as a collision. This
fact should be intuitive: after all, computing a checksum is taking some-
thing large (e.g., 4KB) and producing a summary that is much smaller
(e.g., 4 or 8 bytes). In choosing a good checksum function, we are thus
trying to find one that minimizes the chance of collisions while remain-
ing easy to compute.

Checksum Layout

Now that you understand a bit about how to compute a checksum, let’s
next analyze how to use checksums in a storage system. The first question
we must address is the layout of the checksum, i.e., how should check-
sums be stored on disk?

The most basic approach simply stores a checksum with each disk sec-
tor (or block). Given a data block D, let us call the checksum over that
data C(D). Thus, without checksums, the disk layout looks like this:

D0 D1 D2 D3 D4 D5 D6

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

DATA INTEGRITY AND PROTECTION 533

With checksums, the layout adds a single checksum for every block:
C

[D
0
]

D0

C
[D

1
]

D1

C
[D

2
]

D2

C
[D

3
]

D3

C
[D

4
]

D4

Because checksums are usually small (e.g., 8 bytes), and disks only can
write in sector-sized chunks (512 bytes) or multiples thereof, one problem
that arises is how to achieve the above layout. One solution employed by
drive manufacturers is to format the drive with 520-byte sectors; an extra
8 bytes per sector can be used to store the checksum.

In disks that don’t have such functionality, the file system must figure
out a way to store the checksums packed into 512-byte blocks. One such
possibility is as follows:

C
[D

0
]

C
[D

1
]

C
[D

2
]

C
[D

3
]

C
[D

4
]

D0 D1 D2 D3 D4

In this scheme, the n checksums are stored together in a sector, fol-
lowed by n data blocks, followed by another checksum sector for the next
n blocks, and so forth. This scheme has the benefit of working on all disks,
but can be less efficient; if the file system, for example, wants to overwrite
block D1, it has to read in the checksum sector containing C(D1), update
C(D1) in it, and then write out the checksum sector as well as the new
data block D1 (thus, one read and two writes). The earlier approach (of
one checksum per sector) just performs a single write.

44.4 Using Checksums

With a checksum layout decided upon, we can now proceed to actu-
ally understand how to use the checksums. When reading a block D, the
client (i.e., file system or storage controller) also reads its checksum from
disk Cs(D), which we call the stored checksum (hence the subscript Cs).
The client then computes the checksum over the retrieved block D, which
we call the computed checksum Cc(D). At this point, the client com-
pares the stored and computed checksums; if they are equal (i.e., Cs(D)
== Cc(D), the data has likely not been corrupted, and thus can be safely
returned to the user. If they do not match (i.e., Cs(D) != Cc(D)), this im-
plies the data has changed since the time it was stored (since the stored
checksum reflects the value of the data at that time). In this case, we have
a corruption, which our checksum has helped us to detect.

Given a corruption, the natural question is what should we do about
it? If the storage system has a redundant copy, the answer is easy: try to
use it instead. If the storage system has no such copy, the likely answer is
to return an error. In either case, realize that corruption detection is not a
magic bullet; if there is no other way to get the non-corrupted data, you
are simply out of luck.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

534 DATA INTEGRITY AND PROTECTION

44.5 A New Problem: Misdirected Writes

The basic scheme described above works well in the general case of
corrupted blocks. However, modern disks have a couple of unusual fail-
ure modes that require different solutions.

The first failure mode of interest is called a misdirected write. This
arises in disk and RAID controllers which write the data to disk correctly,
except in the wrong location. In a single-disk system, this means that the
disk wrote block Dx not to address x (as desired) but rather to address
y (thus “corrupting” Dy); in addition, within a multi-disk system, the
controller may also write Di,x not to address x of disk i but rather to
some other disk j. Thus our question:

CRUX: HOW TO HANDLE MISDIRECTED WRITES

How should a storage system or disk controller detect misdirected
writes? What additional features are required from the checksum?

The answer, not surprisingly, is simple: add a little more information
to each checksum. In this case, adding a physical identifier (physical
ID) is quite helpful. For example, if the stored information now contains
the checksum C(D) as well as the disk and sector number of the block,
it is easy for the client to determine whether the correct information re-
sides within the block. Specifically, if the client is reading block 4 on disk
10 (D10,4), the stored information should include that disk number and
sector offset, as shown below. If the information does not match, a misdi-
rected write has taken place, and a corruption is now detected. Here is an
example of what this added information would look like on a two-disk
system. Note that this figure, like the others before it, is not to scale, as the
checksums are usually small (e.g., 8 bytes) whereas the blocks are much
larger (e.g., 4 KB or bigger):

Disk 0

Disk 1

C
[D

0
]

d
is

k
=

0

b
lo

c
k
=

0

D0

C
[D

1
]

d
is

k
=

0

b
lo

c
k
=

1

D1

C
[D

2
]

d
is

k
=

0

b
lo

c
k
=

2

D2

C
[D

0
]

d
is

k
=

1

b
lo

c
k
=

0

D0

C
[D

1
]

d
is

k
=

1

b
lo

c
k
=

1

D1

C
[D

2
]

d
is

k
=

1

b
lo

c
k
=

2

D2

You can see from the on-disk format that there is now a fair amount of
redundancy on disk: for each block, the disk number is repeated within
each block, and the offset of the block in question is also kept next to the
block itself. The presence of redundant information should be no sur-
prise, though; redundancy is the key to error detection (in this case) and
recovery (in others). A little extra information, while not strictly needed
with perfect disks, can go a long ways in helping detect problematic situ-
ations should they arise.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

DATA INTEGRITY AND PROTECTION 535

44.6 One Last Problem: Lost Writes

Unfortunately, misdirected writes are not the last problem we will
address. Specifically, some modern storage devices also have an issue
known as a lost write, which occurs when the device informs the upper
layer that a write has completed but in fact it never is persisted; thus,
what remains is left is the old contents of the block rather than the up-
dated new contents.

The obvious question here is: do any of our checksumming strategies
from above (e.g., basic checksums, or physical identity) help to detect
lost writes? Unfortunately, the answer is no: the old block likely has a
matching checksum, and the physical ID used above (disk number and
block offset) will also be correct. Thus our final problem:

CRUX: HOW TO HANDLE LOST WRITES

How should a storage system or disk controller detect lost writes?
What additional features are required from the checksum?

There are a number of possible solutions that can help [K+08]. One
classic approach [BS04] is to perform a write verify or read-after-write;
by immediately reading back the data after a write, a system can ensure
that the data indeed reached the disk surface. This approach, however, is
quite slow, doubling the number of I/Os needed to complete a write.

Some systems add a checksum elsewhere in the system to detect lost
writes. For example, Sun’s Zettabyte File System (ZFS) includes a check-
sum in each file system inode and indirect block for every block included
within a file. Thus, even if the write to a data block itself is lost, the check-
sum within the inode will not match the old data. Only if the writes to
both the inode and the data are lost simultaneously will such a scheme
fail, an unlikely (but unfortunately, possible!) situation.

44.7 Scrubbing

Given all of this discussion, you might be wondering: when do these
checksums actually get checked? Of course, some amount of checking
occurs when data is accessed by applications, but most data is rarely
accessed, and thus would remain unchecked. Unchecked data is prob-
lematic for a reliable storage system, as bit rot could eventually affect all
copies of a particular piece of data.

To remedy this problem, many systems utilize disk scrubbing of var-
ious forms [K+08]. By periodically reading through every block of the
system, and checking whether checksums are still valid, the disk system
can reduce the chances that all copies of a certain data item become cor-
rupted. Typical systems schedule scans on a nightly or weekly basis.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

536 DATA INTEGRITY AND PROTECTION

44.8 Overheads Of Checksumming

Before closing, we now discuss some of the overheads of using check-
sums for data protection. There are two distinct kinds of overheads, as is
common in computer systems: space and time.

Space overheads come in two forms. The first is on the disk (or other
storage medium) itself; each stored checksum takes up room on the disk,
which can no longer be used for user data. A typical ratio might be an 8-
byte checksum per 4 KB data block, for a 0.19% on-disk space overhead.

The second type of space overhead comes in the memory of the sys-
tem. When accessing data, there must now be room in memory for the
checksums as well as the data itself. However, if the system simply checks
the checksum and then discards it once done, this overhead is short-lived
and not much of a concern. Only if checksums are kept in memory (for
an added level of protection against memory corruption [Z+13]) will this
small overhead be observable.

While space overheads are small, the time overheads induced by check-
summing can be quite noticeable. Minimally, the CPU must compute the
checksum over each block, both when the data is stored (to determine
the value of the stored checksum) as well as when it is accessed (to com-
pute the checksum again and compare it against the stored checksum).
One approach to reducing CPU overheads, employed by many systems
that use checksums (including network stacks), is to combine data copy-
ing and checksumming into one streamlined activity; because the copy is
needed anyhow (e.g., to copy the data from the kernel page cache into a
user buffer), combined copying/checksumming can be quite effective.

Beyond CPU overheads, some checksumming schemes can induce ex-
tra I/O overheads, particularly when checksums are stored distinctly from
the data (thus requiring extra I/Os to access them), and for any extra I/O
needed for background scrubbing. The former can be reduced by design;
the latter can be tuned and thus its impact limited, perhaps by control-
ling when such scrubbing activity takes place. The middle of the night,
when most (not all!) productive workers have gone to bed, may be a
good time to perform such scrubbing activity and increase the robustness
of the storage system.

44.9 Summary

We have discussed data protection in modern storage systems, focus-
ing on checksum implementation and usage. Different checksums protect
against different types of faults; as storage devices evolve, new failure
modes will undoubtedly arise. Perhaps such change will force the re-
search community and industry to revisit some of these basic approaches,
or invent entirely new approaches altogether. Time will tell. Or it won’t.
Time is funny that way.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

DATA INTEGRITY AND PROTECTION 537

References

[B+08] “An Analysis of Data Corruption in the Storage Stack”
Lakshmi N. Bairavasundaram, Garth R. Goodson, Bianca Schroeder,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
FAST ’08, San Jose, CA, February 2008
The first paper to truly study disk corruption in great detail, focusing on how often such corruption
occurs over three years for over 1.5 million drives. Lakshmi did this work while a graduate student at
Wisconsin under our supervision, but also in collaboration with his colleagues at NetApp where he was
an intern for multiple summers. A great example of how working with industry can make for much
more interesting and relevant research.

[BS04] “Commercial Fault Tolerance: A Tale of Two Systems”
Wendy Bartlett, Lisa Spainhower
IEEE Transactions on Dependable and Secure Computing, Vol. 1, No. 1, January 2004
This classic in building fault tolerant systems is an excellent overview of the state of the art from both
IBM and Tandem. Another must read for those interested in the area.

[C+04] “Row-Diagonal Parity for Double Disk Failure Correction”
P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, S. Sankar
FAST ’04, San Jose, CA, February 2004
An early paper on how extra redundancy helps to solve the combined full-disk-failure/partial-disk-failure
problem. Also a nice example of how to mix more theoretical work with practical.

[F04] “Checksums and Error Control”
Peter M. Fenwick
Available: www.cs.auckland.ac.nz/compsci314s2c/resources/Checksums.pdf
A great simple tutorial on checksums, available to you for the amazing cost of free.

[F82] “An Arithmetic Checksum for Serial Transmissions”
John G. Fletcher
IEEE Transactions on Communication, Vol. 30, No. 1, January 1982
Fletcher’s original work on his eponymous checksum. Of course, he didn’t call it the Fletcher checksum,
rather he just didn’t call it anything, and thus it became natural to name it after the inventor. So don’t
blame old Fletch for this seeming act of braggadocio.

[HLM94] “File System Design for an NFS File Server Appliance”
Dave Hitz, James Lau, Michael Malcolm
USENIX Spring ’94
The pioneering paper that describes the ideas and product at the heart of NetApp’s core. Based on this
system, NetApp has grown into a multi-billion dollar storage company. If you’re interested in learning
more about its founding, read Hitz’s autobiography “How to Castrate a Bull: Unexpected Lessons on
Risk, Growth, and Success in Business” (which is the actual title, no joking). And you thought you
could avoid bull castration by going into Computer Science.

[K+08] “Parity Lost and Parity Regained”
Andrew Krioukov, Lakshmi N. Bairavasundaram, Garth R. Goodson, Kiran Srinivasan,
Randy Thelen, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
FAST ’08, San Jose, CA, February 2008
This work of ours, joint with colleagues at NetApp, explores how different checksum schemes work (or
don’t work) in protecting data. We reveal a number of interesting flaws in current protection strategies,
some of which have led to fixes in commercial products.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

538 DATA INTEGRITY AND PROTECTION

[M13] “Cyclic Redundancy Checks”
Author Unknown
Available: http://www.mathpages.com/home/kmath458.htm
Not sure who wrote this, but a super clear and concise description of CRCs is available here. The internet
is full of information, as it turns out.

[P+05] “IRON File Systems”
Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S. Gunawi, An-
drea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
SOSP ’05, Brighton, England, October 2005
Our paper on how disks have partial failure modes, which includes a detailed study of how file systems
such as Linux ext3 and Windows NTFS react to such failures. As it turns out, rather poorly! We found
numerous bugs, design flaws, and other oddities in this work. Some of this has fed back into the Linux
community, thus helping to yield a new more robust group of file systems to store your data.

[RO91] “Design and Implementation of the Log-structured File System”
Mendel Rosenblum and John Ousterhout
SOSP ’91, Pacific Grove, CA, October 1991
Another reference to this ground-breaking paper on how to improve write performance in file systems.

[S90] “Implementing Fault-Tolerant Services Using The State Machine Approach: A Tutorial”
Fred B. Schneider
ACM Surveys, Vol. 22, No. 4, December 1990
This classic paper talks generally about how to build fault tolerant services, and includes many basic
definitions of terms. A must read for those building distributed systems.

[Z+13] “Zettabyte Reliability with Flexible End-to-end Data Integrity”
Yupu Zhang, Daniel S. Myers, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
MSST ’13, Long Beach, California, May 2013
Our own work on adding data protection to the page cache of a system, which protects against memory
corruption as well as on-disk corruption.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

45

Summary Dialogue on Persistence

Student: Wow, file systems seem interesting(!), and yet complicated.

Professor: That’s why me and my spouse do our research in this space.

Student: Hold on. Are you one of the professors who wrote this book? I thought
we were both just fake constructs, used to summarize some main points, and
perhaps add a little levity in the study of operating systems.

Professor: Uh... er... maybe. And none of your business! And who did you
think was writing these things? (sighs) Anyhow, let’s get on with it: what did
you learn?

Student: Well, I think I got one of the main points, which is that it is much
harder to manage data for a long time (persistently) than it is to manage data
that isn’t persistent (like the stuff in memory). After all, if your machines crashes,
memory contents disappear! But the stuff in the file system needs to live forever.

Professor: Well, as my friend Kevin Hultquist used to say, “Forever is a long
time”; while he was talking about plastic golf tees, it’s especially true for the
garbage that is found in most file systems.

Student: Well, you know what I mean! For a long time at least. And even simple
things, such as updating a persistent storage device, are complicated, because you
have to care what happens if you crash. Recovery, something I had never even
thought of when we were virtualizing memory, is now a big deal!

Professor: Too true. Updates to persistent storage have always been, and re-
main, a fun and challenging problem.

Student: I also learned about cool things like disk scheduling, and about data
protection techniques like RAID and even checksums. That stuff is cool.

Professor: I like those topics too. Though, if you really get into it, they can get a
little mathematical. Check out some the latest on erasure codes if you want your
brain to hurt.

Student: I’ll get right on that.

539

540 SUMMARY DIALOGUE ON PERSISTENCE

Professor: (frowns) I think you’re being sarcastic. Well, what else did you like?

Student: And I also liked all the thought that has gone into building technology-
aware systems, like FFS and LFS. Neat stuff! Being disk aware seems cool. But
will it matter anymore, with Flash and all the newest, latest technologies?

Professor: Good question! And a reminder to get working on that Flash chap-
ter... (scribbles note down to self) ... But yes, even with Flash, all of this stuff
is still relevant, amazingly. For example, Flash Translation Layers (FTLs) use
log-structuring internally, to improve performance and reliability of Flash-based
SSDs. And thinking about locality is always useful. So while the technology
may be changing, many of the ideas we have studied will continue to be useful,
for a while at least.

Student: That’s good. I just spent all this time learning it, and I didn’t want it
to all be for no reason!

Professor: Professors wouldn’t do that to you, would they?

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

46

A Dialogue on Distribution

Professor: And thus we reach our final little piece in the world of operating
systems: distributed systems. Since we can’t cover much here, we’ll sneak in a
little intro here in the section on persistence, and focus mostly on distributed file
systems. Hope that is OK!

Student: Sounds OK. But what is a distributed system exactly, oh glorious and
all-knowing professor?

Professor: Well, I bet you know how this is going to go...

Student: There’s a peach?

Professor: Exactly! But this time, it’s far away from you, and may take some
time to get the peach. And there are a lot of them! Even worse, sometimes a
peach becomes rotten. But you want to make sure that when anybody bites into
a peach, they will get a mouthful of deliciousness.

Student: This peach analogy is working less and less for me.

Professor: Come on! It’s the last one, just go with it.

Student: Fine.

Professor: So anyhow, forget about the peaches. Building distributed systems
is hard, because things fail all the time. Messages get lost, machines go down,
disks corrupt data. It’s like the whole world is working against you!

Student: But I use distributed systems all the time, right?

Professor: Yes! You do. And... ?

Student: Well, it seems like they mostly work. After all, when I send a search
request to google, it usually comes back in a snap, with some great results! Same
thing when I use facebook, or Amazon, and so forth.

541

542 A DIALOGUE ON DISTRIBUTION

Professor: Yes, it is amazing. And that’s despite all of those failures taking
place! Those companies build a huge amount of machinery into their systems so
as to ensure that even though some machines have failed, the entire system stays
up and running. They use a lot of techniques to do this: replication, retry, and
various other tricks people have developed over time to detect and recover from
failures.

Student: Sounds interesting. Time to learn something for real?

Professor: It does seem so. Let’s get to work! But first things first ...
(bites into peach he has been holding, which unfortunately is rotten)

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

47

Distributed Systems

Distributed systems have changed the face of the world. When your web
browser connects to a web server somewhere else on the planet, it is par-
ticipating in what seems to be a simple form of a client/server distributed
system. When you contact a modern web service such as Google or face-
book, you are not just interacting with a single machine, however; be-
hind the scenes, these complex services are built from a large collection
(i.e., thousands) of machines, each of which cooperate to provide the par-
ticular service of the site. Thus, it should be clear what makes studying
distributed systems interesting. Indeed, it is worthy of an entire class;
here, we just introduce a few of the major topics.

A number of new challenges arise when building a distributed system.
The major one we focus on is failure; machines, disks, networks, and
software all fail from time to time, as we do not (and likely, will never)
know how to build “perfect” components and systems. However, when
we build a modern web service, we’d like it to appear to clients as if it
never fails; how can we accomplish this task?

THE CRUX:
HOW TO BUILD SYSTEMS THAT WORK WHEN COMPONENTS FAIL

How can we build a working system out of parts that don’t work correctly
all the time? The basic question should remind you of some of the topics
we discussed in RAID storage arrays; however, the problems here tend
to be more complex, as are the solutions.

Interestingly, while failure is a central challenge in constructing dis-
tributed systems, it also represents an opportunity. Yes, machines fail;
but the mere fact that a machine fails does not imply the entire system
must fail. By collecting together a set of machines, we can build a sys-
tem that appears to rarely fail, despite the fact that its components fail
regularly. This reality is the central beauty and value of distributed sys-
tems, and why they underly virtually every modern web service you use,
including Google, Facebook, etc.

543

544 DISTRIBUTED SYSTEMS

TIP: COMMUNICATION IS INHERENTLY UNRELIABLE

In virtually all circumstances, it is good to view communication as a
fundamentally unreliable activity. Bit corruption, down or non-working
links and machines, and lack of buffer space for incoming packets all lead
to the same result: packets sometimes do not reach their destination. To
build reliable services atop such unreliable networks, we must consider
techniques that can cope with packet loss.

Other important issues exist as well. System performance is often crit-
ical; with a network connecting our distributed system together, system
designers must often think carefully about how to accomplish their given
tasks, trying to reduce the number of messages sent and further make
communication as efficient (low latency, high bandwidth) as possible.

Finally, security is also a necessary consideration. When connecting
to a remote site, having some assurance that the remote party is who
they say they are becomes a central problem. Further, ensuring that third
parties cannot monitor or alter an on-going communication between two
others is also a challenge.

In this introduction, we’ll cover the most basic new aspect that is new
in a distributed system: communication. Namely, how should machines
within a distributed system communicate with one another? We’ll start
with the most basic primitives available, messages, and build a few higher-
level primitives on top of them. As we said above, failure will be a central
focus: how should communication layers handle failures?

47.1 Communication Basics

The central tenet of modern networking is that communication is fun-
damentally unreliable. Whether in the wide-area Internet, or a local-area
high-speed network such as Infiniband, packets are regularly lost, cor-
rupted, or otherwise do not reach their destination.

There are a multitude of causes for packet loss or corruption. Some-
times, during transmission, some bits get flipped due to electrical or other
similar problems. Sometimes, an element in the system, such as a net-
work link or packet router or even the remote host, are somehow dam-
aged or otherwise not working correctly; network cables do accidentally
get severed, at least sometimes.

More fundamental however is packet loss due to lack of buffering
within a network switch, router, or endpoint. Specifically, even if we
could guarantee that all links worked correctly, and that all the compo-
nents in the system (switches, routers, end hosts) were up and running as
expected, loss is still possible, for the following reason. Imagine a packet
arrives at a router; for the packet to be processed, it must be placed in
memory somewhere within the router. If many such packets arrive at

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

DISTRIBUTED SYSTEMS 545

// client code

int main(int argc, char *argv[]) {

int sd = UDP_Open(20000);

struct sockaddr_in addr, addr2;

int rc = UDP_FillSockAddr(&addr, "machine.cs.wisc.edu", 10000);

char message[BUFFER_SIZE];

sprintf(message, "hello world");

rc = UDP_Write(sd, &addr, message, BUFFER_SIZE);

if (rc > 0) {

int rc = UDP_Read(sd, &addr2, buffer, BUFFER_SIZE);

}

return 0;

}

// server code

int main(int argc, char *argv[]) {

int sd = UDP_Open(10000);

assert(sd > -1);

while (1) {

struct sockaddr_in s;

char buffer[BUFFER_SIZE];

int rc = UDP_Read(sd, &s, buffer, BUFFER_SIZE);

if (rc > 0) {

char reply[BUFFER_SIZE];

sprintf(reply, "reply");

rc = UDP_Write(sd, &s, reply, BUFFER_SIZE);

}

}

return 0;

}

Figure 47.1: Example UDP/IP Client/Server Code

once, it is possible that the memory within the router cannot accommo-
date all of the packets. The only choice the router has at that point is
to drop one or more of the packets. This same behavior occurs at end
hosts as well; when you send a large number of messages to a single ma-
chine, the machine’s resources can easily become overwhelmed, and thus
packet loss again arises.

Thus, packet loss is fundamental in networking. The question thus
becomes: how should we deal with it?

47.2 Unreliable Communication Layers

One simple way is this: we don’t deal with it. Because some appli-
cations know how to deal with packet loss, it is sometimes useful to let
them communicate with a basic unreliable messaging layer, an example
of the end-to-end argument one often hears about (see the Aside at end
of chapter). One excellent example of such an unreliable layer is found
in the UDP/IP networking stack available today on virtually all modern
systems. To use UDP, a process uses the sockets API in order to create a
communication endpoint; processes on other machines (or on the same
machine) send UDP datagrams to the original process (a datagram is a
fixed-sized message up to some max size).

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

546 DISTRIBUTED SYSTEMS

int UDP_Open(int port) {

int sd;

if ((sd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) { return -1; }

struct sockaddr_in myaddr;

bzero(&myaddr, sizeof(myaddr));

myaddr.sin_family = AF_INET;

myaddr.sin_port = htons(port);

myaddr.sin_addr.s_addr = INADDR_ANY;

if (bind(sd, (struct sockaddr *) &myaddr, sizeof(myaddr)) == -1) {

close(sd);

return -1;

}

return sd;

}

int UDP_FillSockAddr(struct sockaddr_in *addr, char *hostName, int port) {

bzero(addr, sizeof(struct sockaddr_in));

addr->sin_family = AF_INET; // host byte order

addr->sin_port = htons(port); // short, network byte order

struct in_addr *inAddr;

struct hostent *hostEntry;

if ((hostEntry = gethostbyname(hostName)) == NULL) { return -1; }

inAddr = (struct in_addr *) hostEntry->h_addr;

addr->sin_addr = *inAddr;

return 0;

}

int UDP_Write(int sd, struct sockaddr_in *addr, char *buffer, int n) {

int addrLen = sizeof(struct sockaddr_in);

return sendto(sd, buffer, n, 0, (struct sockaddr *) addr, addrLen);

}

int UDP_Read(int sd, struct sockaddr_in *addr, char *buffer, int n) {

int len = sizeof(struct sockaddr_in);

return recvfrom(sd, buffer, n, 0, (struct sockaddr *) addr,

(socklen_t *) &len);

return rc;

}

Figure 47.2: A Simple UDP Library

Figures 47.1 and 47.2 show a simple client and server built on top of
UDP/IP. The client can send a message to the server, which then responds
with a reply. With this small amount of code, you have all you need to
begin building distributed systems!

UDP is a great example of an unreliable communication layer. If you
use it, you will encounter situations where packets get lost (dropped) and
thus do not reach their destination; the sender is never thus informed of
the loss. However, that does not mean that UDP does not guard against
any failures at all. For example, UDP includes a checksum to detect some
forms of packet corruption.

However, because many applications simply want to send data to a
destination and not worry about packet loss, we need more. Specifically,
we need reliable communication on top of an unreliable network.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

DISTRIBUTED SYSTEMS 547

TIP: USE CHECKSUMS FOR INTEGRITY

Checksums are a commonly-used method to detect corruption quickly
and effectively in modern systems. A simple checksum is addition: just
sum up the bytes of a chunk of data; of course, many other more sophis-
ticated checksums have been created, including basic cyclic redundancy
codes (CRCs), the Fletcher checksum, and many others [MK09].

In networking, checksums are used as follows. Before sending a message
from one machine to another, compute a checksum over the bytes of the
message. Then send both the message and the checksum to the desti-
nation. At the destination, the receiver computes a checksum over the
incoming message as well; if this computed checksum matches the sent
checksum, the receiver can feel some assurance that the data likely did
not get corrupted during transmission.

Checksums can be evaluated along a number of different axes. Effective-
ness is one primary consideration: does a change in the data lead to a
change in the checksum? The stronger the checksum, the harder it is for
changes in the data to go unnoticed. Performance is the other important
criterion: how costly is the checksum to compute? Unfortunately, effec-
tiveness and performance are often at odds, meaning that checksums of
high quality are often expensive to compute. Life, again, isn’t perfect.

47.3 Reliable Communication Layers

To build a reliable communication layer, we need some new mech-
anisms and techniques to handle packet loss. Let us consider a simple
example in which a client is sending a message to a server over an unreli-
able connection. The first question we must answer: how does the sender
know that the receiver has actually received the message?

The technique that we will use is known as an acknowledgment, or
ack for short. The idea is simple: the sender sends a message to the re-
ceiver; the receiver then sends a short message back to acknowledge its
receipt. Figure 47.3 depicts the process.

Sender
[send message]

Receiver

[receive message]

[send ack]

[receive ack]

Figure 47.3: Message Plus Acknowledgment

When the sender receives an acknowledgment of the message, it can
then rest assured that the message did indeed receive the original mes-
sage. However, what should the sender do if it does not receive an ac-
knowledgment?

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

548 DISTRIBUTED SYSTEMS

Sender
[send message;

 keep copy;

 set timer]

Receiver

...

 (waiting for ack)

...

[timer goes off;

 set timer/retry]

[receive message]

[send ack]

[receive ack;

 delete copy/timer off]

Figure 47.4: Message Plus Acknowledgment: Dropped Request

To handle this case, we need an additional mechanism, known as a
timeout. When the sender sends a message, the sender now sets a timer
to go off after some period of time. If, in that time, no acknowledgment
has been received, the sender concludes that the message has been lost.
The sender then simply performs a retry of the send, sending the same
message again with hopes that this time, it will get through. For this
approach to work, the sender must keep a copy of the message around,
in case it needs to send it again. The combination of the timeout and
the retry have led some to call the approach timeout/retry; pretty clever
crowd, those networking types, no? Figure 47.4 shows an example.

Unfortunately, timeout/retry in this form is not quite enough. Figure
47.5 shows an example of packet loss which could lead to trouble. In this
example, it is not the original message that gets lost, but the acknowledg-
ment. From the perspective of the sender, the situation seems the same:
no ack was received, and thus a timeout and retry are in order. But from
the perspective of the receiver, it is quite different: now the same message
has been received twice! While there may be cases where this is OK, in
general it is not; imagine what would happen when you are downloading
a file and extra packets are repeated inside the download. Thus, when we
are aiming for a reliable message layer, we also usually want to guarantee
that each message is received exactly once by the receiver.

To enable the receiver to detect duplicate message transmission, the
sender has to identify each message in some unique way, and the receiver
needs some way to track whether it has already seen each message be-
fore. When the receiver sees a duplicate transmission, it simply acks the
message, but (critically) does not pass the message to the application that
receives the data. Thus, the sender receives the ack but the message is not
received twice, preserving the exactly-once semantics mentioned above.

There are myriad ways to detect duplicate messages. For example, the
sender could generate a unique ID for each message; the receiver could
track every ID it has ever seen. This approach could work, but it is pro-
hibitively costly, requiring unbounded memory to track all IDs.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

DISTRIBUTED SYSTEMS 549

Sender
[send message;

 keep copy;

 set timer]

Receiver

[receive message]

[send ack]

...

 (waiting for ack)

...

[timer goes off;

 set timer/retry]

[receive message]

[send ack]

[receive ack;

 delete copy/timer off]

Figure 47.5: Message Plus Acknowledgment: Dropped Reply

A simpler approach, requiring little memory, solves this problem, and
the mechanism is known as a sequence counter. With a sequence counter,
the sender and receiver agree upon a start value (e.g., 1) for a counter
that each side will maintain. Whenever a message is sent, the current
value of the counter is sent along with the message; this counter value
(N) serves as an ID for the message. After the message is sent, the sender
then increments the value (to N + 1).

The receiver uses its counter value as the expected value for the ID
of the incoming message from that sender. If the ID of a received mes-
sage (N) matches the receiver’s counter (also N), it acks the message and
passes it up to the application; in this case, the receiver concludes this
is the first time this message has been received. The receiver then incre-
ments its counter (to N + 1), and waits for the next message.

If the ack is lost, the sender will timeout and re-send message N . This
time, the receiver’s counter is higher (N +1), and thus the receiver knows
it has already received this message. Thus it acks the message but does
not pass it up to the application. In this simple manner, sequence counters
can be used to avoid duplicates.

The most commonly used reliable communication layer is known as
TCP/IP, or just TCP for short. TCP has a great deal more sophistication
than we describe above, including machinery to handle congestion in the
network [VJ90], multiple outstanding requests, and hundreds of other
small tweaks and optimizations. Read more about it if you’re curious;
better yet, take a networking course and learn that material well.

47.4 Communication Abstractions

Given a basic messaging layer, we now approach the next question
in this chapter: what abstraction of communication should we use when
building a distributed system?

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

550 DISTRIBUTED SYSTEMS

TIP: BE CAREFUL SETTING THE TIMEOUT VALUE

As you can probably guess from the discussion, setting the timeout value
correctly is an important aspect of using timeouts to retry message sends.
If the timeout is too small, the sender will re-send messages needlessly,
thus wasting CPU time on the sender and network resources. If the time-
out is too large, the sender waits too long to re-send and thus perceived
performance at the sender is reduced. The “right” value, from the per-
spective of a single client and server, is thus to wait just long enough to
detect packet loss but no longer.

However, there are often more than just a single client and server in a
distributed system, as we will see in future chapters. In a scenario with
many clients sending to a single server, packet loss at the server may be
an indicator that the server is overloaded. If true, clients might retry in
a different adaptive manner; for example, after the first timeout, a client
might increase its timeout value to a higher amount, perhaps twice as
high as the original value. Such an exponential back-off scheme, pio-
neered in the early Aloha network and adopted in early Ethernet [A70],
avoid situations where resources are being overloaded by an excess of
re-sends. Robust systems strive to avoid overload of this nature.

The systems community developed a number of approaches over the
years. One body of work took OS abstractions and extended them to
operate in a distributed environment. For example, distributed shared
memory (DSM) systems enable processes on different machines to share
a large, virtual address space [LH89]. This abstraction turns a distributed
computation into something that looks like a multi-threaded application;
the only difference is that these threads run on different machines instead
of different processors within the same machine.

The way most DSM systems work is through the virtual memory sys-
tem of the OS. When a page is accessed on one machine, two things can
happen. In the first (best) case, the page is already local on the machine,
and thus the data is fetched quickly. In the second case, the page is cur-
rently on some other machine. A page fault occurs, and the page fault
handler sends a message to some other machine to fetch the page, install
it in the page table of the requesting process, and continue execution.

This approach is not widely in use today for a number of reasons. The
largest problem for DSM is how it handles failure. Imagine, for example,
if a machine fails; what happens to the pages on that machine? What if
the data structures of the distributed computation are spread across the
entire address space? In this case, parts of these data structures would
suddenly become unavailable. Dealing with failure when parts of your
address space go missing is hard; imagine a linked list that where a next
pointer points into a portion of the address space that is gone. Yikes!

A further problem is performance. One usually assumes, when writ-
ing code, that access to memory is cheap. In DSM systems, some accesses

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

DISTRIBUTED SYSTEMS 551

are inexpensive, but others cause page faults and expensive fetches from
remote machines. Thus, programmers of such DSM systems had to be
very careful to organize computations such that almost no communica-
tion occurred at all, defeating much of the point of such an approach.
Though much research was performed in this space, there was little prac-
tical impact; nobody builds reliable distributed systems using DSM today.

47.5 Remote Procedure Call (RPC)

While OS abstractions turned out to be a poor choice for building dis-
tributed systems, programming language (PL) abstractions make much
more sense. The most dominant abstraction is based on the idea of a re-
mote procedure call, or RPC for short [BN84]1.

Remote procedure call packages all have a simple goal: to make the
process of executing code on a remote machine as simple and straight-
forward as calling a local function. Thus, to a client, a procedure call is
made, and some time later, the results are returned. The server simply
defines some routines that it wishes to export. The rest of the magic is
handled by the RPC system, which in general has two pieces: a stub gen-
erator (sometimes called a protocol compiler), and the run-time library.
We’ll now take a look at each of these pieces in more detail.

Stub Generator

The stub generator’s job is simple: to remove some of the pain of packing
function arguments and results into messages by automating it. Numer-
ous benefits arise: one avoids, by design, the simple mistakes that occur
in writing such code by hand; further, a stub compiler can perhaps opti-
mize such code and thus improve performance.

The input to such a compiler is simply the set of calls a server wishes
to export to clients. Conceptually, it could be something as simple as this:

interface {

int func1(int arg1);

int func2(int arg1, int arg2);

};

The stub generator takes an interface like this and generates a few dif-
ferent pieces of code. For the client, a client stub is generated, which
contains each of the functions specified in the interface; a client program
wishing to use this RPC service would link with this client stub and call
into it in order to make RPCs.

Internally, each of these functions in the client stub do all of the work
needed to perform the remote procedure call. To the client, the code just

1In modern programming languages, we might instead say remote method invocation
(RMI), but who likes these languages anyhow, with all of their fancy objects?

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

552 DISTRIBUTED SYSTEMS

appears as a function call (e.g., the client calls func1(x)); internally, the
code in the client stub for func1() does this:

• Create a message buffer. A message buffer is usually just a con-
tiguous array of bytes of some size.

• Pack the needed information into the message buffer. This infor-
mation includes some kind of identifier for the function to be called,
as well as all of the arguments that the function needs (e.g., in our
example above, one integer for func1). The process of putting all
of this information into a single contiguous buffer is sometimes re-
ferred to as the marshaling of arguments or the serialization of the
message.

• Send the message to the destination RPC server. The communi-
cation with the RPC server, and all of the details required to make
it operate correctly, are handled by the RPC run-time library, de-
scribed further below.

• Wait for the reply. Because function calls are usually synchronous,
the call will wait for its completion.

• Unpack return code and other arguments. If the function just re-
turns a single return code, this process is straightforward; however,
more complex functions might return more complex results (e.g., a
list), and thus the stub might need to unpack those as well. This
step is also known as unmarshaling or deserialization.

• Return to the caller. Finally, just return from the client stub back
into the client code.

For the server, code is also generated. The steps taken on the server
are as follows:

• Unpack the message. This step, called unmarshaling or deserial-
ization, takes the information out of the incoming message. The
function identifier and arguments are extracted.

• Call into the actual function. Finally! We have reached the point
where the remote function is actually executed. The RPC runtime
calls into the function specified by the ID and passes in the desired
arguments.

• Package the results. The return argument(s) are marshaled back
into a single reply buffer.

• Send the reply. The reply is finally sent to the caller.

There are a few other important issues to consider in a stub compiler.
The first is complex arguments, i.e., how does one package and send
a complex data structure? For example, when one calls the write()

system call, one passes in three arguments: an integer file descriptor, a
pointer to a buffer, and a size indicating how many bytes (starting at the
pointer) are to be written. If an RPC package is passed a pointer, it needs
to be able to figure out how to interpret that pointer, and perform the

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

DISTRIBUTED SYSTEMS 553

correct action. Usually this is accomplished through either well-known
types (e.g., a buffer t that is used to pass chunks of data given a size,
which the RPC compiler understands), or by annotating the data struc-
tures with more information, enabling the compiler to know which bytes
need to be serialized.

Another important issue is the organization of the server with regards
to concurrency. A simple server just waits for requests in a simple loop,
and handles each request one at a time. However, as you might have
guessed, this can be grossly inefficient; if one RPC call blocks (e.g., on
I/O), server resources are wasted. Thus, most servers are constructed in
some sort of concurrent fashion. A common organization is a thread pool.
In this organization, a finite set of threads are created when the server
starts; when a message arrives, it is dispatched to one of these worker
threads, which then does the work of the RPC call, eventually replying;
during this time, a main thread keeps receiving other requests, and per-
haps dispatching them to other workers. Such an organization enables
concurrent execution within the server, thus increasing its utilization; the
standard costs arise as well, mostly in programming complexity, as the
RPC calls may now need to use locks and other synchronization primi-
tives in order to ensure their correct operation.

Run-Time Library

The run-time library handles much of the heavy lifting in an RPC system;
most performance and reliability issues are handled herein. We’ll now
discuss some of the major challenges in building such a run-time layer.

One of the first challenges we must overcome is how to locate a re-
mote service. This problem, of naming, is a common one in distributed
systems, and in some sense goes beyond the scope of our current discus-
sion. The simplest of approaches build on existing naming systems, e.g.,
hostnames and port numbers provided by current internet protocols. In
such a system, the client must know the hostname or IP address of the
machine running the desired RPC service, as well as the port number it is
using (a port number is just a way of identifying a particular communica-
tion activity taking place on a machine, allowing multiple communication
channels at once). The protocol suite must then provide a mechanism to
route packets to a particular address from any other machine in the sys-
tem. For a good discussion of naming, read either the Grapevine paper
or about DNS and name resolution on the Internet, or better yet just read
the excellent chapter in Saltzer and Kaashoek’s book [SK09].

Once a client knows which server it should talk to for a particular re-
mote service, the next question is which transport-level protocol should
RPC be built upon. Specifically, should the RPC system use a reliable pro-
tocol such as TCP/IP, or be built upon an unreliable communication layer
such as UDP/IP?

Naively the choice would seem easy: clearly we would like for a re-
quest to be reliably delivered to the remote server, and clearly we would

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

554 DISTRIBUTED SYSTEMS

like to reliably receive a reply. Thus we should choose the reliable trans-
port protocol such as TCP, right?

Unfortunately, building RPC on top of a reliable communication layer
can lead to a major inefficiency in performance. Recall from the discus-
sion above how reliable communication layers work: with acknowledg-
ments plus timeout/retry. Thus, when the client sends an RPC request
to the server, the server responds with an acknowledgment so that the
caller knows the request was received. Similarly, when the server sends
the reply to the client, the client acks it so that the server knows it was
received. By building a request/response protocol (such as RPC) on top
of a reliable communication layer, two “extra” messages are sent.

For this reason, many RPC packages are built on top of unreliable com-
munication layers, such as UDP. Doing so enables a more efficient RPC
layer, but does add the responsibility of providing reliability to the RPC
system. The RPC layer achieves the desired level of responsibility by us-
ing timeout/retry and acknowledgments much like we described above.
By using some form of sequence numbering, the communication layer
can guarantee that each RPC takes place exactly once (in the case of no
failure), or at most once (in the case where failure arises).

Other Issues

There are some other issues an RPC run-time must handle as well. For
example, what happens when a remote call takes a long time to com-
plete? Given our timeout machinery, a long-running remote call might
appear as a failure to a client, thus triggering a retry, and thus the need
for some care here. One solution is to use an explicit acknowledgment
(from the receiver to sender) when the reply isn’t immediately generated;
this lets the client know the server received the request. Then, after some
time has passed, the client can periodically ask whether the server is still
working on the request; if the server keeps saying “yes”, the client should
be happy and continue to wait (after all, sometimes a procedure call can
take a long time to finish executing).

The run-time must also handle procedure calls with large arguments,
larger than what can fit into a single packet. Some lower-level network
protocols provide such sender-side fragmentation (of larger packets into
a set of smaller ones) and receiver-side reassembly (of smaller parts into
one larger logical whole); if not, the RPC run-time may have to implement
such functionality itself. See Birrell and Nelson’s excellent RPC paper for
details [BN84].

One issue that many systems handle is that of byte ordering. As you
may know, some machines store values in what is known as big endian
ordering, whereas others use little endian ordering. Big endian stores
bytes (say, of an integer) from most significant to least significant bits,
much like Arabic numerals; little endian does the opposite. Both are
equally valid ways of storing numeric information; the question here is
how to communicate between machines of different endianness.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

DISTRIBUTED SYSTEMS 555

Aside: The End-to-End Argument
The end-to-end argument makes the case that the highest level in a

system, i.e., usually the application at “the end”, is ultimately the only
locale within a layered system where certain functionality can truly be
implemented. In their landmark paper, Saltzer et al. argue this through
an excellent example: reliable file transfer between two machines. If you
want to transfer a file from machine A to machine B, and make sure that
the bytes that end up on B are exactly the same as those that began on
A, you must have an “end-to-end” check of this; lower-level reliable ma-
chinery, e.g., in the network or disk, provides no such guarantee.

The contrast is an approach which tries to solve the reliable-file-
transfer problem by adding reliability to lower layers of the system. For
example, say we build a reliable communication protocol and use it to
build our reliable file transfer. The communication protocol guarantees
that every byte sent by a sender will be received in order by the receiver,
say using timeout/retry, acknowledgments, and sequence numbers. Un-
fortunately, using such a protocol does not a reliable file transfer make;
imagine the bytes getting corrupted in sender memory before the com-
munication even takes place, or something bad happening when the re-
ceiver writes the data to disk. In those cases, even though the bytes were
delivered reliably across the network, our file transfer was ultimately
not reliable. To build a reliable file transfer, one must include end-to-
end checks of reliability, e.g., after the entire transfer is complete, read
back the file on the receiver disk, compute a checksum, and compare that
checksum to that of the file on the sender.

The corollary to this maxim is that sometimes having lower layers pro-
vide extra functionality can indeed improve system performance or oth-
erwise optimize a system. Thus, you should not rule out having such
machinery at a lower-level in a system; rather, you should carefully con-
sider the utility of such machinery, given its eventual usage in an overall
system or application.

RPC packages often handle this by providing a well-defined endian-
ness within their message formats. In Sun’s RPC package, the XDR (eX-
ternal Data Representation) layer provides this functionality. If the ma-
chine sending or receiving a message matches the endianness of XDR,
messages are just sent and received as expected. If, however, the machine
communicating has a different endianness, each piece of information in
the message must be converted. Thus, the difference in endianness can
have a small performance cost.

A final issue is whether to expose the asynchronous nature of com-
munication to clients, thus enabling some performance optimizations.
Specifically, typical RPCs are made synchronously, i.e., when a client
issues the procedure call, it must wait for the procedure call to return
before continuing. Because this wait can be long, and because the client

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

556 DISTRIBUTED SYSTEMS

may have other work it could be doing, some RPC packages enable you
to invoke an RPC asynchronously. When an asynchronous RPC is is-
sued, the RPC package sends the request and returns immediately; the
client is then free to do other work, such as call other RPCs or other use-
ful computation. The client at some point will want to see the results of
the asynchronous RPC; it thus calls back into the RPC layer, telling it to
wait for outstanding RPCs to complete, at which point return arguments
can be accessed.

47.6 Summary

We have seen the introduction of a new topic, distributed systems, and
its major issue: how to handle failure which is now a commonplace event.
As they say inside of Google, when you have just your desktop machine,
failure is rare; when you’re in a data center with thousands of machines,
failure is happening all the time. The key to any distributed system is
how you deal with that failure.

We have also seen that communication forms the heart of any dis-
tributed system. A common abstraction of that communication is found
in remote procedure call (RPC), which enables clients to make remote
calls on servers; the RPC package handles all of the gory details, includ-
ing timeout/retry and acknowledgment, in order to deliver a service that
closely mirrors a local procedure call.

The best way to really understand an RPC package is of course to use
one yourself. Sun’s RPC system, using the stub compiler rpcgen, is a
common one, and is widely available on systems today, including Linux.
Try it out, and see what all the fuss is about.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

DISTRIBUTED SYSTEMS 557

References

[A70] “The ALOHA System – Another Alternative for Computer Communications”
Norman Abramson
The 1970 Fall Joint Computer Conference
The ALOHA network pioneered some basic concepts in networking, including exponential back-off and
retransmit, which formed the basis for communication in shared-bus Ethernet networks for years.

[BN84] “Implementing Remote Procedure Calls”
Andrew D. Birrell, Bruce Jay Nelson
ACM TOCS, Volume 2:1, February 1984
The foundational RPC system upon which all others build. Yes, another pioneering effort from our
friends at Xerox PARC.

[MK09] “The Effectiveness of Checksums for Embedded Control Networks”
Theresa C. Maxino and Philip J. Koopman
IEEE Transactions on Dependable and Secure Computing, 6:1, January ’09
A nice overview of basic checksum machinery and some performance and robustness comparisons be-
tween them.

[LH89] “Memory Coherence in Shared Virtual Memory Systems”
Kai Li and Paul Hudak
ACM TOCS, 7:4, November 1989
The introduction of software-based shared memory via virtual memory. An intriguing idea for sure, but
not a lasting or good one in the end.

[SK09] “Principles of Computer System Design”
Jerome H. Saltzer and M. Frans Kaashoek
Morgan-Kaufmann, 2009
An excellent book on systems, and a must for every bookshelf. One of the few terrific discussions on
naming we’ve seen.

[SRC84] “End-To-End Arguments in System Design”
Jerome H. Saltzer, David P. Reed, David D. Clark
ACM TOCS, 2:4, November 1984
A beautiful discussion of layering, abstraction, and where functionality must ultimately reside in com-
puter systems.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

48

Sun’s Network File System (NFS)

One of the first uses of distributed client/server computing was in the
realm of distributed file systems. In such an environment, there are a
number of client machines and one server (or a few); the server stores the
data on its disks, and clients request data through well-formed protocol
messages. Figure 48.1 depicts the basic setup.

Client 0

Client 1

Client 2

Client 3

ServerNetwork

Figure 48.1: A Generic Client/Server System

As you can see from the picture, the server has the disks, and clients
send messages network to access their directories and files on those disks.
Why do we bother with this arrangement? (i.e., why don’t we just let
clients use their local disks?) Well, primarily this setup allows for easy
sharing of data across clients. Thus, if you access a file on one machine
(Client 0) and then later use another (Client 2), you will have the same
view of the file system. Your data is naturally shared across these dif-
ferent machines. A secondary benefit is centralized administration; for
example, backing up files can be done from the few server machines in-
stead of from the multitude of clients. Another advantage could be secu-
rity; having all servers in a locked machine room prevents certain types
of problems from arising.

559

560 SUN’S NETWORK FILE SYSTEM (NFS)

CRUX: HOW TO BUILD A DISTRIBUTED FILE SYSTEM

How do you build a distributed file system? What are the key aspects
to think about? What is easy to get wrong? What can we learn from
existing systems?

48.1 A Basic Distributed File System

We now will study the architecture of a simplified distributed file sys-
tem. A simple client/server distributed file system has more components
than the file systems we have studied so far. On the client side, there are
client applications which access files and directories through the client-
side file system. A client application issues system calls to the client-side
file system (such as open(), read(), write(), close(), mkdir(),
etc.) in order to access files which are stored on the server. Thus, to client
applications, the file system does not appear to be any different than a lo-
cal (disk-based) file system, except perhaps for performance; in this way,
distributed file systems provide transparent access to files, an obvious
goal; after all, who would want to use a file system that required a differ-
ent set of APIs or otherwise was a pain to use?

The role of the client-side file system is to execute the actions needed
to service those system calls. For example, if the client issues a read()

request, the client-side file system may send a message to the server-side
file system (or, more commonly, the file server) to read a particular block;
the file server will then read the block from disk (or its own in-memory
cache), and send a message back to the client with the requested data.
The client-side file system will then copy the data into the user buffer
supplied to the read() system call and thus the request will complete.
Note that a subsequent read() of the same block on the client may be
cached in client memory or on the client’s disk even; in the best such case,
no network traffic need be generated.

Client Application

Client-side File System

Networking Layer

File Server

Networking Layer

Disks

Figure 48.2: Distributed File System Architecture

From this simple overview, you should get a sense that there are two
important pieces of software in a client/server distributed file system: the
client-side file system and the file server. Together their behavior deter-
mines the behavior of the distributed file system. Now it’s time to study
one particular system: Sun’s Network File System (NFS).

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SUN’S NETWORK FILE SYSTEM (NFS) 561

ASIDE: WHY SERVERS CRASH

Before getting into the details of the NFSv2 protocol, you might be
wondering: why do servers crash? Well, as you might guess, there are
plenty of reasons. Servers may simply suffer from a power outage (tem-
porarily); only when power is restored can the machines be restarted.
Servers are often comprised of hundreds of thousands or even millions
of lines of code; thus, they have bugs (even good software has a few
bugs per hundred or thousand lines of code), and thus they eventually
will trigger a bug that will cause them to crash. They also have memory
leaks; even a small memory leak will cause a system to run out of mem-
ory and crash. And, finally, in distributed systems, there is a network
between the client and the server; if the network acts strangely (for ex-
ample, if it becomes partitioned and clients and servers are working but
cannot communicate), it may appear as if a remote machine has crashed,
but in reality it is just not currently reachable through the network.

48.2 On To NFS

One of the earliest and quite successful distributed systems was devel-
oped by Sun Microsystems, and is known as the Sun Network File Sys-
tem (or NFS) [S86]. In defining NFS, Sun took an unusual approach: in-
stead of building a proprietary and closed system, Sun instead developed
an open protocol which simply specified the exact message formats that
clients and servers would use to communicate. Different groups could
develop their own NFS servers and thus compete in an NFS marketplace
while preserving interoperability. It worked: today there are many com-
panies that sell NFS servers (including Oracle/Sun, NetApp [HLM94],
EMC, IBM, and others), and the widespread success of NFS is likely at-
tributed to this “open market” approach.

48.3 Focus: Simple and Fast Server Crash Recovery

In this chapter, we will discuss the classic NFS protocol (version 2,
a.k.a. NFSv2), which was the standard for many years; small changes
were made in moving to NFSv3, and larger-scale protocol changes were
made in moving to NFSv4. However, NFSv2 is both wonderful and frus-
trating and thus serves as our focus.

In NFSv2, the main goal in the design of the protocol was simple and
fast server crash recovery. In a multiple-client, single-server environment,
this goal makes a great deal of sense; any minute that the server is down
(or unavailable) makes all the client machines (and their users) unhappy
and unproductive. Thus, as the server goes, so goes the entire system.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

562 SUN’S NETWORK FILE SYSTEM (NFS)

48.4 Key To Fast Crash Recovery: Statelessness

This simple goal is realized in NFSv2 by designing what we refer to
as a stateless protocol. The server, by design, does not keep track of any-
thing about what is happening at each client. For example, the server
does not know which clients are caching which blocks, or which files are
currently open at each client, or the current file pointer position for a file,
etc. Simply put, the server does not track anything about what clients are
doing; rather, the protocol is designed to deliver in each protocol request
all the information that is needed in order to complete the request. If it
doesn’t now, this stateless approach will make more sense as we discuss
the protocol in more detail below.

For an example of a stateful (not stateless) protocol, consider the open()
system call. Given a pathname, open() returns a file descriptor (an inte-
ger). This descriptor is used on subsequent read() or write() requests
to access various file blocks, as in this application code (note that proper
error checking of the system calls is omitted for space reasons):

char buffer[MAX];

int fd = open("foo", O_RDONLY); // get descriptor "fd"

read(fd, buffer, MAX); // read MAX bytes from foo (via fd)

read(fd, buffer, MAX); // read MAX bytes from foo

...

read(fd, buffer, MAX); // read MAX bytes from foo

close(fd); // close file

Figure 48.3: Client Code: Reading From A File

Now imagine that the client-side file system opens the file by sending
a protocol message to the server saying “open the file ’foo’ and give me
back a descriptor”. The file server then opens the file locally on its side
and sends the descriptor back to the client. On subsequent reads, the
client application uses that descriptor to call the read() system call; the
client-side file system then passes the descriptor in a message to the file
server, saying “read some bytes from the file that is referred to by the
descriptor I am passing you here”.

In this example, the file descriptor is a piece of shared state between
the client and the server (Ousterhout calls this distributed state [O91]).
Shared state, as we hinted above, complicates crash recovery. Imagine
the server crashes after the first read completes, but before the client
has issued the second one. After the server is up and running again,
the client then issues the second read. Unfortunately, the server has no
idea to which file fd is referring; that information was ephemeral (i.e.,
in memory) and thus lost when the server crashed. To handle this situa-
tion, the client and server would have to engage in some kind of recovery
protocol, where the client would make sure to keep enough information
around in its memory to be able to tell the server what it needs to know
(in this case, that file descriptor fd refers to file foo).

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SUN’S NETWORK FILE SYSTEM (NFS) 563

It gets even worse when you consider the fact that a stateful server has
to deal with client crashes. Imagine, for example, a client that opens a file
and then crashes. The open() uses up a file descriptor on the server; how
can the server know it is OK to close a given file? In normal operation, a
client would eventually call close() and thus inform the server that the
file should be closed. However, when a client crashes, the server never
receives a close(), and thus has to notice the client has crashed in order
to close the file.

For these reasons, the designers of NFS decided to pursue a stateless
approach: each client operation contains all the information needed to
complete the request. No fancy crash recovery is needed; the server just
starts running again, and a client, at worst, might have to retry a request.

48.5 The NFSv2 Protocol

We thus arrive at the NFSv2 protocol definition. Our problem state-
ment is simple:

THE CRUX: HOW TO DEFINE A STATELESS FILE PROTOCOL

How can we define the network protocol to enable stateless operation?
Clearly, stateful calls like open() can’t be a part of the discussion (as it
would require the server to track open files); however, the client appli-
cation will want to call open(), read(), write(), close() and other
standard API calls to access files and directories. Thus, as a refined ques-
tion, how do we define the protocol to both be stateless and support the
POSIX file system API?

One key to understanding the design of the NFS protocol is under-
standing the file handle. File handles are used to uniquely describe the
file or directory a particular operation is going to operate upon; thus,
many of the protocol requests include a file handle.

You can think of a file handle as having three important components: a
volume identifier, an inode number, and a generation number; together, these
three items comprise a unique identifier for a file or directory that a client
wishes to access. The volume identifier informs the server which file sys-
tem the request refers to (an NFS server can export more than one file
system); the inode number tells the server which file within that partition
the request is accessing. Finally, the generation number is needed when
reusing an inode number; by incrementing it whenever an inode num-
ber is reused, the server ensures that a client with an old file handle can’t
accidentally access the newly-allocated file.

Here is a summary of some of the important pieces of the protocol; the
full protocol is available elsewhere (see Callaghan’s book for an excellent
and detailed overview of NFS [C00]).

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

564 SUN’S NETWORK FILE SYSTEM (NFS)

NFSPROC_GETATTR

expects: file handle

returns: attributes

NFSPROC_SETATTR

expects: file handle, attributes

returns: nothing

NFSPROC_LOOKUP

expects: directory file handle, name of file/directory to look up

returns: file handle

NFSPROC_READ

expects: file handle, offset, count

returns: data, attributes

NFSPROC_WRITE

expects: file handle, offset, count, data

returns: attributes

NFSPROC_CREATE

expects: directory file handle, name of file, attributes

returns: nothing

NFSPROC_REMOVE

expects: directory file handle, name of file to be removed

returns: nothing

NFSPROC_MKDIR

expects: directory file handle, name of directory, attributes

returns: file handle

NFSPROC_RMDIR

expects: directory file handle, name of directory to be removed

returns: nothing

NFSPROC_READDIR

expects: directory handle, count of bytes to read, cookie

returns: directory entries, cookie (to get more entries)

Figure 48.4: The NFS Protocol: Examples

We briefly highlight the important components of the protocol. First,
the LOOKUP protocol message is used to obtain a file handle, which is
then subsequently used to access file data. The client passes a directory
file handle and name of a file to look up, and the handle to that file (or
directory) plus its attributes are passed back to the client from the server.

For example, assume the client already has a directory file handle for
the root directory of a file system (/) (indeed, this would be obtained
through the NFS mount protocol, which is how clients and servers first
are connected together; we do not discuss the mount protocol here for
sake of brevity). If an application running on the client opens the file
/foo.txt, the client-side file system sends a lookup request to the server,
passing it the root file handle and the name foo.txt; if successful, the
file handle (and attributes) for foo.txt will be returned.

In case you are wondering, attributes are just the metadata that the file
system tracks about each file, including fields such as file creation time,
last modification time, size, ownership and permissions information, and
so forth, i.e., the same type of information that you would get back if you
called stat() on a file.

Once a file handle is available, the client can issue READ and WRITE
protocol messages on a file to read or write the file, respectively. The
READ protocol message requires the protocol to pass along the file handle

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SUN’S NETWORK FILE SYSTEM (NFS) 565

of the file along with the offset within the file and number of bytes to read.
The server then will be able to issue the read (after all, the handle tells the
server which volume and which inode to read from, and the offset and
count tells it which bytes of the file to read) and return the data to the
client (or an error if there was a failure). WRITE is handled similarly,
except the data is passed from the client to the server, and just a success
code is returned.

One last interesting protocol message is the GETATTR request; given a
file handle, it simply fetches the attributes for that file, including the last
modified time of the file. We will see why this protocol request is impor-
tant in NFSv2 below when we discuss caching (can you guess why?).

48.6 From Protocol to Distributed File System

Hopefully you are now getting some sense of how this protocol is
turned into a file system across the client-side file system and the file
server. The client-side file system tracks open files, and generally trans-
lates application requests into the relevant set of protocol messages. The
server simply responds to each protocol message, each of which has all
the information needed to complete request.

For example, let us consider a simple application which reads a file.
In the diagram (Figure 48.1), we show what system calls the application
makes, and what the client-side file system and file server do in respond-
ing to such calls.

A few comments about the figure. First, notice how the client tracks all
relevant state for the file access, including the mapping of the integer file
descriptor to an NFS file handle as well as the current file pointer. This
enables the client to turn each read request (which you may have noticed
do not specify the offset to read from explicitly) into a properly-formatted
read protocol message which tells the server exactly which bytes from
the file to read. Upon a successful read, the client updates the current
file position; subsequent reads are issued with the same file handle but a
different offset.

Second, you may notice where server interactions occur. When the file
is opened for the first time, the client-side file system sends a LOOKUP
request message. Indeed, if a long pathname must be traversed (e.g.,
/home/remzi/foo.txt), the client would send three LOOKUPs: one
to look up home in the directory /, one to look up remzi in home, and
finally one to look up foo.txt in remzi.

Third, you may notice how each server request has all the information
needed to complete the request in its entirety. This design point is critical
to be able to gracefully recover from server failure, as we will now discuss
in more detail; it ensures that the server does not need state to be able to
respond to the request.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

566 SUN’S NETWORK FILE SYSTEM (NFS)

Client Server

fd = open(”/foo”, ...);
Send LOOKUP (rootdir FH, ”foo”)

Receive LOOKUP request
look for ”foo” in root dir
return foo’s FH + attributes

Receive LOOKUP reply
allocate file desc in open file table
store foo’s FH in table
store current file position (0)
return file descriptor to application

read(fd, buffer, MAX);
Index into open file table with fd

get NFS file handle (FH)
use current file position as offset

Send READ (FH, offset=0, count=MAX)
Receive READ request

use FH to get volume/inode num
read inode from disk (or cache)
compute block location (using offset)
read data from disk (or cache)
return data to client

Receive READ reply
update file position (+bytes read)
set current file position = MAX
return data/error code to app

read(fd, buffer, MAX);
Same except offset=MAX and set current file position = 2*MAX

read(fd, buffer, MAX);
Same except offset=2*MAX and set current file position = 3*MAX

close(fd);
Just need to clean up local structures
Free descriptor ”fd” in open file table
(No need to talk to server)

Table 48.1: Reading A File: Client-side And File Server Actions

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SUN’S NETWORK FILE SYSTEM (NFS) 567

TIP: IDEMPOTENCY IS POWERFUL

Idempotency is a useful property when building reliable systems. When
an operation can be issued more than once, it is much easier to handle
failure of the operation; you can just retry it. If an operation is not idem-
potent, life becomes more difficult.

48.7 Handling Server Failure with Idempotent Operations

When a client sends a message to the server, it sometimes does not re-
ceive a reply. There are many possible reasons for this failure to respond.
In some cases, the message may be dropped by the network; networks do
lose messages, and thus either the request or the reply could be lost and
thus the client would never receive a response.

It is also possible that the server has crashed, and thus is not currently
responding to messages. After a bit, the server will be rebooted and start
running again, but in the meanwhile all requests have been lost. In all of
these cases, clients are left with a question: what should they do when
the server does not reply in a timely manner?

In NFSv2, a client handles all of these failures in a single, uniform, and
elegant way: it simply retries the request. Specifically, after sending the
request, the client sets a timer to go off after a specified time period. If a
reply is received before the timer goes off, the timer is canceled and all is
well. If, however, the timer goes off before any reply is received, the client
assumes the request has not been processed and resends it. If the server
replies, all is well and the client has neatly handled the problem.

The ability of the client to simply retry the request (regardless of what
caused the failure) is due to an important property of most NFS requests:
they are idempotent. An operation is called idempotent when the effect
of performing the operation multiple times is equivalent to the effect of
performing the operating a single time. For example, if you store a value
to a memory location three times, it is the same as doing so once; thus
“store value to memory” is an idempotent operation. If, however, you in-
crement a counter three times, it results in a different amount than doing
so just once; thus, “increment counter” is not idempotent. More gener-
ally, any operation that just reads data is obviously idempotent; an oper-
ation that updates data must be more carefully considered to determine
if it has this property.

The heart of the design of crash recovery in NFS is the idempotency
of most common operations. LOOKUP and READ requests are trivially
idempotent, as they only read information from the file server and do not
update it. More interestingly, WRITE requests are also idempotent. If,
for example, a WRITE fails, the client can simply retry it. The WRITE
message contains the data, the count, and (importantly) the exact offset
to write the data to. Thus, it can be repeated with the knowledge that the
outcome of multiple writes is the same as the outcome of a single one.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

568 SUN’S NETWORK FILE SYSTEM (NFS)

Case 1: Request Lost
Client

[send request]
Server

(no mesg)

Case 2: Server Down
Client

[send request]
Server

(down)

Case 3: Reply lost on way back from Server
Client

[send request]
Server

[recv request]

[handle request]

[send reply]

Figure 48.5: The Three Types of Loss

In this way, the client can handle all timeouts in a unified way. If a
WRITE request was simply lost (Case 1 above), the client will retry it, the
server will perform the write, and all will be well. The same will happen
if the server happened to be down while the request was sent, but back
up and running when the second request is sent, and again all works
as desired (Case 2). Finally, the server may in fact receive the WRITE
request, issue the write to its disk, and send a reply. This reply may get
lost (Case 3), again causing the client to re-send the request. When the
server receives the request again, it will simply do the exact same thing:
write the data to disk and reply that it has done so. If the client this time
receives the reply, all is again well, and thus the client has handled both
message loss and server failure in a uniform manner. Neat!

A small aside: some operations are hard to make idempotent. For
example, when you try to make a directory that already exists, you are
informed that the mkdir request has failed. Thus, in NFS, if the file server
receives a MKDIR protocol message and executes it successfully but the
reply is lost, the client may repeat it and encounter that failure when in
fact the operation at first succeeded and then only failed on the retry.
Thus, life is not perfect.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SUN’S NETWORK FILE SYSTEM (NFS) 569

TIP: PERFECT IS THE ENEMY OF THE GOOD (VOLTAIRE’S LAW)
Even when you design a beautiful system, sometimes all the corner cases
don’t work out exactly as you might like. Take the mkdir example above;
one could redesign mkdir to have different semantics, thus making it
idempotent (think about how you might do so); however, why bother?
The NFS design philosophy covers most of the important cases, and over-
all makes the system design clean and simple with regards to failure.
Thus, accepting that life isn’t perfect and still building the system is a sign
of good engineering. Apparently, this wisdom is attributed to Voltaire,
for saying “... a wise Italian says that the best is the enemy of the good”
[V72], and thus we call it Voltaire’s Law.

48.8 Improving Performance: Client-side Caching

Distributed file systems are good for a number of reasons, but sending
all read and write requests across the network can lead to a big perfor-
mance problem: the network generally isn’t that fast, especially as com-
pared to local memory or disk. Thus, another problem: how can we im-
prove the performance of a distributed file system?

The answer, as you might guess from reading the big bold words in
the sub-heading above, is client-side caching. The NFS client-side file
system caches file data (and metadata) that it has read from the server in
client memory. Thus, while the first access is expensive (i.e., it requires
network communication), subsequent accesses are serviced quite quickly
out of client memory.

The cache also serves as a temporary buffer for writes. When a client
application first writes to a file, the client buffers the data in client mem-
ory (in the same cache as the data it read from the file server) before writ-
ing the data out to the server. Such write buffering is useful because it de-
couples application write() latency from actual write performance, i.e.,
the application’s call to write() succeeds immediately (and just puts
the data in the client-side file system’s cache); only later does the data get
written out to the file server.

Thus, NFS clients cache data and performance is usually great and
we are done, right? Unfortunately, not quite. Adding caching into any
sort of system with multiple client caches introduces a big and interesting
challenge which we will refer to as the cache consistency problem.

48.9 The Cache Consistency Problem

The cache consistency problem is best illustrated with two clients and
a single server. Imagine client C1 reads a file F, and keeps a copy of the
file in its local cache. Now imagine a different client, C2, overwrites the
file F, thus changing its contents; let’s call the new version of the file F

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

570 SUN’S NETWORK FILE SYSTEM (NFS)

C1

cache: F[v1]

C2

cache: F[v2]

C3

cache: empty

Server S

disk: F[v1] at first

 F[v2] eventually

Figure 48.6: The Cache Consistency Problem

(version 2), or F[v2] and the old version F[v1] so we can keep the two
distinct (but of course the file has the same name, just different contents).
Finally, there is a third client, C3, which has not yet accessed the file F.

You can probably see the problem that is upcoming (Figure 48.6). In
fact, there are two subproblems. The first subproblem is that the client C2
may buffer its writes in its cache for a time before propagating them to the
server; in this case, while F[v2] sits in C2’s memory, any access of F from
another client (say C3) will fetch the old version of the file (F[v1]). Thus,
by buffering writes at the client, other clients may get stale versions of the
file, which may be undesirable; indeed, imagine the case where you log
into machine C2, update F, and then log into C3 and try to read the file,
only to get the old copy! Certainly this could be frustrating. Thus, let us
call this aspect of the cache consistency problem update visibility; when
do updates from one client become visible at other clients?

The second subproblem of cache consistency is a stale cache; in this
case, C2 has finally flushed its writes to the file server, and thus the server
has the latest version (F[v2]). However, C1 still has F[v1] in its cache; if a
program running on C1 reads file F, it will get a stale version (F[v1]) and
not the most recent copy (F[v2]), which is (often) undesirable.

NFSv2 implementations solve these cache consistency problems in two
ways. First, to address update visibility, clients implement what is some-
times called flush-on-close (a.k.a., close-to-open) consistency semantics;
specifically, when a file is written to and subsequently closed by a client
application, the client flushes all updates (i.e., dirty pages in the cache)
to the server. With flush-on-close consistency, NFS ensures that a subse-
quent open from another node will see the latest file version.

Second, to address the stale-cache problem, NFSv2 clients first check
to see whether a file has changed before using its cached contents. Specifi-
cally, when opening a file, the client-side file system will issue a GETATTR
request to the server to fetch the file’s attributes. The attributes, impor-
tantly, include information as to when the file was last modified on the
server; if the time-of-modification is more recent than the time that the
file was fetched into the client cache, the client invalidates the file, thus
removing it from the client cache and ensuring that subsequent reads will
go to the server and retrieve the latest version of the file. If, on the other

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SUN’S NETWORK FILE SYSTEM (NFS) 571

hand, the client sees that it has the latest version of the file, it will go
ahead and use the cached contents, thus increasing performance.

When the original team at Sun implemented this solution to the stale-
cache problem, they realized a new problem; suddenly, the NFS server
was flooded with GETATTR requests. A good engineering principle to
follow is to design for the common case, and to make it work well; here,
although the common case was that a file was accessed only from a sin-
gle client (perhaps repeatedly), the client always had to send GETATTR
requests to the server to make sure no one else had changed the file. A
client thus bombards the server, constantly asking “has anyone changed
this file?”, when most of the time no one had.

To remedy this situation (somewhat), an attribute cache was added
to each client. A client would still validate a file before accessing it, but
most often would just look in the attribute cache to fetch the attributes.
The attributes for a particular file were placed in the cache when the file
was first accessed, and then would timeout after a certain amount of time
(say 3 seconds). Thus, during those three seconds, all file accesses would
determine that it was OK to use the cached file and thus do so with no
network communication with the server.

48.10 Assessing NFS Cache Consistency

A few final words about NFS cache consistency. The flush-on-close be-
havior was added to “make sense”, but introduced a certain performance
problem. Specifically, if a temporary or short-lived file was created on a
client and then soon deleted, it would still be forced to the server. A more
ideal implementation might keep such short-lived files in memory until
they are deleted and thus remove the server interaction entirely, perhaps
increasing performance.

More importantly, the addition of an attribute cache into NFS made
it very hard to understand or reason about exactly what version of a file
one was getting. Sometimes you would get the latest version; sometimes
you would get an old version simply because your attribute cache hadn’t
yet timed out and thus the client was happy to give you what was in
client memory. Although this was fine most of the time, it would (and
still does!) occasionally lead to odd behavior.

And thus we have described the oddity that is NFS client caching.
It serves as an interesting example where details of an implementation
serve to define user-observable semantics, instead of the other way around.

48.11 Implications on Server-Side Write Buffering

Our focus so far has been on client caching, and that is where most
of the interesting issues arise. However, NFS servers tend to be well-
equipped machines with a lot of memory too, and thus they have caching
concerns as well. When data (and metadata) is read from disk, NFS

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

572 SUN’S NETWORK FILE SYSTEM (NFS)

servers will keep it in memory, and subsequent reads of said data (and
metadata) will not go to disk, a potential (small) boost in performance.

More intriguing is the case of write buffering. NFS servers absolutely
may not return success on a WRITE protocol request until the write has
been forced to stable storage (e.g., to disk or some other persistent device).
While they can place a copy of the data in server memory, returning suc-
cess to the client on a WRITE protocol request could result in incorrect
behavior; can you figure out why?

The answer lies in our assumptions about how clients handle server
failure. Imagine the following sequence of writes as issued by a client:

write(fd, a_buffer, size); // fill first block with a’s

write(fd, b_buffer, size); // fill second block with b’s

write(fd, c_buffer, size); // fill third block with c’s

These writes overwrite the three blocks of a file with a block of a’s,
then b’s, and then c’s. Thus, if the file initially looked like this:

xx

yy

zz

We might expect the final result after these writes to be like this, with the
x’s, y’s, and z’s, would be overwritten with a’s, b’s, and c’s, respectively.

aa

bb

cc

Now let’s assume for the sake of the example that these three client
writes were issued to the server as three distinct WRITE protocol mes-
sages. Assume the first WRITE message is received by the server and
issued to the disk, and the client informed of its success. Now assume
the second write is just buffered in memory, and the server also reports
it success to the client before forcing it to disk; unfortunately, the server
crashes before writing it to disk. The server quickly restarts and receives
the third write request, which also succeeds.

Thus, to the client, all the requests succeeded, but we are surprised
that the file contents look like this:

aa

yy <--- oops

cc

Yikes! Because the server told the client that the second write was
successful before committing it to disk, an old chunk is left in the file,
which, depending on the application, might be catastrophic.

To avoid this problem, NFS servers must commit each write to stable
(persistent) storage before informing the client of success; doing so en-
ables the client to detect server failure during a write, and thus retry until

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

SUN’S NETWORK FILE SYSTEM (NFS) 573

it finally succeeds. Doing so ensures we will never end up with file con-
tents intermingled as in the above example.

The problem that this requirement gives rise to in NFS server im-
plementation is that write performance, without great care, can be the
major performance bottleneck. Indeed, some companies (e.g., Network
Appliance) came into existence with the simple objective of building an
NFS server that can perform writes quickly; one trick they use is to first
put writes in a battery-backed memory, thus enabling to quickly reply
to WRITE requests without fear of losing the data and without the cost
of having to write to disk right away; the second trick is to use a file sys-
tem design specifically designed to write to disk quickly when one finally
needs to do so [HLM94, RO91].

48.12 Summary

We have seen the introduction of the NFS distributed file system. NFS
is centered around the idea of simple and fast recovery in the face of
server failure, and achieves this end through careful protocol design. Idem-
potency of operations is essential; because a client can safely replay a
failed operation, it is OK to do so whether or not the server has executed
the request.

We also have seen how the introduction of caching into a multiple-
client, single-server system can complicate things. In particular, the sys-
tem must resolve the cache consistency problem in order to behave rea-
sonably; however, NFS does so in a slightly ad hoc fashion which can
occasionally result in observably weird behavior. Finally, we saw how
server caching can be tricky: writes to the server must be forced to stable
storage before returning success (otherwise data can be lost).

We haven’t talked about other issues which are certainly relevant, no-
tably security. Security in early NFS implementations was remarkably
lax; it was rather easy for any user on a client to masquerade as other
users and thus gain access to virtually any file. Subsequent integration
with more serious authentication services (e.g., Kerberos [NT94]) have
addressed these obvious deficiencies.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

574 SUN’S NETWORK FILE SYSTEM (NFS)

References

[S86] “The Sun Network File System: Design, Implementation and Experience”
Russel Sandberg
USENIX Summer 1986
The original NFS paper; though a bit of a challenging read, it is worthwhile to see the source of these
wonderful ideas.

[NT94] “Kerberos: An Authentication Service for Computer Networks”
B. Clifford Neuman, Theodore Ts’o
IEEE Communications, 32(9):33-38, September 1994
Kerberos is an early and hugely influential authentication service. We probably should write a book
chapter about it sometime...

[P+94] “NFS Version 3: Design and Implementation”
Brian Pawlowski, Chet Juszczak, Peter Staubach, Carl Smith, Diane Lebel, Dave Hitz
USENIX Summer 1994, pages 137-152
The small modifications that underlie NFS version 3.

[P+00] “The NFS version 4 protocol”
Brian Pawlowski, David Noveck, David Robinson, Robert Thurlow
2nd International System Administration and Networking Conference (SANE 2000)
Undoubtedly the most literary paper on NFS ever written.

[C00] “NFS Illustrated”
Brent Callaghan
Addison-Wesley Professional Computing Series, 2000
A great NFS reference; incredibly thorough and detailed per the protocol itself.

[Sun89] “NFS: Network File System Protocol Specification”
Sun Microsystems, Inc. Request for Comments: 1094, March 1989
Available: http://www.ietf.org/rfc/rfc1094.txt
The dreaded specification; read it if you must, i.e., you are getting paid to read it. Hopefully, paid a lot.
Cash money!

[O91] “The Role of Distributed State”
John K. Ousterhout
Available: ftp://ftp.cs.berkeley.edu/ucb/sprite/papers/state.ps
A rarely referenced discussion of distributed state; a broader perspective on the problems and challenges.

[HLM94] “File System Design for an NFS File Server Appliance”
Dave Hitz, James Lau, Michael Malcolm
USENIX Winter 1994. San Francisco, California, 1994
Hitz et al. were greatly influenced by previous work on log-structured file systems.

[RO91] “The Design and Implementation of the Log-structured File System”
Mendel Rosenblum, John Ousterhout
Symposium on Operating Systems Principles (SOSP), 1991
LFS again. No, you can never get enough LFS.

[V72] “La Begueule”
Francois-Marie Arouet a.k.a. Voltaire
Published in 1772
Voltaire said a number of clever things, this being but one example. For example, Voltaire also said “If
you have two religions in your land, the two will cut each others throats; but if you have thirty religions,
they will dwell in peace.” What do you say to that, Democrats and Republicans?

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

49

The Andrew File System (AFS)

The Andrew File System was introduced by researchers at Carnegie-Mellon
University (CMU) in the 1980’s [H+88]. Led by the well-known Profes-
sor M. Satyanarayanan of Carnegie-Mellon University (“Satya” for short),
the main goal of this project was simple: scale. Specifically, how can one
design a distributed file system such that a server can support as many
clients as possible?

Interestingly, there are numerous aspects of design and implementa-
tion that affect scalability. Most important is the design of the protocol be-
tween clients and servers. In NFS, for example, the protocol forces clients
to check with the server periodically to determine if cached contents have
changed; because each check uses server resources (including CPU and
network bandwidth), frequent checks like this will limit the number of
clients a server can respond to and thus limit scalability.

AFS also differs from NFS in that from the beginning, reasonable user-
visible behavior was a first-class concern. In NFS, cache consistency is
hard to describe because it depends directly on low-level implementa-
tion details, including client-side cache timeout intervals. In AFS, cache
consistency is simple and readily understood: when the file is opened, a
client will generally receive the latest consistent copy from the server.

49.1 AFS Version 1

We will discuss two versions of AFS [H+88, S+85]. The first version
(which we will call AFSv1, but actually the original system was called
the ITC distributed file system [S+85]) had some of the basic design in
place, but didn’t scale as desired, which led to a re-design and the final
protocol (which we will call AFSv2, or just AFS) [H+88]. We now discuss
the first version.

One of the basic tenets of all versions of AFS is whole-file caching on
the local disk of the client machine that is accessing a file. When you
open() a file, the entire file (if it exists) is fetched from the server and
stored in a file on your local disk. Subsequent application read() and
write() operations are redirected to the local file system where the file is

575

576 THE ANDREW FILE SYSTEM (AFS)

TestAuth Test whether a file has changed

(used to validate cached entries)

GetFileStat Get the stat info for a file

Fetch Fetch the contents of file

Store Store this file on the server

SetFileStat Set the stat info for a file

ListDir List the contents of a directory

Figure 49.1: AFSv1 Protocol Highlights

stored; thus, these operations require no network communication and are
fast. Finally, upon close(), the file (if it has been modified) is flushed
back to the server. Note the obvious contrasts with NFS, which caches
blocks (not whole files, although NFS could of course cache every block of
an entire file) and does so in client memory (not local disk).

Let’s get into the details a bit more. When a client application first calls
open(), the AFS client-side code (which the AFS designers call Venus)
would send a Fetch protocol message to the server. The Fetch protocol
message would pass the entire pathname of the desired file (for exam-
ple, /home/remzi/notes.txt) to the file server (the group of which
they called Vice), which would then traverse the pathname, find the de-
sired file, and ship the entire file back to the client. The client-side code
would then cache the file on the local disk of the client (by writing it to
local disk). As we said above, subsequent read() and write() system
calls are strictly local in AFS (no communication with the server occurs);
they are just redirected to the local copy of the file. Because the read()
and write() calls act just like calls to a local file system, once a block
is accessed, it also may be cached in client memory. Thus, AFS also uses
client memory to cache copies of blocks that it has in its local disk. Fi-
nally, when finished, the AFS client checks if the file has been modified
(i.e., that it has been opened for writing); if so, it flushes the new version
back to the server with a Store protocol message, sending the entire file
and pathname to the server for permanent storage.

The next time the file is accessed, AFSv1 does so much more effi-
ciently. Specifically, the client-side code first contacts the server (using
the TestAuth protocol message) in order to determine whether the file
has changed. If not, the client would use the locally-cached copy, thus
improving performance by avoiding a network transfer. The figure above
shows some of the protocol messages in AFSv1. Note that this early ver-
sion of the protocol only cached file contents; directories, for example,
were only kept at the server.

49.2 Problems with Version 1

A few key problems with this first version of AFS motivated the de-
signers to rethink their file system. To study the problems in detail, the
designers of AFS spent a great deal of time measuring their existing pro-
totype to find what was wrong. Such experimentation is a good thing;

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

THE ANDREW FILE SYSTEM (AFS) 577

TIP: MEASURE THEN BUILD (PATTERSON’S LAW)
One of our advisors, David Patterson (of RISC and RAID fame), used to
always encourage us to measure a system and demonstrate a problem
before building a new system to fix said problem. By using experimen-
tal evidence, rather than gut instinct, you can turn the process of system
building into a more scientific endeavor. Doing so also has the fringe ben-
efit of making you think about how exactly to measure the system before
your improved version is developed. When you do finally get around to
building the new system, two things are better as a result: first, you have
evidence that shows you are solving a real problem; second, you now
have a way to measure your new system in place, to show that it actually
improves upon the state of the art. And thus we call this Patterson’s Law.

measurement is the key to understanding how systems work and how to
improve them. Hard data helps take intuition and make into a concrete
science of deconstructing systems. In their study, the authors found two
main problems with AFSv1:

• Path-traversal costs are too high: When performing a Fetch or Store
protocol request, the client passes the entire pathname (e.g.,/home/
remzi/notes.txt) to the server. The server, in order to access the
file, must perform a full pathname traversal, first looking in the root
directory to find home, then in home to find remzi, and so forth,
all the way down the path until finally the desired file is located.
With many clients accessing the server at once, the designers of AFS
found that the server was spending much of its CPU time simply
walking down directory paths.

• The client issues too many TestAuth protocol messages: Much
like NFS and its overabundance of GETATTR protocol messages,
AFSv1 generated a large amount of traffic to check whether a lo-
cal file (or its stat information) was valid with the TestAuth proto-
col message. Thus, servers spent much of their time telling clients
whether it was OK to used their cached copies of a file. Most of the
time, the answer was that the file had not changed.

There were actually two other problems with AFSv1: load was not
balanced across servers, and the server used a single distinct process per
client thus inducing context switching and other overheads. The load
imbalance problem was solved by introducing volumes, which an ad-
ministrator could move across servers to balance load; the context-switch
problem was solved in AFSv2 by building the server with threads instead
of processes. However, for the sake of space, we focus here on the main
two protocol problems above that limited the scale of the system.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

578 THE ANDREW FILE SYSTEM (AFS)

49.3 Improving the Protocol

The two problems above limited the scalability of AFS; the server CPU
became the bottleneck of the system, and each server could only ser-
vice 20 clients without becoming overloaded. Servers were receiving too
many TestAuth messages, and when they received Fetch or Store mes-
sages, were spending too much time traversing the directory hierarchy.
Thus, the AFS designers were faced with a problem:

THE CRUX: HOW TO DESIGN A SCALABLE FILE PROTOCOL

How should one redesign the protocol to minimize the number of
server interactions, i.e., how could they reduce the number of TestAuth
messages? Further, how could they design the protocol to make these
server interactions efficient? By attacking both of these issues, a new pro-
tocol would result in a much more scalable version AFS.

49.4 AFS Version 2

AFSv2 introduced the notion of a callback to reduce the number of
client/server interactions. A callback is simply a promise from the server
to the client that the server will inform the client when a file that the
client is caching has been modified. By adding this state to the server, the
client no longer needs to contact the server to find out if a cached file is
still valid. Rather, it assumes that the file is valid until the server tells it
otherwise; insert analogy to polling versus interrupts here.

AFSv2 also introduced the notion of a file identifier (FID) (similar to
the NFS file handle) instead of pathnames to specify which file a client
was interested in. An FID in AFS consists of a volume identifier, a file
identifier, and a “uniquifier” (to enable reuse of the volume and file IDs
when a file is deleted). Thus, instead of sending whole pathnames to
the server and letting the server walk the pathname to find the desired
file, the client would walk the pathname, one piece at a time, caching the
results and thus hopefully reducing the load on the server.

For example, if a client accessed the file /home/remzi/notes.txt,
and homewas the AFS directory mounted onto / (i.e., /was the local root
directory, but home and its children were in AFS), the client would first
Fetch the directory contents of home, put them in the local-disk cache,
and setup a callback on home. Then, the client would Fetch the directory
remzi, put it in the local-disk cache, and setup a callback on the server
on remzi. Finally, the client would Fetch notes.txt, cache this regular
file in the local disk, setup a callback, and finally return a file descriptor
to the calling application. See Table 49.1 for a summary.

The key difference, however, from NFS, is that with each fetch of a
directory or file, the AFS client would establish a callback with the server,
thus ensuring that the server would notify the client of a change in its

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

THE ANDREW FILE SYSTEM (AFS) 579

Client (C1) Server
fd = open(“/home/remzi/notes.txt”, ...);

Send Fetch (home FID, “remzi”)
Receive Fetch request

look for remzi in home dir
establish callback(C1) on remzi
return remzi’s content and FID

Receive Fetch reply
write remzi to local disk cache
record callback status of remzi

Send Fetch (remzi FID, “notes.txt”)
Receive Fetch request

look for notes.txt in remzi dir
establish callback(C1) on notes.txt
return notes.txt’s content and FID

Receive Fetch reply
write notes.txt to local disk cache
record callback status of notes.txt
local open() of cached notes.txt
return file descriptor to application

read(fd, buffer, MAX);
perform local read() on cached copy

close(fd);
do local close() on cached copy
if file has changed, flush to server

fd = open(“/home/remzi/notes.txt”, ...);
Foreach dir (home, remzi)

if (callback(dir) == VALID)
use local copy for lookup(dir)

else
Fetch (as above)

if (callback(notes.txt) == VALID)
open local cached copy
return file descriptor to it

else
Fetch (as above) then open and return fd

Table 49.1: Reading A File: Client-side And File Server Actions

cached state. The benefit is obvious: although the first access to /home/

remzi/notes.txtgenerates many client-server messages (as described
above), it also establishes callbacks for all the directories as well as the
file notes.txt, and thus subsequent accesses are entirely local and require
no server interaction at all. Thus, in the common case where a file is
cached at the client, AFS behaves nearly identically to a local disk-based
file system. If one accesses a file more than once, the second access should
be just as fast as accessing a file locally.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

580 THE ANDREW FILE SYSTEM (AFS)

ASIDE: CACHE CONSISTENCY IS NOT A PANACEA

When discussing distributed file systems, much is made of the cache con-
sistency the file systems provide. However, this baseline consistency does
not solve all problems with regards to file access from multiple clients.
For example, if you are building a code repository, with multiple clients
performing check-ins and check-outs of code, you can’t simply rely on
the underlying file system to do all of the work for you; rather, you have
to use explicit file-level locking in order to ensure that the “right” thing
happens when such concurrent accesses take place. Indeed, any applica-
tion that truly cares about concurrent updates will add extra machinery
to handle conflicts. The baseline consistency described in this chapter and
the previous one are useful primarily for casual usage, i.e., when a user
logs into a different client, they expect some reasonable version of their
files to show up there. Expecting more from these protocols is setting
yourself up for failure, disappointment, and tear-filled frustration.

49.5 Cache Consistency

When we discussed NFS, there were two aspects of cache consistency
we considered: update visibility and cache staleness. With update visi-
bility, the question is: when will the server be updated with a new version
of a file? With cache staleness, the question is: once the server has a new
version, how long before clients see the new version instead of an older
cached copy?

Because of callbacks and whole-file caching, the cache consistency pro-
vided by AFS is easy to describe and understand. There are two im-
portant cases to consider: consistency between processes on different ma-
chines, and consistency between processes on the same machine.

Between different machines, AFS makes updates visible at the server
and invalidates cached copies at the exact same time, which is when the
updated file is closed. A client opens a file, and then writes to it (perhaps
repeatedly). When it is finally closed, the new file is flushed to the server
(and thus visibile); the server then breaks callbacks for any clients with
cached copies, thus ensuring that clients will no longer read stale copies
of the file; subsequent opens on those clients will require a re-fetch of the
new version of the file from the server.

AFS makes an exception to this simple model between processes on
the same machine. In this case, writes to a file are immediately visible to
other local processes (i.e., a process does not have to wait until a file is
closed to see its latest updates). This makes using a single machine be-
have exactly as you would expect, as this behavior is based upon typical
UNIX semantics. Only when switching to a different machine would you
be able to detect the more general AFS consistency mechanism.

There is one interesting cross-machine case that is worthy of further
discussion. Specifically, in the rare case that processes on different ma-

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

THE ANDREW FILE SYSTEM (AFS) 581

Client1 Client2 Server Comments
P1 P2 Cache P3 Cache Disk
open(F) - - - File created
write(A) A - -
close() A - A

open(F) A - A
read() → A A - A
close() A - A

open(F) A - A
write(B) B - A

open(F) B - A Local processes
read() → B B - A see writes immediately
close() B - A

B open(F) A A Remote processes
B read() → A A A do not see writes...
B close() A A

close() B �A B ... until close()
B open(F) B B has taken place
B read() → B B B
B close() B B
B open(F) B B

open(F) B B B
write(D) D B B

D write(C) C B
D close() C C

close() D �C D
D open(F) D D Unfortunately for P3

D read() → D D D the last writer wins
D close() D D

Table 49.2: Cache Consistency Timeline

chines are modifying a file at the same time, AFS naturally employs what
is known as a last writer wins approach (which perhaps should be called
last closer wins). Specifically, whichever client calls close() last will
update the entire file on the server last and thus will be the “winning”
file, i.e., the file that remains on the server for others to see. The result is
a file that was generated in its entirety either by one client or the other.
Note the difference from a block-based protocol like NFS: in NFS, writes
of individual blocks may be flushed out to the server as each client is up-
dating the file, and thus the final file on the server could end up as a mix
of updates from both clients. In many cases, such a mixed file output
would not make much sense, i.e., imagine a JPEG image getting modi-
fied by two clients in pieces; the resulting mix of writes would not likely
constitute a valid JPEG.

A timeline showing a few of these different scenarios can be seen in
Table 49.2. The columns of the table show the behavior of two processes
(P1 and P2) on Client1 and its cache state, one process (P3) on Client2 and
its cache state, and the server (Server), all operating on a single file called,
imaginatively, F. For the server, the table just shows the contents of the
file after the operation on the left has completed. Read through it and see
if you can understand why each read returns the results that it does. A
commentary field on the right will help you if you get stuck.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

582 THE ANDREW FILE SYSTEM (AFS)

49.6 Crash Recovery

From the description above, you might sense that crash recovery is
more involved than with NFS. You would be right. For example, imagine
there is a short period of time where a server (S) is not able to contact
a client (C1), for example, while the client C1 is rebooting. While C1
is not available, S may have tried to send it one or more callback recall
messages; for example, imagine C1 had file F cached on its local disk, and
then C2 (another client) updated F, thus causing S to send messages to all
clients caching the file to remove it from their local caches. Because C1
may miss those critical messages when it is rebooting, upon rejoining the
system, C1 should treat all of its cache contents as suspect. Thus, upon
the next access to file F, C1 should first ask the server (with a TestAuth
protocol message) whether its cached copy of file F is still valid; if so, C1
can use it; if not, C1 should fetch the newer version from the server.

Server recovery after a crash is also more complicated. The problem
that arises is that callbacks are kept in memory; thus, when a server re-
boots, it has no idea which client machine has which files. Thus, upon
server restart, each client of the server must realize that the server has
crashed and treat all of their cache contents as suspect, and (as above)
reestablish the validity of a file before using it. Thus, a server crash is a
big event, as one must ensure that each client is aware of the crash in a
timely manner, or risk a client accessing a stale file. There are many ways
to implement such recovery; for example, by having the server send a
message (saying “don’t trust your cache contents!”) to each client when
it is up and running again, or by having clients check that the server is
alive periodically (with a heartbeat message, as it is called). As you can
see, there is a cost to building a more scalable and sensible caching model;
with NFS, clients hardly noticed a server crash.

49.7 Scale And Performance Of AFSv2

With the new protocol in place, AFSv2 was measured and found to be
much more scalable that the original version. Indeed, each server could
support about 50 clients (instead of just 20). A further benefit was that
client-side performance often came quite close to local performance, be-
cause in the common case, all file accesses were local; file reads usually
went to the local disk cache (and potentially, local memory). Only when a
client created a new file or wrote to an existing one was there need to send
a Store message to the server and thus update the file with new contents.

Let us also gain some perspective on AFS performance by comparing
common file-system access scenarios with NFS. Table 49.3 shows the re-
sults of our qualitative comparison.

In the table, we examine typical read and write patterns analytically,
for files of different sizes. Small files have Ns blocks in them; medium
files have Nm blocks; large files have NL blocks. We assume that small

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

THE ANDREW FILE SYSTEM (AFS) 583

Workload NFS AFS AFS/NFS
1. Small file, sequential read Ns · Lnet Ns · Lnet 1
2. Small file, sequential re-read Ns · Lmem Ns · Lmem 1
3. Medium file, sequential read Nm · Lnet Nm · Lnet 1
4. Medium file, sequential re-read Nm · Lmem Nm · Lmem 1
5. Large file, sequential read NL · Lnet NL · Lnet 1

6. Large file, sequential re-read NL · Lnet NL · Ldisk
Ldisk

Lnet

7. Large file, single read Lnet NL · Lnet NL

8. Small file, sequential write Ns · Lnet Ns · Lnet 1
9. Large file, sequential write NL · Lnet NL · Lnet 1
10. Large file, sequential overwrite NL · Lnet 2 · NL · Lnet 2
11. Large file, single write Lnet 2 · NL · Lnet 2 · NL

Table 49.3: Comparison: AFS vs. NFS

and medium files fit into the memory of a client; large files fit on a local
disk but not in client memory.

We also assume, for the sake of analysis, that an access across the net-
work to the remote server for a file block takes Lnet time units. Access
to local memory takes Lmem, and access to local disk takes Ldisk. The
general assumption is that Lnet > Ldisk > Lmem.

Finally, we assume that the first access to a file does not hit in any
caches. Subsequent file accesses (i.e., “re-reads”) we assume will hit in
caches, if the relevant cache has enough capacity to hold the file.

The columns of the table show the time a particular operation (e.g., a
small file sequential read) roughly takes on either NFS or AFS. The right-
most column displays the ratio of AFS to NFS.

We make the following observations. First, in many cases, the per-
formance of each system is roughly equivalent. For example, when first
reading a file (e.g., Workloads 1, 3, 5), the time to fetch the file from the re-
mote server dominates, and is similar on both systems. You might think
AFS would be slower in this case, as it has to write the file to local disk;
however, those writes are buffered by the local (client-side) file system
cache and thus said costs are likely hidden. Similarly, you might think
that AFS reads from the local cached copy would be slower, again be-
cause AFS stores the cached copy on disk. However, AFS again benefits
here from local file system caching; reads on AFS would likely hit in the
client-side memory cache, and performance would be similar to NFS.

Second, an interesting difference arises during a large-file sequential
re-read (Workload 6). Because AFS has a large local disk cache, it will
access the file from there when the file is accessed again. NFS, in contrast,
only can cache blocks in client memory; as a result, if a large file (i.e., a file
bigger than local memory) is re-read, the NFS client will have to re-fetch
the entire file from the remote server. Thus, AFS is faster than NFS in this
case by a factor of Lnet

Ldisk
, assuming that remote access is indeed slower

than local disk. We also note that NFS in this case increases server load,
which has an impact on scale as well.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

584 THE ANDREW FILE SYSTEM (AFS)

Third, we note that sequential writes (of new files) should perform
similarly on both systems (Workloads 8, 9). AFS, in this case, will write
the file to the local cached copy; when the file is closed, the AFS client
will force the writes to the server, as per the protocol. NFS will buffer
writes in client memory, perhaps forcing some blocks to the server due
to client-side memory pressure, but definitely writing them to the server
when the file is closed, to preserve NFS flush-on-close consistency. You
might think AFS would be slower here, because it writes all data to local
disk. However, realize that it is writing to a local file system; those writes
are first committed to the page cache, and only later (in the background)
to disk, and thus AFS reaps the benefits of the client-side OS memory
caching infrastructure to improve performance.

Fourth, we note that AFS performs worse on a sequential file over-
write (Workload 10). Thus far, we have assumed that the workloads that
write are also creating a new file; in this case, the file exists, and is then
over-written. Overwrite can be a particularly bad case for AFS, because
the client first fetches the old file in its entirety, only to subsequently over-
write it. NFS, in contrast, will simply overwrite blocks and thus avoid the

initial (useless) read1.
Finally, workloads that access a small subset of data within large files

perform much better on NFS than AFS (Workloads 7, 11). In these cases,
the AFS protocol fetches the entire file when the file is opened; unfortu-
nately, only a small read or write is performed. Even worse, if the file is
modified, the entire file is written back to the server, doubling the per-
formance impact. NFS, as a block-based protocol, performs I/O that is
proportional to the size of the read or write.

Overall, we see that NFS and AFS make different assumptions and not
surprisingly realize different performance outcomes as a result. Whether
these differences matter is, as always, a question of workload.

49.8 AFS: Other Improvements

Like we saw with the introduction of Berkeley FFS (which added sym-
bolic links and a number of other features), the designers of AFS took the
opportunity when building their system to add a number of features that
made the system easier to use and manage. For example, AFS provides a
true global namespace to clients, thus ensuring that all files were named
the same way on all client machines. NFS, in contrast, allows each client
to mount NFS servers in any way that they please, and thus only by con-
vention (and great administrative effort) would files be named similarly
across clients.

1We assume here that NFS reads are block-sized and block-aligned; if they were not, the
NFS client would also have to read the block first. We also assume the file was not opened
with the O TRUNC flag; if it had been, the initial open in AFS would not fetch the soon to be
truncated file’s contents.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

THE ANDREW FILE SYSTEM (AFS) 585

ASIDE: THE IMPORTANCE OF WORKLOAD

One challenge of evaluating any system is the choice of workload. Be-
cause computer systems are used in so many different ways, there are a
large variety of workloads to choose from. How should the storage sys-
tem designer decide which workloads are important, in order to make
reasonable design decisions?
The designers of AFS, given their experience in measuring how file sys-
tems were used, made certain workload assumptions; in particular, they
assumed that most files were not frequently shared, and accessed sequen-
tially in their entirety. Given those assumptions, the AFS design makes
perfect sense.
However, these assumptions are not always correct. For example, imag-
ine an application that appends information, periodically, to a log. These
little log writes, which add small amounts of data to an existing large file,
are quite problematic for AFS. Many other difficult workloads exist as
well, e.g., random updates in a transaction database.
One place to get some information about what types of workloads are
common are through various research studies that have been performed.
See any of these studies for good examples of workload analysis [B+91,
H+11, R+00, V99], including the AFS retrospective [H+88].

AFS also takes security seriously, and incorporates mechanisms to au-
thenticate users and ensure that a set of files could be kept private if a
user so desired. NFS, in contrast, had quite primitive support for security
for many years.

AFS also includes facilities for flexible user-managed access control.
Thus, when using AFS, a user has a great deal of control over who exactly
can access which files. NFS, like most UNIX file systems, has much less
support for this type of sharing.

Finally, as mentioned before, AFS adds tools to enable simpler man-
agement of servers for the administrators of the system. In thinking about
system management, AFS was light years ahead of the field.

49.9 Summary

AFS shows us how distributed file systems can be built quite differ-
ently than what we saw with NFS. The protocol design of AFS is partic-
ularly important; by minimizing server interactions (through whole-file
caching and callbacks), each server can support many clients and thus
reduce the number of servers needed to manage a particular site. Many
other features, including the single namespace, security, and access-control
lists, make AFS quite nice to use. The consistency model provided by AFS
is simple to understand and reason about, and does not lead to the occa-
sional weird behavior as one sometimes observes in NFS.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

586 THE ANDREW FILE SYSTEM (AFS)

Perhaps unfortunately, AFS is likely on the decline. Because NFS be-
came an open standard, many different vendors supported it, and, along
with CIFS (the Windows-based distributed file system protocol), NFS
dominates the marketplace. Although one still sees AFS installations
from time to time (such as in various educational institutions, including
Wisconsin), the only lasting influence will likely be from the ideas of AFS
rather than the actual system itself. Indeed, NFSv4 now adds server state
(e.g., an “open” protocol message), and thus bears an increasing similar-
ity to the basic AFS protocol.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

THE ANDREW FILE SYSTEM (AFS) 587

References

[B+91] “Measurements of a Distributed File System”
Mary Baker, John Hartman, Martin Kupfer, Ken Shirriff, John Ousterhout
SOSP ’91, Pacific Grove, CA, October 1991
An early paper measuring how people use distributed file systems. Matches much of the intuition found
in AFS.

[H+11] “A File is Not a File: Understanding the I/O Behavior of Apple Desktop Applications”
Tyler Harter, Chris Dragga, Michael Vaughn,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
SOSP ’11, New York, NY, October 2011
Our own paper studying the behavior of Apple Desktop workloads; turns out they are a bit different
than many of the server-based workloads the systems research community usually focuses upon. Also a
good recent reference which points to a lot of related work.

[H+88] “Scale and Performance in a Distributed File System”
John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satyanarayanan,
Robert N. Sidebotham, Michael J. West
ACM Transactions on Computing Systems (ACM TOCS), page 51-81, Volume 6, Number 1,
February 1988
The long journal version of the famous AFS system, still in use in a number of places throughout the
world, and also probably the earliest clear thinking on how to build distributed file systems. A wonderful
combination of the science of measurement and principled engineering.

[R+00] “A Comparison of File System Workloads”
Drew Roselli, Jacob R. Lorch, Thomas E. Anderson
USENIX ’00, San Diego, CA, June 2000
A more recent set of traces as compared to the Baker paper [B+91], with some interesting twists.

[S+85] “The ITC Distributed File System: Principles and Design”
M. Satyanarayanan, J.H. Howard, D.A. Nichols, R.N. Sidebotham, A. Spector, M.J. West
SOSP ’85. pages 35-50
The older paper about a distributed file system. Much of the basic design of AFS is in place in this older
system, but not the improvements for scale.

[V99] “File system usage in Windows NT 4.0”
Werner Vogels
SOSP ’99, Kiawah Island Resort, SC, December 1999
A cool study of Windows workloads, which are inherently different than many of the UNIX-based studies
that had previously been done.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

50

Summary Dialogue on Distribution

Student: Well, that was quick. Too quick, in my opinion!

Professor: Yes, distributed systems are complicated and cool and well worth
your study; just not in this book (or course).

Student: That’s too bad; I wanted to learn more! But I did learn a few things.

Professor: Like what?

Student: Well, everything can fail.

Professor: Good start.

Student: But by having lots of these things (whether disks, machines, or what-
ever), you can hide much of the failure that arises.

Professor: Keep going!

Student: Some basic techniques like retrying are really useful.

Professor: That’s true.

Student: And you have to think carefully about protocols: the exact bits that
are exchanged between machines. Protocols can affect everything, including how
systems respond to failure and how scalable they are.

Professor: You really are getting better at this learning stuff.

Student: Thanks! And you’re not a bad teacher yourself!

Professor: Well thank you very much too.

Student: So is this the end of the book?

Professor: I’m not sure. They don’t tell me anything.

Student: Me neither. Let’s get out of here.

Professor: OK.

Student: Go ahead.

Professor: No, after you.

Student: Please, professors first.

589

590 SUMMARY DIALOGUE ON DISTRIBUTION

Professor: No, please, after you.

Student: (exasperated) Fine!

Professor: (waiting) ... so why haven’t you left?

Student: I don’t know how. Turns out, the only thing I can do is participate in
these dialogues.

Professor: Me too. And now you’ve learned our final lesson...

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

General Index

absolute pathname, 442
abstraction, iv, 112, 395
abstractions, 13
access methods, 462
access path, 470
accessed bit, 174
accounting, 77
ack, 547
acknowledgment, 547
acquired, 291
additive parity, 432
address, 7
address space, 8, 26, 108, 111, 132, 263,

403
address space identifier, 191
address translation, 130, 134, 137
address translations, 170
address-based ordering, 164
address-space identifier, 190
address-translation cache, 183
admission control, 240
advice, 79, 80
AIO control block, 378
AIX, 17
allocate, 472
allocation structures, 463
AMAT, 228
amortization, 66, 485
amortize, 65, 514
anonymous, 125
anticipatory disk scheduling, 415
ASID, 191
Aside, 16
asides, iii
asynchronous, 375
asynchronous I/O, 377
asynchronous read, 378
asynchronously, 556
atomic, 274, 403, 448
atomic exchange, 296
atomically, 10, 271, 297, 429, 495
atomicity violation, 360

attribute cache, 571
automatic, 119
automatic memory management, 122
available, 291
average memory access time, 228
average turnaround time, 61
avoidance, 368
avoids, 474

B-tree, 470
baby proofing, 55
back pointer, 508
background, 224
backpointer-based consistency, 508
base, 133, 135, 204
base and bounds, 133
bash, 42
batch, 14, 474
BBC, 508
Belady’s Anomaly, 231
Berkeley Systems Distribution, 17
best fit, 163
best-fit, 148
big endian, 554
big kernel lock, 322
Bill Joy, 17
binary buddy allocator, 166
binary semaphore, 344
bitmap, 463
BKL, 322
block corruption, 436, 527
block groups, 481
Blocked, 29
blocked, 67, 221
blocks, 462
boost, 76
bound, 204
bounded buffer, 329, 346
bounded SATF, 419
bounded-buffer, 329
bounds, 133, 135

591

592 DEPLOYMENT

break, 125
BSATF, 419
BSD, 17
btrfs, 523
buddy algorithm, 148
buffer, 447
buffer cache, 493
buffer overflow, 123
bugs, 561
bus snooping, 96
byte ordering, 554

C programming language, iv, 17
C-SCAN, 413
cache, 183, 227, 407
cache affinity, 97
cache coherence, 96
cache consistency problem, 569
cache hits, 227
cache misses, 227
cache replacement, 192
cached, 560
caches, 94
caching, 569
callback, 578
capability, 444
capacity, 423
capacity miss, 230
cast, 121
centralized administration, 559
checkpoint, 498
checkpoint region (CR), 517
checkpointing, 498
checksum, 530, 546
child, 36
chunk size, 424
cigarette smoker’s problem, 355
circular log, 502
Circular SCAN, 413
CISC, 187, 189
clean, 239, 519
client stub, 551
client-side file system, 560
client/server, 543
clock algorithm, 238
clock hand, 238
close-to-open, 570
cluster, 223
clustering, 240, 249
coalesce, 162
coalescing, 156, 393
coarse-grained, 147, 292
code, 111
code sharing, 146
cold-start miss, 229, 230
collision, 532
command, 391
common case, 571

communication, 544
communication endpoint, 545
compact, 148, 520
compaction, 154
compare-and-exchange, 299
compare-and-swap, 299
Complex Instruction Set Computing, 189
compulsory miss, 229, 230
computed checksum, 533
concurrency, iii, 1, 8, 10, 13, 16, 37, 54, 261
concurrently, 311
condition, 325, 326, 344
condition variable, 285, 326, 344
condition variables, 262, 273, 362
conflict miss, 230
consistent-update problem, 429, 495
consumer, 331
context switch, 26, 30, 52, 63, 263
continuation, 380
convention, 443
convoy effect, 61
cooperative, 50
copy-on-write, 12, 251, 507, 522
correctness, 299
corrupt, 528
covering condition, 338
COW, 251, 507
CPU, 5
crash-consistency problem, 491, 495
CRC, 532
critical section, 271, 272, 284
crux, iii
crux of the problem, iii
Culler’s Law, 194
cycle, 363
cyclic redundancy check, 532
cylinder groups, 481

dangling pointer, 124
dangling reference, 455
data, 391
data bitmap, 463, 481, 492
data integrity, 527
data journaling, 498, 503
data protection, 527
data region, 462
data structures, 32, 461
database management system, 194
datagrams, 545
DBMS, 194
deadlock, 354, 359, 363
DEC, 245
decay-usage, 79
decodes, 3
demand paging, 240
demand zeroing, 250
deployability, 422
deployment, 422

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

EXPLICIT 593

descheduled, 30
deserialization, 552
deterministic, 37, 268, 270, 272
device driver, 12, 395
dialogue, iii
Digital Equipment Corporation, 245
dimensional analysis, 408
dining philosopher’s problem, 352
direct I/O, 474
Direct Memory Access (DMA), 394
direct pointers, 466
directory, 442
directory hierarchy, 442
directory tree, 442
dirty, 239, 447
dirty bit, 174, 190, 239
disable interrupts, 55
disassemble, 176
disassembler., 269
disciplines, 59
disk, 28
disk address, 218
disk arm, 404
disk head, 404
Disk Operating System, 16
disk scheduler, 412
disk scrubbing, 535
disks, 389
distributed shared memory, 550
distributed state, 562
DOS, 16
double free, 124
double indirect pointer, 467
drop, 545
DSM, 550
dtruss, 444
dynamic relocation, 133, 134

eagerly, 28
ease of use, 108
easy to use, 3, 111
ECC, 528
Edsger Dijkstra, 341
efficiency, 110, 113
efficient, 113
elevator, 413
empty, 335
encapsulation, 364
end-to-end argument, 545, 555
energy-efficiency, 14
error correcting codes, 528
event handler, 374
event loop, 374
event-based concurrency, 373
evict, 227
exactly once, 548
executable format, 28
executes, 3

explicit, 144
exponential back-off, 550
extents, 467
eXternal Data Representation, 555
external fragmentation, 148, 153, 154

F-SCAN, 413
fail-partial, 528
fail-stop, 423, 527
failure, 543
fair, 66
fair-share, 83
fairness, 60, 293, 299
Fast File System (FFS), 481
FAT, 468
FCFS, 61
fetch-and-add, 302
fetches, 3
FID, 578
FIFO, 60, 230
file, 441
file allocation table, 468
file descriptor, 444
file descriptors, 29
file handle, 563, 578
file identifier, 578
file offset, 446
file server, 560
file system, 11, 12, 15
file system checker, 492
file-level locking, 580
file-system inconsistency, 494
files, 11
fill, 335
final, 31
fine-grained, 147, 292
firmware, 390
First Come, First Served, 60
first fit, 164
First In, First Out, 60
first-fit, 148
fix-sized cache, 474
flash-based SSDs, 28
Fletcher checksum, 532
flush, 191
flush-on-close, 570
fork(), 36
fragmentation, 554
fragmented, 480
frame pointer, 27
free, 291
free list, 136, 154, 170, 463
free lists, 470
free space management, 469
free-space management, 153
frequency, 233
fsck, 492, 495
full-stripe write, 432

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

594 LINK COUNT

fully associative, 189
fully-associative, 189, 230
function pointer, 280
futex, 307, 308

game the scheduler, 76
garbage, 494, 518
garbage collection, 519
garbage collector, 122
graphics, 18
greedy, 419
group, 223
grouping, 240

hand-over-hand locking, 318
hard disk drive, 217, 403, 441
hard drive, 11
hardware caches, 94
hardware privilege level, 15
hardware-based address translation, 130
hardware-managed TLB, 183
hardware-managed TLBs, 187
head crash, 528
header, 157
heap, 29, 111, 119, 288
heartbeat, 582
held, 291
high watermark, 223
Hill’s Law, 352
hints, 80
hit rate, 186, 192, 228
Hoare semantics, 333
holds, 296
holes, 520
homeworks, iv
hot spare, 436
HPUX, 17
HUP, 379
hybrid, 202, 205, 308, 393

I/O, 11
I/O bus, 389
I/O instructions, 394
I/O merging, 415
Idempotency, 567
idempotent, 567
idle time, 224
illusion, 130
immediate reporting, 407, 499
implicit, 145
inconsistent, 429, 491
indeterminate, 270, 272
index node, 464, 465
indirect pointer, 466
initial, 31
inode, 450, 463–465, 512
inode bitmap, 463, 481, 492
inode map (imap), 515

inode number, 442
inode table, 463
input/output, 11
input/output (I/O) device, 389
instruction pointer, 26
INT, 379
interactivity, 110
interface, 390
internal, 202
internal fragmentation, 138, 154, 167, 202,

480, 486
internal structure, 390
interposing, 129
interrupt, 378, 392
interrupt handler, 51, 392
interrupt service routine (ISR), 392
interrupts, 578
inumber, 465
invalid, 173, 203
invalid frees, 124
invalidate, 96
invalidates, 570
invariant, 431
inverted page table, 170
inverted page tables, 212
IP, 26
IRIX, 17
isolation, 13, 108, 113

Jain’s Fairness Index, 60
jobs, 60
journal superblock, 503
journaling, 12, 492, 497

kernel mode, 15, 47
kernel stack, 48
kernel virtual memory, 213
kill, 379
Knuth, 322

last closer wins, 581
last writer wins, 581
latent sector errors, 436
latent-sector errors, 527
Lauer’s Law, 302
lazily, 28
lazy, 250
LDE, 129
Least-Frequently-Used, 233
Least-Recently-Used, 233
least-recently-used, 192
level of indirection, 207, 515, 516
LFS, 512
LFU, 233
limit, 133, 135, 204
limited direct execution, 45, 55, 105, 129
linear page table, 173, 183
link count, 454

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

MERGE 595

linked list, 468
Linus Torvalds, 18
Linux, 18
Linux ext2, 497
Linux ext3, 497
Linux ext4, 500
little endian, 554
live, 519
livelock, 366, 393
lmbench, 55
load, 28
load imbalance, 100
load-linked, 300
loader, 134
loads, 39
locality, 95, 187
lock, 291
lock coupling, 318
lock variable, 291
lock-free, 96
locked, 291
locking, 55, 97, 98
locks, 262, 283
log, 522
Log-structured File System, 512
logical logging, 498
long file names, 487
lookaside buffer, 195
lost write, 535
lottery scheduling, 83
low watermark, 223
low-level name, 441, 465
LRU, 192, 233, 474
LSEs, 527

Mac OS, 16
machine state, 26
malicious scheduler, 297
man pages, 42
manage, 4
manage memory, 130
manual pages, 42
manual stack management, 380
marshaling, 552
master control program, 4
measurement, 577
mechanisms, 6, 25, 59, 105, 114
memory bus, 389
memory hierarchy, 217
memory hogs, 249
memory leak, 124
memory management unit (MMU), 135
memory overlays, 217
memory pressure, 227
memory protection, 16
memory-management unit, 183
memory-mapped I/O, 395
MenuMeters, 42

merge, 162, 415
Mesa semantics, 333, 337
metadata, 449, 463, 466, 512
metadata journaling, 503
MFU, 234
mice, 389
microkernels, 33, 113
Microsoft, 16
migrating, 99
migration, 101
minicomputer, 15
minimize the overheads, 13
mirrored, 422
misdirected write, 534
miss rate, 192, 228
MMU, 183
mobility, 14
modified, 239
modified bit, 239
modularity, 27
monitors, 312
Most-Frequently-Used, 234
Most-Recently-Used, 234
mount point, 456
mount protocol, 564
MQMS, 99
MRU, 234
multi-level feedback queue, 68
Multi-level Feedback Queue (MLFQ), 71
multi-level index, 467
multi-level page table, 187, 205
multi-queue multiprocessor scheduling, 99
multi-threaded, 9, 262, 263
multi-threaded programs, 37
multi-zoned, 407
multicore, 93
Multics, 17
multiprocessor, 93
multiprocessor scheduling, 93, 94
multiprogramming, 15, 110
mutex, 292
mutual exclusion, 271, 272, 292, 293

name, 443
naming, 553
NBF, 412
nearest-block-first, 412
networking, 18
new, 122
next fit, 164
NeXTStep, 18
node.js, 373
non-blocking data structures, 322
non-determinism, 37
non-preemptive, 63
non-work-conserving, 415
null-pointer, 248

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

596 QUEUES

object caches, 165
offset, 171
open protocol, 561
open-source software, 17
operating system, 4
Operating Systems in Three Easy Pieces,

1
optimal, 62, 228
optimistic crash consistency, 508
order violation, 360, 361
ordered journaling, 503
OS, 4
Ousterhout’s Law, 79
out-of-memory killer, 240
overlap, 67, 68, 221, 377, 392
owner, 292

page, 169
page cache, 493
page daemon, 223
page directory, 205, 209
page directory entries, 206
page fault, 219, 220, 224
page frame, 170
page frame number, 206
page in, 221
page miss, 220
page out, 221
page replacement, 174
page selection, 240
page table, 170, 176
page table base register, 219
page table entry (PTE), 172, 219
page-directory index, 208
page-fault handler, 220, 224
page-replacement policy, 221
page-table base register, 175, 187
page-table index, 209
paging, 28, 153, 169, 179, 381
paging out, 227
parallel, 93
parameterization, 487
parameterize, 78
parent, 31, 36
parity, 430
partitioned, 561
pass, 88
Patterson’s Law, 577
PC, 16, 26
PCB, 32
PCI, 389
PDE, 206
perfect scaling, 313
performance, 13, 60, 293, 299, 423, 544
peripheral bus, 389
persist, 387, 491
persistence, iii, 1, 11, 12, 29, 387
persistent storage, 441

persistently, 11, 13
personal computer, 16
physical, 4, 23, 130
physical address, 134
physical ID, 534
physical identifier, 534
physical logging, 498
physical memory, 7
physically-indexed cache, 194
PID, 36, 191
pipe, 41, 329
pipes, 17
platter, 404
policies, 26, 59, 114
policy, 6
poll, 378
polling, 391, 578
power loss, 491
power outage, 561
pre-allocation, 470
preempt, 63
preemptive, 63
preemptive scheduler, 298
Preemptive Shortest Job First, 64
prefetching, 240
premature optimization, 322
present, 222
present bit, 174, 219, 224
principle of locality, 233, 234
principle of SJF (shortest job first), 412
priority level, 72
privileged, 49, 137, 193, 395
procedure call, 15, 283
process, 25, 26
Process Control Block, 32
process control block, 137
process control block (PCB), 263
process identifier, 36, 191
process list, 30, 32
process structure, 137
producer, 331
producer/consumer, 329, 346
program counter, 26
programmed I/O (PIO), 391
projects, iv
prompt, 40
proportional-share, 83
protect, 113
protection, 13, 108, 111, 113, 190
protection bits, 146, 173
protocol, 575
protocol compiler, 551
pseudocode, iv
PSJF, 64
purify, 125

queues, 72

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

ROTATIONS PER MINUTE 597

race condition, 270, 272
RAID, 421
RAID 0+1, 428
RAID 1+0, 428
RAID-01, 428
RAID-10, 428
RAID-DP, 530
RAM, 194
RAM isn’t always RAM, 194
random, 192, 409, 426, 446
random-access memory, 194
randomness, 84
raw disk, 475
read-after-write, 535
reader-writer lock, 350
Ready, 29
ready, 304
real code, iv
reassembly, 554
reboot the machine, 51
recency, 233
reconstruct, 431, 530
recover, 501
recovery, 429
recovery protocol, 562
recursive update problem, 518
redirected, 40
redo logging, 501
Reduced Instruction Set Computing, 189
redundancy, 421
Redundant Array of Inexpensive Disks,

421
reference bit, 174, 238, 249
reference count, 453
regain control, 50
register context, 30
reliability, 13, 423
relocate, 132
remote method invocation, 551
remote procedure call, 551
replace, 192, 221
replacement policy, 227
replayed, 501
resident set size, 249
resource, 4
resource manager, 4, 6
resources, 13
response time, 64
retry, 548
return-from-trap, 15, 47
revoke, 506
RISC, 188, 189
RMI, 551
roll forward, 522
root directory, 442, 471
rotates, 434
rotation delay, 405
rotational delay, 405

rotations per minute, 408
rotations per minute (RPM), 404
round robin, 99
Round-Robin (RR), 65
RPC, 551
RPM, 408
RSS, 249
run-time library, 551
run-time stack, 29
Running, 29
running, 304
running program, 25

SATA, 389
SATF, 414
scalability, 98
scale, 575
scaling, 167
SCAN, 413
scan resistance, 241
schedule, 474
scheduled, 30
scheduler, 37, 52
scheduler state, 344
scheduling metric, 60
scheduling policies, 59
scheduling policy, 26
scheduling quantum, 65
SCSI, 389
second-chance lists, 249
security, 14, 18, 544, 559
seek, 406, 447
segment, 141, 512, 513
segment summary block, 520
segment table, 147
segmentation, 138, 141, 153, 155
segmentation fault, 122, 144
segmentation violation, 144
segmented FIFO, 249
segregated lists, 165
SEGV, 379
semaphore, 341
separator, 442
sequence counter, 549
sequential, 409, 426, 446
serialization, 552
server-side file system, 560
set, 298
set-associativity, 230
sets, 296
settling time, 406
shadow paging, 522
share, 11, 146
shared state, 562
sharing, 559
shell, 17
shortest access time first, 414
Shortest Job First (SJF), 62

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

598 TIME SLICE

shortest positioning time first, 414
Shortest Time-to-Completion First, 64
shortest-seek-first, 412
shortest-seek-time-first, 412
SIG, 379
signal handler, 379
signaling, 326
signals, 42, 378, 379
SIGSEGV, 379
silent faults, 528
simulations, iv
single-queue multiprocessor scheduling,

97
single-threaded, 263
slab allocator, 165
slabs, 165
sleeping barber problem, 355
sloppy counter, 314
small-write problem, 433, 511
snapshots, 523
sockets, 545
soft link, 454
software RAID, 436
software-managed TLB, 188
solid-state drives, 11
solid-state storage device, 441
space leak, 494
space sharing, 26
sparse address spaces, 143
spatial locality, 95, 186, 187, 234
spin lock, 298
spin-wait, 296
spin-waiting, 297
spindle, 404
split, 159
splitting, 155
SPTF, 414
spurious wakeups, 337
SQMS, 97
SSDs, 11
SSF, 412
SSTF, 412
stack, 29, 111, 119
stack pointer, 27
stack property, 231
stale cache, 570
standard library, 4, 12
standard output, 40
starvation, 76, 413
starve, 76
state, 565
stateful, 562
stateless, 562
states, 29
static relocation, 134
status, 391
STCF, 64
store-conditional, 300

stored checksum, 533
strace, 444
stride, 88
stride scheduling, 88
stripe, 424
striping, 424
stub generator, 551
sub-blocks, 486
sub-directories, 442
subtractive parity, 432
SunOS, 17
super block, 481
superblock, 464
superpages, 214
supervisor, 4
surface, 404
swap, 213
swap daemon, 223
swap space, 125, 218
swapping, 28
switches contexts, 53
symbolic link, 454, 488
synchronization primitives, 271
synchronous, 375, 552
synchronously, 555
system call, 15, 47
system calls, 4, 12, 50, 560
system crash, 491
systems programming, iv

TCP, 549
TCP/IP, 549
tcsh, 42
temporal locality, 95, 186, 187, 234
test, 298
test-and-set, 297
test-and-set instruction, 296
tests, 296
the mapping problem, 425
the web, 42
thrashing, 240
thread, 262, 263
thread control blocks (TCBs), 263
thread pool, 553
thread safe, 311
thread-local, 264
threads, 9, 93, 112
Three C’s, 230
ticket, 85
ticket currency, 85
ticket inflation, 85
ticket lock, 302
ticket transfer, 85
tickets, 83
TID, 498
Time sharing, 26
time sharing, 25, 45, 46, 110
time slice, 65

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

VALID BIT 599

time-sharing, 26
time-slicing, 65
time-space trade-off, 207
time-space trade-offs, 207
timeout, 548
timeout/retry, 548
timer interrupt, 51, 52
tips, iii
TLB, 183
TLB coverage, 194
TLB hit, 184, 219
TLB miss, 184, 219
torn write, 403
total ordering, 365
track, 404
track buffer, 407, 487
track skew, 406
trade-off, 66
transaction, 274
transaction checksum, 508
transaction identifier, 498
transfer, 406
translate, 174
translated, 133
translation lookaside buffer, 195
translation-lookaside buffer, 183
transparency, 113, 131
transparent, 132, 560
transparently, 224, 422
trap, 15, 47, 51
trap handler, 15, 188
trap handlers, 48
trap table, 47, 48
traverse, 471
triple indirect pointer, 467
truss, 444
Turing Award, 71
turnaround time, 60
two-phase lock, 307
two-phased, 393
type, 443

UDP/IP, 545
unfairness metric, 87
unified page cache, 474
uninitialized read, 123
unlocked, 291
unmapped, 188
unmarshaling, 552
update, 7, 96
update visibility, 570
USB, 389
use bit, 238
user mode, 15, 47
utilization, 110

valgrind, 125
valid, 190, 222

valid bit, 173, 206
Venus, 576
version number, 521
versioning file system, 519
Very Simple File System, 461
Vice, 576
virtual, 4, 23, 130
virtual address, 112, 114, 134
virtual address space, 8
virtual CPUs, 263
virtual machine, 4
virtual memory, 263
virtual page number (VPN), 171
virtual-to-physical address translations, 176
virtualization, iii, 1, 4, 8, 23
virtualized, 90, 269
virtualizes, 13
virtualizing, 25
virtualizing memory, 8, 112
virtualizing the CPU, 6
virtually-indexed cache, 194
void pointer, 154, 280
volatile, 11
Voltaire’s Law, 569
volumes, 577
Von Neumann, 3
voo-doo constants, 77
vsfs, 461

WAFL, 523, 530
wait-free, 367
wait-free synchronization, 300
waiting, 326
wakeup/waiting race, 306
whole-file caching, 575
wired, 188
work stealing, 101
work-conserving, 415
working sets, 240
workload, 59, 492, 585
workloads, 234
worst fit, 163
worst-fit, 148
write back, 407
write barriers, 499
write buffering, 474, 513, 569
write through, 407
write verify, 535
write-ahead log, 429
write-ahead logging, 492, 497

x86, 177
XDR, 555
XOR, 430

yield, 51

Zemaphores, 355

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

600 ZOMBIE

Zettabyte File System, 535
ZFS, 523, 535
zombie, 31

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

Asides

UNIX Signals, 379

Advanced Chapters, 93
And Then Came Linux, 18

Belady’s Anomaly, 231
Blocking vs. Non-blocking Interfaces, 375

Cache Consistency Is Not A Panacea, 580
Calling lseek() Does Not Perform A Disk Seek, 447
Computing The “Average” Seek, 411

Data Structure – The Free List, 136
Data Structure – The Inode, 465
Data Structure – The Page Table, 176
Data Structure – The Process List, 32
Dekker’s and Peterson’s Algorithms, 295
Dimensional Analysis, 408

Emulating Reference Bits, 250
Every Address You See Is Virtual, 114

FFS File Creation, 482
Forcing Writes To Disk, 499
Free Space Management, 470

Great Engineers Are Really Great, 166

How Long Context Switches Take, 55

Interludes, 35

Key Concurrency Terms, 272

601

602 WHY SYSTEM CALLS LOOK LIKE PROCEDURE CALLS

Linked-based Approaches, 468

Measurement Homeworks, 58
Mental Models Of File Systems, 462
Multiple Page Sizes, 202

Optimizing Log Writes, 500

Preemptive Schedulers, 63

Reads Don’t Access Allocation Structures, 472
RISC vs. CISC, 189
RTFM – Read The Man Pages, 42

Simulation Homeworks, 70
Software-based Relocation, 134
Storage Technologies, 218
Swapping Terminology And Other Things, 220

The creat() System Call, 444
The End-to-End Argument, 555
The Importance of UNIX, 17
The Importance Of Workload, 585
The RAID Consistent-Update Problem, 429
The RAID Mapping Problem, 425
The Segmentation Fault, 144
Thread API Guidelines, 288
TLB Valid Bit 6= Page Table Valid Bit, 190
Types of Cache Misses, 230
Types of Locality, 234

Why Hardware Doesn’t Handle Page Faults, 221
Why Null Pointer Accesses Cause Seg Faults, 248
Why Servers Crash, 561
Why System Calls Look Like Procedure Calls, 48

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

Tips

Always Hold The Lock While Signaling, 329
Amortization Can Reduce Costs, 66
Avoid Premature Optimization (Knuth’s Law), 322
Avoid Voo-doo Constants (Ousterhout’s Law), 79

Be Careful Setting The Timeout Value, 550
Be Careful With Generalization, 356
Be Lazy, 251
Be Wary of Complexity, 208
Be Wary Of Locks and Control Flow, 319
Be Wary Of Powerful Commands, 451

Communication Is Inherently Unreliable, 544
Comparing Against Optimal is Useful, 229
Consider Extent-based Approaches, 467

Dealing With Application Misbehavior, 51
Details Matter, 513
Do Work In The Background, 224
Don’t Always Do It Perfectly (Tom West’s Law), 370
Don’t Block In Event-based Servers, 377

Getting It Right (Lampson’s Law), 40

Hardware-based Dynamic Relocation, 135

Idempotency Is Powerful, 567
If 1000 Solutions Exist, No Great One Does, 149
Interposition Is Powerful, 131
Interrupts Not Always Better Than PIO, 393
It Always Depends (Livny’s Law), 415
It Compiled or It Ran 6= It Is Correct, 123

Know And Use Your Tools, 269

603

604 WHEN IN DOUBT, TRY IT OUT

Learn From History, 72
Less Code Is Better Code (Lauer’s Law), 302

Make The System Usable, 488
Measure Then Build (Patterson’s Law), 577
More Concurrency Isn’t Necessarily Faster, 319

Overlap Enables Higher Utilization, 68

Perfect Is The Enemy Of The Good (Voltaire’s Law), 569

RAM Isn’t Always RAM (Culler’s Law), 194
Reboot Is Useful, 56

Separate Policy And Mechanism, 27
Simple And Dumb Can Be Better (Hill’s Law), 352

The Principle of Isolation, 113
The Principle of SJF, 62
There’s No Free Lunch, 531
Think About Concurrency As Malicious Scheduler, 297
Think Carefully About Naming, 443
Transparency Enables Deployment, 422
Turn Flaws Into Virtues, 523

Understand Time-Space Trade-offs, 207
Use strace (And Similar Tools), 445
Use A Level Of Indirection, 516
Use Advice Where Possible, 80
Use Atomic Operations, 274
Use Caching When Possible, 187
Use Checksums For Integrity, 547
Use Disks Sequentially, 410
Use Hybrids, 205
Use Protected Control Transfer, 47
Use Randomness, 84
Use The Timer Interrupt To Regain Control, 52
Use Tickets To Represent Shares, 85
Use Time Sharing (and Space Sharing), 26
Use While (Not If) For Conditions, 337

When In Doubt, Try It Out, 121

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

Cruces

How To Account For Disk Rotation Costs, 413
How To Add Locks To Data Structures, 311
How To Allocate And Manage Memory, 119
How To Avoid Spinning, 304
How To Avoid The Costs Of Polling, 392
How To Avoid The Curse Of Generality, 245
How To Build A Device-neutral OS, 395
How To Build A Distributed File System, 560
How To Build A Lock, 293
How To Build Concurrent Servers Without Threads, 373
How To Build Correct Concurrent Programs, 10
How To Build Systems That Work When Components Fail, 543
How To Communicate With Devices, 394
How To Create And Control Processes, 35
How To Create And Control Threads, 279
How To Deal With Deadlock, 363
How To Deal With Load Imbalance, 101
How To Decide Which Page To Evict, 227
How To Define A Stateless File Protocol, 563
How To Design A Scalable File Protocol, 578
How To Design TLB Replacement Policy, 192
How To Develop Scheduling Policy, 59
How To Efficiently And Flexibly Virtualize Memory, 129
How To Efficiently Virtualize The CPU With Control, 45
How To Ensure Data Integrity, 527
How To Gain Control Without Cooperation, 51
How To Go Beyond Physical Memory, 217
How To Handle Common Concurrency Bugs, 359
How To Handle Disk Starvation, 413
How To Handle Latent Sector Errors, 529
How To Handle Lost Writes, 535
How To Handle Misdirected Writes, 534
How To Implement A Simple File System, 461

605

606 HOW TO WAIT FOR A CONDITION

How To Implement An LRU Replacement Policy, 238
How To Integrate I/O Into Systems, 389
How To Lower PIO Overheads, 394
How To Make A Large, Fast, Reliable Disk, 421
How To Make All Writes Sequential Writes, 512
How To Make Page Tables Smaller, 201
How To Manage A Persistent Device, 441
How To Manage Free Space, 154
How To Manage TLB Contents On A Context Switch, 191
How To Organize On-disk Data To Improve Performance, 480
How To Perform Restricted Operations, 46
How To Preserve Data Integrity Despite Corruption, 530
How To Provide Support For Synchronization, 272
How To Provide The Illusion Of Many CPUs, 25
How To Reduce File System I/O Costs, 473
How To Regain Control Of The CPU, 50
How To Schedule Jobs On Multiple CPUs, 94
How To Schedule Without Perfect Knowledge, 71
How To Share The CPU Proportionally, 83
How To Speed Up Address Translation, 183
How To Store And Access Data On Disk, 403
How To Store Data Persistently, 12
How To Support A Large Address Space, 141
How To Update The Disk Despite Crashes, 491
How To Use Semaphores, 341
How To Virtualize Memory, 112
How To Virtualize Memory Without Segments, 169
How To Virtualize Resources, 4
How To Wait For A Condition, 326

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

This book was typeset using the amazing LATEX typesetting system and
the wonderful memoir book-making package. A heartfelt thank you to
the legions of programmers who have contributed to this powerful tool
over the many years of its development.

All of the graphs and figures in the book were generated using a Python-
based version of zplot, a simple and useful tool developed by R. Arpaci-
Dusseau to generate graphs in PostScript. The zplot tool arose after
many years of frustration with existing graphing tools such as gnuplot
(which was limited) and ploticus (which was overly complex though
admittedly quite awesome). As a result, R. A-D finally put his years of
study of PostScript to good use and developed zplot.

	To Everyone
	To Educators
	To Students
	Acknowledgments
	Final Words
	References
	A Dialogue on the Book
	Introduction to Operating Systems
	Virtualizing the CPU
	Virtualizing Memory
	Concurrency
	Persistence
	Design Goals
	Some History
	Summary
	References

	Virtualization
	A Dialogue on Virtualization
	The Abstraction: The Process
	The Abstraction: A Process
	Process API
	Process Creation: A Little More Detail
	Process States
	Data Structures
	Summary
	References

	Interlude: Process API
	The fork() System Call
	Adding wait() System Call
	Finally, the exec() System Call
	Why? Motivating the API
	Other Parts of the API
	Summary
	References

	Mechanism: Limited Direct Execution
	Basic Technique: Limited Direct Execution
	Problem #1: Restricted Operations
	Problem #2: Switching Between Processes
	Worried About Concurrency?
	Summary
	References
	Homework (Measurement)

	Scheduling: Introduction
	Workload Assumptions
	Scheduling Metrics
	First In, First Out (FIFO)
	Shortest Job First (SJF)
	Shortest Time-to-Completion First (STCF)
	Round Robin
	Incorporating I/O
	No More Oracle
	Summary
	References
	Homework

	Scheduling: The Multi-Level Feedback Queue
	MLFQ: Basic Rules
	Attempt #1: How to Change Priority
	Attempt #2: The Priority Boost
	Attempt #3: Better Accounting
	Tuning MLFQ And Other Issues
	MLFQ: Summary
	References
	Homework

	Scheduling: Proportional Share
	Basic Concept: Tickets Represent Your Share
	Ticket Mechanisms
	Implementation
	An Example
	How To Assign Tickets?
	Why Not Deterministic?
	Summary
	References
	Homework

	Multiprocessor Scheduling (Advanced)
	Background: Multiprocessor Architecture
	Don't Forget Synchronization
	One Final Issue: Cache Affinity
	Single-Queue Scheduling
	Multi-Queue Scheduling
	Linux Multiprocessor Schedulers
	Summary
	References

	Summary Dialogue on CPU Virtualization
	A Dialogue on Memory Virtualization
	The Abstraction: Address Spaces
	Early Systems
	Multiprogramming and Time Sharing
	The Address Space
	Goals
	Summary
	References

	Interlude: Memory API
	Types of Memory
	The malloc() Call
	The free() Call
	Common Errors
	Underlying OS Support
	Other Calls
	Summary
	References

	Mechanism: Address Translation
	Assumptions
	An Example
	Dynamic (Hardware-based) Relocation
	OS Issues
	Summary
	References
	Homework

	Segmentation
	Segmentation: Generalized Base/Bounds
	Which Segment Are We Referring To?
	What About The Stack?
	Support for Sharing
	Fine-grained vs. Coarse-grained Segmentation
	OS Support
	Summary
	References
	Homework

	Free-Space Management
	Assumptions
	Low-level Mechanisms
	Basic Strategies
	Other Approaches
	Summary
	References

	Paging: Introduction
	Where Are Page Tables Stored?
	What's Actually In The Page Table?
	Paging: Also Too Slow
	A Memory Trace
	Summary
	References
	Homework

	Paging: Faster Translations (TLBs)
	TLB Basic Algorithm
	Example: Accessing An Array
	Who Handles The TLB Miss?
	TLB Contents: What's In There?
	TLB Issue: Context Switches
	Issue: Replacement Policy
	A Real TLB Entry
	Summary
	References
	Homework (Measurement)

	Paging: Smaller Tables
	Simple Solution: Bigger Pages
	Hybrid Approach: Paging and Segments
	Multi-level Page Tables
	Inverted Page Tables
	Swapping the Page Tables to Disk
	Summary
	References
	Homework

	Beyond Physical Memory: Mechanisms
	Swap Space
	The Present Bit
	The Page Fault
	What If Memory Is Full?
	Page Fault Control Flow
	When Replacements Really Occur
	Summary
	References

	Beyond Physical Memory: Policies
	Cache Management
	The Optimal Replacement Policy
	A Simple Policy: FIFO
	Another Simple Policy: Random
	Using History: LRU
	Workload Examples
	Implementing Historical Algorithms
	Approximating LRU
	Considering Dirty Pages
	Other VM Policies
	Thrashing
	Summary
	References
	Homework

	The VAX/VMS Virtual Memory System
	Background
	Memory Management Hardware
	A Real Address Space
	Page Replacement
	Other Neat VM Tricks
	Summary
	References

	Summary Dialogue on Memory Virtualization

	Concurrency
	A Dialogue on Concurrency
	Concurrency: An Introduction
	An Example: Thread Creation
	Why It Gets Worse: Shared Data
	The Heart of the Problem: Uncontrolled Scheduling
	The Wish For Atomicity
	One More Problem: Waiting For Another
	Summary: Why in OS Class?
	References
	Homework

	Interlude: Thread API
	Thread Creation
	Thread Completion
	Locks
	Condition Variables
	Compiling and Running
	Summary
	References

	Locks
	Locks: The Basic Idea
	Pthread Locks
	Building A Lock
	Evaluating Locks
	Controlling Interrupts
	Test And Set (Atomic Exchange)
	Building A Working Spin Lock
	Evaluating Spin Locks
	Compare-And-Swap
	Load-Linked and Store-Conditional
	Fetch-And-Add
	Summary: So Much Spinning
	A Simple Approach: Just Yield, Baby
	Using Queues: Sleeping Instead Of Spinning
	Different OS, Different Support
	Two-Phase Locks
	Summary
	References

	Lock-based Concurrent Data Structures
	Concurrent Counters
	Concurrent Linked Lists
	Concurrent Queues
	Concurrent Hash Table
	Summary
	References

	Condition Variables
	Definition and Routines
	The Producer/Consumer (Bound Buffer) Problem
	Covering Conditions
	Summary
	References

	Semaphores
	Semaphores: A Definition
	Binary Semaphores (Locks)
	Semaphores As Condition Variables
	The Producer/Consumer (Bounded-Buffer) Problem
	Reader-Writer Locks
	The Dining Philosophers
	How To Implement Semaphores
	Summary
	References

	Common Concurrency Problems
	What Types Of Bugs Exist?
	Non-Deadlock Bugs
	Deadlock Bugs
	Summary
	References

	Event-based Concurrency (Advanced)
	The Basic Idea: An Event Loop
	An Important API: select() (or poll())
	Using select()
	Why Simpler? No Locks Needed
	A Problem: Blocking System Calls
	A Solution: Asynchronous I/O
	Another Problem: State Management
	What Is Still Difficult With Events
	Summary
	References

	Summary Dialogue on Concurrency

	Persistence
	A Dialogue on Persistence
	I/O Devices
	System Architecture
	A Canonical Device
	The Canonical Protocol
	Lowering CPU Overhead With Interrupts
	More Efficient Data Movement With DMA
	Methods Of Device Interaction
	Fitting Into The OS: The Device Driver
	Case Study: A Simple IDE Disk Driver
	Historical Notes
	Summary
	References

	Hard Disk Drives
	The Interface
	Basic Geometry
	A Simple Disk Drive
	I/O Time: Doing The Math
	Disk Scheduling
	Summary
	References
	Homework

	Redundant Arrays of Inexpensive Disks (RAIDs)
	Interface And RAID Internals
	Fault Model
	How To Evaluate A RAID
	RAID Level 0: Striping
	RAID Level 1: Mirroring
	RAID Level 4: Saving Space With Parity
	RAID Level 5: Rotating Parity
	RAID Comparison: A Summary
	Other Interesting RAID Issues
	Summary
	References
	Homework

	Interlude: File and Directories
	Files and Directories
	The File System Interface
	Creating Files
	Reading and Writing Files
	Reading And Writing, But Not Sequentially
	Writing Immediately with fsync()
	Renaming Files
	Getting Information About Files
	Removing Files
	Making Directories
	Reading Directories
	Deleting Directories
	Hard Links
	Symbolic Links
	Making and Mounting a File System
	Summary
	References
	Homework

	File System Implementation
	The Way To Think
	Overall Organization
	File Organization: The Inode
	Directory Organization
	Free Space Management
	Access Paths: Reading and Writing
	Caching and Buffering
	Summary
	References
	Homework

	Locality and The Fast File System
	The Problem: Poor Performance
	FFS: Disk Awareness Is The Solution
	Organizing Structure: The Cylinder Group
	Policies: How To Allocate Files and Directories
	Measuring File Locality
	The Large-File Exception
	A Few Other Things About FFS
	Summary
	References

	Crash Consistency: FSCK and Journaling
	A Detailed Example
	Solution #1: The File System Checker
	Solution #2: Journaling (or Write-Ahead Logging)
	Solution #3: Other Approaches
	Summary
	References

	Log-structured File Systems
	Writing To Disk Sequentially
	Writing Sequentially And Effectively
	How Much To Buffer?
	Problem: Finding Inodes
	Solution Through Indirection: The Inode Map
	The Checkpoint Region
	Reading A File From Disk: A Recap
	What About Directories?
	A New Problem: Garbage Collection
	Determining Block Liveness
	A Policy Question: Which Blocks To Clean, And When?
	Crash Recovery And The Log
	Summary
	References

	Data Integrity and Protection
	Disk Failure Modes
	Handling Latent Sector Errors
	Detecting Corruption: The Checksum
	Using Checksums
	A New Problem: Misdirected Writes
	One Last Problem: Lost Writes
	Scrubbing
	Overheads Of Checksumming
	Summary
	References

	Summary Dialogue on Persistence
	A Dialogue on Distribution
	Distributed Systems
	Communication Basics
	Unreliable Communication Layers
	Reliable Communication Layers
	Communication Abstractions
	Remote Procedure Call (RPC)
	Summary
	References

	Sun's Network File System (NFS)
	A Basic Distributed File System
	On To NFS
	Focus: Simple and Fast Server Crash Recovery
	Key To Fast Crash Recovery: Statelessness
	The NFSv2 Protocol
	From Protocol to Distributed File System
	Handling Server Failure with Idempotent Operations
	Improving Performance: Client-side Caching
	The Cache Consistency Problem
	Assessing NFS Cache Consistency
	Implications on Server-Side Write Buffering
	Summary
	References

	The Andrew File System (AFS)
	AFS Version 1
	Problems with Version 1
	Improving the Protocol
	AFS Version 2
	Cache Consistency
	Crash Recovery
	Scale And Performance Of AFSv2
	AFS: Other Improvements
	Summary
	References

	Summary Dialogue on Distribution
	General Index
	Asides
	Tips
	Cruces

